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Abstract— The increasing penetration of converter-
based renewable generation has resulted in faster fre-
quency dynamics, and low and variable inertia. As a re-
sult, there is a need for frequency control methods that
are able to stabilize a disturbance in the power system
at timescales comparable to the fast converter dynamics.
This paper proposes a combined linear and neural network
controller for inverter-based primary frequency control that
is stable at time-varying levels of inertia. We model the
time-variance in inertia via a switched affine hybrid system
model. We derive stability certificates for the proposed
controller via a quadratic candidate Lyapunov function.
We test the proposed control on a 12-bus 3-area test net-
work, and compare its performance with a base case linear
controller, optimized linear controller, and finite-horizon
Linear Quadratic Regulator (LQR). Our proposed controller
achieves faster mean settling time and over 50% reduction
in average control cost across 100 inertia scenarios com-
pared to the optimized linear controller. Unlike LQR which
requires complete knowledge of the inertia trajectories and
system dynamics over the entire control time horizon, our
proposed controller is real-time tractable, and achieves
comparable performance to LQR.

Index Terms— Power systems; Data-driven control;
Time-varying systems

I. INTRODUCTION

REnewable energy has experienced a rapid growth, and is
predicted to constitute one-third of the global generation

mix by 2025 [1]. Unlike conventional generators, renewables
are interfaced with the grid via power electronic invert-
ers, which lack rotational inertia. In synchronous generator-
dominated grids, aggregated rotational inertia slows down
the system frequency response in the event of an imbalance
between power supply and demand [2]. This allows controllers
sufficient response time to restore frequency to its nominal
value. In contrast, renewable-dominated grids are characterized
by low and time-varying inertia, and fast frequency dynamics
[3]. This creates a need for real-time tractable, and fast-acting
controllers (in the order of milliseconds) [4] that are capable
of stabilizing a disturbance without impacting frequency-
dependent load shedding and other protection schemes [5].
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Several works have proposed virtual inertia and damping
allocation as a solution to address the frequency stability chal-
lenges in low inertia systems [6]–[8]. The proposed approaches
vary in the order of their frequency dynamics models and
in the metrics used for characterizing controller performance
(see [9] for a comprehensive overview). Nevertheless, it’s
challenging to extend the controllers designed for constant
inertia to a time-varying system, given that even exponentially
stable subsystems can become unstable with time-varying
parameters [10]. Only a few papers have considered frequency
control for variable inertia systems [11]–[15]. The work in
[12] proposes a robust controller that optimizes the worst
case system performance via a H∞ loop shaping controller
that adapts to time-varying frequency and damping in low-
inertia systems. The work in [13] explicitly considers the
temporal variation in inertia by modeling it as multiplicative
and additive noise in the linearized stochastic swing dynamics
model, and characterizes controller performance via the H2

system norm. The work in [11] models the time-varying
frequency dynamics as a switched affine hybrid system, with
the system switching through different modes representing
different levels of inertia. Using this framework, the authors
solve a receding-horizon model predictive control problem for
dynamic virtual inertia placement. The work in [14] proposes
a data-driven virtual inertia controller that learns an optimal
linear control gain from the finite-horizon LQR solution that
stabilizes the switched system in all inertia modes. The work
in [15] expands on [11], [14] to prove the existence of such a
stabilizing time-invariant linear controller.

There has been a lot of recent interest in implementing
machine learning to address frequency regulation challenges
in the power grid (see [16] for a review). However, the
key challenge is that standard learning techniques do not
provide stability guarantees. Particularly, a neural network
controller with a low training loss may actually lead to sys-
tem instabilities (i.e., unbounded frequency deviations) when
implemented during testing as observed in [17], [18]. Stability
is critical for power system operation because it can lead
to catastrophic consequences, e.g., blackouts [19]. To take
stability into account for a nonlinear time-varying system with
uncertainty, [20] proposes a quadratic constraint based on re-
stricting the partial gradients of the control policy to a bounded
(safety) set to guarantee global asymptotic stability. Another
class of papers are based on integrating Lyapunov stability
constraints into neural-network-based design [18], [21]–[28],
and enforce strict monotonicity of the policy for stability
[18], [21], [23], [24], [26]–[28]. In particular, [21], [24], [28]
propose a nonlinear controller for primary frequency control
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in lossless power networks considering nonlinear frequency
dynamics. For the proposed candidate Lyapunov function, lo-
cal asymptotic stability is guaranteed as long as the controller
is a monotonically increasing function that passes through
the origin. The works [18], [23], [25]–[27] propose nonlinear
controllers for voltage control considering the linearized distri-
bution grid power flow model, and show that an incremental
control with monotonically decreasing instantaneous control
functions guarantee stability. For problems where it is hard
to analytically derive a Lyapunov function, [17], [22], [29]
propose methods for learning a candidate Lyapunov function
jointly with a controller, with both parameterized as neural
networks. To the best of the authors’ knowledge, no exist-
ing work has explored learning-based frequency control that
guarantees stability under time-varying frequency dynamics.

This paper leverages the power of deep learning to optimize
the performance of inverter-based frequency control under
time-varying inertia while maintaining stability guarantees.
The contributions of this work are three-fold:

1) a fast-acting, data-driven controller that considers fre-
quency dynamics with time-varying inertia,

2) that satisfies Lyapunov stability conditions for a
switched affine hybrid system (i.e., in all inertia modes
and switching sequences), and

3) that performs comparably to finite-horizon LQR in stabi-
lizing a frequency disturbance in milliseconds (real-time
computationally tractable).

The remainder of the paper is organized as follows. In Sec-
tion II, we introduce the switched affine hybrid system model
of frequency dynamics for a system with time-varying inertia,
and the finite-horizon LQR formulation for frequency control.
In Section III, we expand on the notion of Lyapunov stability
for a switched affine hybrid system in all inertia modes, and
present our proposed controller. We derive Lyapunov stability
constraints for the proposed controller, and propose a method
to integrate the derived stability constraints into a learning
algorithm. We implement the proposed stability-constrained
learning algorithm on a modified Kundur 12-bus 3-area test
system and present our simulation’s results in Section IV.
Lastly, in Section V we conclude and outline future work.

II. MODEL AND PROBLEM FORMULATION

A. Frequency Dynamics as a Hybrid Switching System

Consider a power network described by an undirected graph,
G = {N , E}, where N = {1, . . . , n} represents the buses
(nodes) of the power network and E represents the edges
(transmission lines). Assuming identical unit voltage magni-
tudes, and purely inductive lines, a small-signal approximation
of the swing equation [30] gives us the following linearized
dynamics, ∀i ∈ N :

miθ̈i(t) + diθ̇i(t) = pin,i(t)−
∑
j∈N

bij(θi(t)− θj(t)), (1)

where θi is the voltage phase angle at node i, mi is the inertia
coefficient at node i, di is a lumped parameter representing
the droop control or frequency damping coefficient at node

i, pin,i represents the power input at node i, and bij is the
susceptance of the transmission line between nodes i and j.

Shifts towards greater integration of renewable energy
sources introduce variability in the system’s inertia. This
variability is attributed to the varying ratios of power gener-
ation from renewables (and their associated power electronic
converters) and conventional generators across different times
of the day. We use [14] to model these new dynamics as a
switched affine hybrid system to capture the time-variance
of the system and put the frequency dynamics in (1) in the
compact vector form:[
θ̇(t)
ω̇(t)

]
︸ ︷︷ ︸
ẋ(t)

=

[
0 I

−M−1
q(t)L −M−1

q(t)D

]
︸ ︷︷ ︸

Aq(t)

[
θ(t)
ω(t)

]
︸ ︷︷ ︸
x(t)

+

[
0

M−1
q(t)

]
︸ ︷︷ ︸
Bq(t)

pin(t)︸ ︷︷ ︸
u(t)

,

(2)
where θ(t) ∈ Rn and ω(t) ∈ Rn respectively denote the
angle and frequency deviations from their nominal values at
all nodes at time t, x ∈ R2n corresponds to the stacked
state vector of angle and frequency deviations at all nodes
at time t, u = pin(t) ∈ Rn is the control action at time t,
D = diag(di) ∈ Rn×n is a diagonal matrix containing the
droop/damping coefficients at all nodes, and L ∈ Rn×n is the
Laplacian of the grid. Further, Mq represents the inertia matrix
in mode q ∈ {1, ..., p} and each Mq = diag(mi,q) ∈ Rn×n
is a diagonal matrix with mi,q denoting inertia constant at
node i. Each operational mode q in (2) corresponds to a
specific inertia value hq (in seconds), based on the mix of
online generators and converters at time t. In particular, inertia
of < 2 s represents a renewable-dominated node, 2 − 4 s
represents a hydroelectric generation-dominated node, and
4− 10 s represents a thermal generation-dominated node [2].
The inertia coefficients are calculated as mq,i =

2hqSrated,i

ωs
,

where ωs = 50 Hz and Srated,i is the net power rating at node
i. Note that x, u, and q are all time-dependent variables; we
omit the t in their notation for brevity.

B. Training Set Generation

To train a policy that minimizes frequency deviations and
control costs, we generate a training set for the learning-based
controller with the following finite-horizon LQR:

min
u,x

∫ T

t=0

(
x⊤Qx+ u⊤Ru

)
dt, (3a)

s.t. ẋ = Aqx+Bqu ∀t ∈ [0, T ], (3b)

x(0) = x(0), (3c)

where x(0) is the initial state, states x and control actions
u are the decision variables. The objective function includes
quadratic costs for frequency deviation and control action over
the optimization time horizon, where Q ⪰ 0 and R ≻ 0
can be tuned according to the desired control objectives. The
finite-horizon LQR has complete knowledge of the dynamics,
including the modes, over the entire time horizon. Problem (3)
is a Quadratic Programming problem solvable with CVX [31].



III. METHODOLOGY

In this section, we begin by deriving a Lyapunov function
for the swing dynamics with time-varying inertia described in
(2). Then, we derive the stability condition under this Lya-
punov function and present our proposed controller. Finally,
we introduce the training method for the proposed algorithm.
Figure 1 shows a diagram of the proposed policy.

A. Candidate Lyapunov Function for the Switched
System

The first-stage objective is to find a Lyapunov function
for the switched affine hybrid system. We propose to jointly
identify a Lyapunov function V (x) = x⊤Px and a linear
feedback controller u = Kx that can stabilize all the modes.
In the next part, we will show how to improve the performance
of the linear controller via a neural network residual policy
while maintaining the stability guarantee.

Formally, we aim to find a controller u = Kx and a
common Lyapunov function V (x) = x⊤Px, P ≻ 0 such that
the following Lyapunov stability condition is satisfied,

(Aq+BqK)⊤P+P (Aq+BqK) ≺ 0 , ∀q ∈ {1, 2, ..., p}, (4)

Given that the Lyapunov function V (x) = x⊤Px is positive
definite since P ≻ 0 and satisfies the Lie derivative condition
(4), the linear feedback controller u = Kx guarantees the
stability of the switched affine hybrid system.

However, a notable challenge is that the constraint (4) is
nonconvex in the decision variables K and P due to the
products of bi-linear terms. Thus, we adopt a change of
variables following [32, Ch. 7]. Defining X = P−1 and
Y = KX , we formulate the joint Lyapunov function and
stable control identification feasibility problem as follows,

min
X,Y

C , (5a)

s.t. AqX+XA⊤
q +BqY +Y ⊤B⊤

q ≺ 0,∀q∈{1, ..., p}, (5b)

X ≻ 0, (5c)

where C is a constant. This problem is convex and feasible as
[15] analytically guarantees it. Suppose (Xs, Ys) are solutions
of (5). Then the feasible control gain Ks is derived as Ks =
Ys(Xs)

−1 and the Lyapunov function is defined as

V = x⊤Psx , Ps = (Xs)
−1. (6)

Therefore, no matter how many different modes the switched
affine system has, we can always find a linear controller and
a common Lyapunov function [15].

B. Proposed Controller

Having identified a stable linear controller for the hybrid
system and the corresponding Lyapunov function, we now
introduce our proposed algorithm. To guarantee stability and
improve performance, we parameterize the proposed controller
as a combination of a stabilizing linear feedback controller and
a nonlinear residual πψ(·) : R2n → Rn (Fig 1). The nonlinear
residual is parameterized as a neural network with parameter

Fig. 1. The diagram of the proposed controller depicts a combination
of a linear controller Kx(t) and a neural network residual πψ(·),
constrained to actions that satisfy the Lyapunov stability conditions
specified in (10).

ψ, and its inputs are the current states x. We consider a
controller defined as follows:

u = Kx+ πψ(x). (7)

By combining the linear controller with a neural network
residual, we have a dual benefit: it can inherit the guarantee
of the linear control while gaining additional flexibility for
performance optimization with a neural network.

To ensure the stability of the closed-loop system we define
Acl,q = Aq+BqK and we utilize the Lyapunov function from
(6) to derive the algebraic stability constraint, ∀x ̸= 0:

V̇ = x⊤
(
A⊤
cl,qP + PAcl,q

)
x+ 2x⊤PBqπψ(x) < 0 . (8)

We introduce short-handed notations VLin(x, q) :=

x⊤
(
A⊤
cl,qP + PAcl,q

)
x and g(x, q) = 2B⊤

q Px. Thus, (8)
can be compactly written as,

VLin(x, q) + g⊤(x, q)πψ(x) < 0 ,∀x ̸= 0. (9)

The switching system is asymptotically stable with the pro-
posed policy if (9) holds for all time t. We summarize the
main result as the following Theorem.

Theorem 1: Consider a controller defined as uψ(x) =
Kx + Π[πψ(x)], where u = Kx is a linear controller that
can stabilize the switching system (2), and πψ(x) is a neural
network controller parameterized by ψ. For all x ̸= 0, define
the projection operation Π[πψ(x)] as follows (10),

λ∗ =

[
g⊤(x, q)πψ(x) + VLin(x, q) + ϵ

g⊤(x, q)g(x, q)

]+
, (10a)

Π[πψ(x)] = πψ(x)− λ∗g(x, q), (10b)

where ϵ > 0 is a sufficiently small constant. For x = 0, the
projection is Π[πψ(0)] = 0. Then the closed-loop system (2)
is asymptotically stable with respect to the origin for arbitrary
switching signal q(t) : R+ 7→ {1, ..., p}.

Proof: Consider the following convex programming,

Π[πψ(x)] = argmin
ξ

1

2
∥ξ − πψ(x)∥2, (11a)

s.t. VLin(x, q) + g⊤(x, q)ξ ≤ −ϵ. (11b)

Given that K is a stable linear controller for the system,
with the common Lyapunov function V = x⊤Px, thus for
any q ∈ {1, ..., p} VLin(x, q) < 0 ,∀x ̸= 0. Therefore, the



project problem (11) is always feasible with a solution ξ = 0.
Consider the Lagrangian of (11)

L(ξ, λ) =
1

2
∥ξ − πψ(x)∥2 + λ

(
VLin(x, q) + g⊤(x, q)ξ + ϵ

)
,

The optimal primal and dual solutions (ξ∗, λ∗) satisfy the
Karush-Kuhn-Tucker (KKT) conditions,

∇ξL = ξ∗ − πψ(x) + λ∗g(x, q) = 0, (12a)

λ∗(VLin(x, q) + g⊤(x, q)ξ∗ + ϵ) = 0 , (12b)

VLin(x, q) + g⊤(x, q)ξ ≤ −ϵ, λ∗ ≥ 0. (12c)

Thus, (10b) is a direct result from (12a). Substituting (10b)
in (12b) gives (10a). As a result, (10) provides an optimal
solution of (11). This solution guarantees that VLin(x, q) +
g⊤(x, q)Π[πψ(x)] < 0 ,∀x ̸= 0 holds for all time t, which
leads to asymptotic stability with respect to the origin.

Therefore, the final designed policy reads as follows,

uψ(x) = Kx+Π[πψ(x)] , (13)

where Π[πψ(x)] is given by (10).
Remark 1: To analyze the impact of linearization error on

stability, consider the following nonlinear dynamics,

ẋ = Aqx+Bqu+ η(x),

where η(x) is the linearization error depending on state.
With the same Lyapunov function V = x⊤Px, the stability
condition for the nonlinear dynamics reads as follows,

V̇ = x⊤
(
A⊤
cl,qP + PAcl,q

)
x+ 2x⊤PBqπψ(x)︸ ︷︷ ︸

VLin(x,q)+g⊤(x,q)ξ≤−ϵ

+2x⊤Pη(x) .

Therefore, our stability constraint in (11b) guarantees stability
of the nonlinear dynamics in a local region around the origin
when the linearization error is small.

C. Stability-Constrained Learning for Frequency
Regulation

In Section III-A, we introduced feasible solutions for the
feedback control gain K and the Lyapunov function obtained
by solving (5). However, the direct solution of (5) often
leads to suboptimal outcomes. Indeed, it has been observed
in previous studies [24] that neural network-based controllers
can reduce the control cost by 30% and shorten the frequency
recovery time by a third compared to a linear control policy. To
address this, we propose an iterative approach in this section
to jointly optimize the neural network residual controller, the
linear feedback control gain, and the Lyapunov function. The
proposed training method bypasses the need for hand-tuning,
as for the BMI algorithm [15] or the feature selection required
for a regression-based linear controller [14].

With the training set (xlqr, ulqr) generated through finite-
horizon LQR by solving (3), we optimize the proposed con-
troller to mimic the behavior of the LQR controller. Con-
sidering the distinct parameterization of the linear controller
and the neural network, we decompose the optimization of
the proposed controller into two sub-problems: (1) optimizing
the nonlinear residual πψ(x) and (2) optimizing the linear

Algorithm 1 Stability-constrained Learning
Ensure: NN πψ(x); K,Q; dataset (xlqr, ulqr); feasible solution Ks, Ps;

epoch number Nep, batch number Nb, batch size Ns, training step for
linear controller Nl; constants c1, c2, c3, learning rates η1, η2.

1: Initialize K,Q with Ks, Ps;
2: for i = 0 to Nep do
3: for j = 0 to Nb do
4: Randomly sample Ns pairs from (xlqr, ulqr);
5: Update ψ by ψ = ψ − η1∇ψLψ in (14);
6: for step = 0 to Nl do
7: Update: K = K − η2∇KL(K,Q), Q = Q− η2∇QL(K,Q)

in (15).
8: end for
9: end for

10: end for

feedback controller Kx and the Lyapunov stability certificate
V (x). The optimization problem for ψ is

min
ψ

Lψ = ∥uψ(xlqr)− ulqr∥, (14)

where uψ is defined in (13) and ∥·∥ is the Frobenius norm.
Then, we fix ψ and optimize the linear controller and

Lyapunov function. This sub-problem is formulated as an
optimization problem with Lyapunov stability constraints. We
use the Cholesky decomposition [33] of P to enforce the
positive definiteness of the Lyapunov function, i.e. P =
QQ⊤, where Q is a lower triangular matrix with positive
diagonal entries. The stability constraint (4) is formulated as
a soft penalty and verified post-training. We parameterize the
Cholesky decomposition matrix Q and the linear controller
gain matrix K as the learnable parameters.

min
K,Q

L(K,Q) = c1∥K∥+ c2∥Kxlqr∥+ ∥uψ(xlqr)− ulqr∥

+ c3

2n∑
i=0

∑
q

max(0, eigi(A
⊤
cl,qP + PAcl,q)),

P = QQ⊤, Q is lower triangular, (15a)
Qii ∈ R, Qii > 0,∀i ∈ {1, ..., n}, (15b)

where ψ is fixed, only K and Q are optimized. The coefficients
c1, c2, c3 are objective weights. The second row for L(K,Q) is
a summation of all positive eigenvalues of A⊤

cl,qP +PAcl,q ≺
0 ,∀q ∈ {1, ..., p} to penalize violations of the Lyapunov
stability constraint (4). We deploy a warm start using the
feasible solution of (5) for K and Q, where Q is decomposed
from Ps, such that we start with a stabilizing but suboptimal
solution, improving learning efficiency. We minimize the norm
of the control gain ∥K∥ and the linear control action ∥Kxlqr∥
to avoid the large overshoot observed in the feasible solution.
With πψ(x) = 0, the same procedure solely optimizes the
linear controller with its Lyapunov function, termed Linear-
opt.

The nonlinear and linear policies are updated iteratively
using gradient descent until convergence or the maximum step
limit is reached, as outlined in Algorithm 1. It’s worth noting
that while this iterative algorithm does not guarantee global
optimality, the numerical experiments show that the trained
controller (13) achieves performance comparable to the LQR
controller with stability guarantees.



Fig. 2. 230kV/100 MVA Kundur 12-bus 3-area test network with 0.0001
+ 0.001 p.u. line impedance.

IV. SIMULATIONS

In this section, we demonstrate the effectiveness of the
proposed algorithm via numerical experiments. We compare
against the LQR, the linear controller, i.e., (Linear), and the
optimized linear controller, i.e., (Linear-opt).

A. Experimental Setup

We implement the proposed controller in the modified Kun-
dur 12-bus 3-region network [34] (cf. Fig. 2), with discretized
network dynamics using zero-order hold. The inverter-based
generation resources are deployed for frequency control. We
consider 9 inertia modes, with the inertia in each mode hq ∈
{0.5, 1, 1.5, 2, 2.5, 3, 3.5, 5, 9} s. For simplicity, we assume the
same normalized inertia coefficient for all nodes in a given
mode q, i.e., mq,i = mq = hq, ∀i. The droop coefficient is
0.5 at all nodes and the control frequency is 1 kHz. We solve
the finite-horizon LQR problem (3) using Q = diag(0, 5e4I)
and R = I and collect 200 trajectories, assuming both
frequency and actions in per unit (p.u.). The nonlinear residual
is modeled using a three-layer fully connected neural network
with 300 and 400 hidden units, respectively. The network takes
the state x as input and outputs the control actions (real power
set-points).

Online inertia modes are estimated by a neural network
pre-trained with the collected trajectories and used by (10)
for the projection, where the input to the neural network is
two consecutive frequency observations ω(t), ω(t + 1) and
the corresponding action u(t). The estimator achieves 90.64%
accuracy for inertia mode classification. We optimize the
proposed controller by Algorithm 1 with c1 = 0.1, c2 =
0.01, c3 = 500, η1 = 0.001, η2 = 0.01, Nep = Nb =
300, Ns = 256, Nl = 5, and compare its performance against
LQR, Linear and Linear-opt in 100 distinct frequency devia-
tion scenarios, each with a time horizon of 1 s (1000 steps) and
a random initial frequency deviation at each bus sampled from
a uniform distribution U[−0.3,0.3] Hz. The scenarios commence
in random operational modes q(0) ∈ {1, . . . , 9}. Subsequently,
based on a uniform distribution, the inertia of the system either
remains constant, increases or decreases every 0.1 s.

We utilize three key metrics to evaluate our controller:
(i) settling time, defined as the average duration for the
controller to reduce frequency deviations to under 0.01 Hz; (ii)
overshoot, which is the average maximum frequency deviation
observed in each scenario; and (iii) average cost (Avg Cost)
1
N

∑N=100
i=0

∑T=1000
t=0 x⊤i Qxi + u⊤i Rui.

B. Results
In 100 scenarios (cf. Table I), the proposed controller

matches LQR’s performance and outperforms Linear and
Linear-opt in settling time and control cost due to the flex-
ibility of the nonlinear residual.

TABLE I
PERFORMANCE OF LQR, BASE CASE (LINEAR), OPTIMIZED LINEAR

(LINEAR-OPT), AND PROPOSED CONTROLLER ACROSS 100
SCENARIOS.

Settling time (ms) Overshoot (Hz) Avg Cost
Method Mean Std Mean Std Mean Std

LQR 122.8 77.1 0.097 0.033 99.0 76.18
Proposed 147.7 84.8 0.096 0.035 107.1 82.39

Linear 554.8 24.2 0.269 0.021 4497.4 130.5
Linear-opt 605.2 48.8 0.083 0.034 244.7 92.97

Figures 3 and 4 illustrate state and control trajectories for
one inertia switching scenario, where bus 9 has an initial
frequency deviation of -0.3 Hz and other buses have ran-
dom deviations. From Figure 3, all controllers stabilize bus
9 despite the inertia change. Specifically, Linear induces a
relatively large overshoot and large control actions, while
Linear-opt reduces these but has a longer frequency restoration
time (≈ 1 s). Moreover, the control action of both linear
controllers might fail to converge to the optimal solution once
the frequency is restored. The proposed controller, similar to
LQR, achieves fast frequency recovery within 0.1 s and low
cost across all buses (cf. Figures 3 and 4), demonstrating the
efficiency of our algorithm.

Fig. 3. State and control trajectories for LQR, the proposed controller,
Linear, and Linear-opt at bus 9 with a zoomed-in view for 0-0.2 s. The
background color represents the inertia modes.

Fig. 4. State and control trajectories of all buses with the proposed
controller with a zoomed-in view for 0-0.1 s.

C. Controller Constraints
We explore hardware constraints and nonlinear power flow

dynamics’ impact. Integrating action constraints, u ≤ u ≤ ū,



into both LQR formulation and projection (10), we train the
controller with LQR solutions that incorporate these con-
straints. Table II outlines the constrained controller’s perfor-
mance, where |ui| ≤ 0.5 p.u. for all i ∈ N . Despite a slight
increase in control cost and settling time compared to LQR,
our controller still achieves fast frequency recovery.

TABLE II
PERFORMANCE OF LQR (LQR-C) AND PROPOSED CONTROLLER

(PROPOSED-C) WITH HARDWARE CONSTRAINTS.

Settling time (ms) Overshoot (Hz) Avg Cost
Method Mean Std Mean Std Mean Std

LQR-C 143.7 84.7 0.114 0.039 106.2 81.1
Proposed-C 152.2 79.1 0.124 0.043 141.7 112.3

V. CONCLUSION

We propose a stability-constrained data-driven controller for
frequency regulation with time-varying inertia. Our method
integrates a linear controller with a neural network-based
nonlinear residual, where the linear controller can stabilize
the switching system with a joint Lyapunov function. During
training, the linear controller, the corresponding Lyapunov
function, and the nonlinear residual are optimized iteratively in
an end-to-end manner. The stability of the closed-loop system
is further enforced by projecting the nonlinear residual to
guarantee the Lyapunov condition. Thanks to the nonlinear
residual, the policy can approximate the LQR solution and
achieve a comparable performance. Although we successfully
identified a valid Lyapunov function and a linear feedback
controller, jointly optimizing these with stability and optimal-
ity guarantees remains challenging and is a key area for future
research. Future work includes adaptation to nonlinear inverter
dynamics, delay-aware controller design, decentralizing the
controller to reduce communication needs, and improving
robustness to parameter measurement errors and variability.
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