Games and Definability for System F

Dominic J.D. Hughes
Oxford University Computing Laboratory
Wolfson Building
Parks Road
Oxford OX1 3QD
United Kingdom*
dhughes@comlab.ox.ac.uk

Abstract

We present a game-theoretic model of the poly-
morphic A-calculus, system F, as a fibred cate-
gory. FEvery morphism o of the model defines an
n-expanded, (B-normal form & of system F whose
interpretation is 0. Thus the model gives a pre-
cise, non-syntactic account of the calculus.

1 Introduction

Polymorphism is of fundamental interest to
computer scientists. Consider the function map
in the setting of a typed functional programming
language which takes a function f : X — Y
and a list ajas...a, of elements each of type
X and returns the list f(a1)f(a2)... f(an) of el-
ements each of type Y. Since the algorithm is
independent of the actual data types X and Y,
it would be useful to have the flexibility of tak-
ing X and Y as type variables, to be instantiated
whenever map is called. For example, we might
write map(Nat)(Bool) to mean “the map function
as defined above, with X := Nat and Y := Bool”,
thus extending the notion of application from the
usual form term(term) to the form term(type).
The function map is said to be polymorphic, and

*This is a slightly revised version of a paper appearing
in IEEE 12th Symposium on Logic in Computer Science,
Warsaw, June 1997.

is assigned the type
T =IX.10Y. (X = Y) — (listX — listY)).

The notation is designed according to the intuition
that this type is a “product” indexed by X and Y
ranging over all possible types.

A key tool for the analysis of polymorphism
is system F' [Gir89], which is the simply-typed
A-calculus extended by quantification over type
variables, as above. Models of system F' do not
come about easily. The impredicative nature of
the definition of T', that T itself is in the range
of X and Y, raises problems for the semanticist.
The two standard classes of models are the PER
models [Cro93], and the domain models [CGW89].

Recent advances in our understanding of the na-
ture of sequential computation were made through
the paradigm of modelling term (term) application
intensionally, by interaction between function and
argument. Interaction occurs by the repeated ex-
change of basic data “tokens” (for example natural
numbers, booleans, and requests for data). Thus
higher-order functions do not necessarily have in-
stant access to the full information of the whole
graph of an argument function f: information can
be obtained only by testing the input-output be-
haviour of f, as a “black box”. This approach
forms the basis of game semantics, and has led
to many good results, for example the solution
of the long-standing full abstraction problem for
PCF [AJM94, HO94, Nic94].

In this paper we present a games model for

system F. A games model for polymorphism was
presented in [Abr95]. The new concept in our
approach is that we model not only term(term)
application intensionally, but also term(type) ap-
plication; interaction occurs not only through the
communication of basic data tokens, but also
by the direct exchange of types themselves. A
type is modelled as a first-order polymorphic
arena, the analogue for system F' of the com-
putational arena of Hyland and Ong for PCF
[HO94]'. A second-order polymorphic arena
is an arena which has first-order polymorphic
arenas as moves. The HO notion of a justi-
fied sequence of moves is enriched to a structure
which we call a located sequence. Instead of the
whole justified sequence being inside one particu-
lar arena, each move is located in a different arena.
We use a special control move x, called the ini-
tialising move, to open a new first-order thread of
play inside one of the previous second-order moves
of the sequence.

Our main result is that every strategy o of the
games model F defines an n-expanded, S-normal
form &, whose interpretation is ¢. This provides us
with a very precise non-syntactic characterisation
of system F'.

2 Syntax of system F

We fix the notation of system F. Types are
generated by

T = X |unit | TxT | T —T | IX.T

where X ranges over a countably infinite set of
type variables. Raw terms are generated by

s u= x| ()] (s,8) | Fst(s) | Snd(s)
| X5 | ss | AX.s | sT

where x is any term variable, and T is any type.
See [Cro93] for further details of the language.

3 Games

We consider alternating, two-player games be-
tween P (think of Player, Program, or System) and

In future we abbreviate this reference to “HO”.

O (Opponent, User, or Environment) in which P
starts. The following diagram represents a trace
or history of events in a game:

The labels a, b, c and d are actions names, just
like the actions of a labelled transition system.
Fach node signifies an occurrence of an action, and
time runs from left to right. A hollow node o in-
dicates that an action was performed by P, and
a solid node e indicates that an action was per-
formed by O. Arcs pointing backwards in time
indicate a causal relationship between actions, for
example P’s action ¢ occurring in seventh position
was justified by O’s action d occurring in fourth
position.

We formalise these concepts in the defini-
tions below. A justified sequence of events
s on the set of actions Act is a structure
(Es, <s, justg, plg, acts) consisting of:

e Fvents. A finite set Fs = {z,y,z,...} of
events, pictured as nodes in the diagram
above.

e Temporal relation. A strict linear ordering
<, on events. Denote the corresponding suc-
cessor partial function by succ, : By — E.

e Justification pointer. A partial function
just, : Es — E,. Define the relation y is jus-
tified by x, written x+ gy, if and only if
justy(y) = .

e Association with players. A total function
pl, : Es — {O, P} associating each event with
a particular player.

e Labelling with actions. A total function
acts : By — Act, associating an action to each
event.

The structure is required to satisfy the following
conditions:

J1. Causality. Justification points backwards in
time: zv\gy only if x <y y.

J2. P goes first. If x is the first event in s then
ply(z) = P.

J3. Alternating play. The players take turns, and
justification has to point to an event associ-
ated with the opposite player:

(a) If succ,(x) = y, then pl,(x) # pl, (y).
(b) Tt 2y, then pl,(z) # pl,(y).

Two justified sequences of events s and t are
tsomorphic if there exists a bijection 0 : £, — FE
of the underlying sets of events that preserves and
reflects structure. We say s is a subsequence of
t if there exists an injection ¢ : £ — E; that pre-
serves and reflects structure, and s is a prefix of
t if in addition the image of F; is an initial seg-
ment of the events of t. The empty justified se-
quence of events ¢ is defined by E. = (). A justi-
fied sequence is an isomorphism class of justified
sequences of events.

A mowve is the information content of the
“difference” between two consecutive justified se-
quences, i.e. a pair (a,i) where a is an action and
i is either an odd natural number indicating how
far back to justify, or ¢ = 0 meaning no pointer. In
this way any justified sequence can be encoded as
a string of moves, (a,7)(b,j)(c, k) ... € (ActxN)*.
This alternative representation is convenient for
manipulations of justified sequences that are “lo-
cal”, such as in the definition of strategy below,
where we are concerned only with the very end of
a justified sequence. The original notation is use-
ful for “global” operations such as the deletion of
events from a justified sequence.

Notation We take a,b, ... to range over actions,
x,vy, ... to range over events, s,t,... to range over
justified sequences, and m,n,... to range over
moves. Furthermore we write % to indicate that
the event x is labelled with the action a. We will
identify a justified sequence s with its encoding as
a string of moves. Concatenation of moves and of
strings of moves is represented by juxtaposition. If
it is clear from the context that an action a occurs
at a particular event z, for example in a string of
moves smn where m = (a,i), we will often abuse
notation and simply write the action a or the move
m to mean the event z.

3.1 Games, strategies, and arenas

A game is a specification of certain allowable
strings of moves. For example, the game of chess,
with moves such as “Knight f3—¢5”, can be spec-
ified abstractly as the set of all strings of moves
that follow the rules. Formally, a game G is a pair
(Actg, Lg) consisting of a set of actions Actg,
together with a non-empty, prefix-closed set Lg
of justified sequences on Actg, called the legal
sequences of G.

A strategy on a game is a rule telling P what to
do given any reachable? legal sequence in which it
is his turn to play next. It is best thought of as
a function that maps a reachable sequence s to a
move mg, such that smy is (the move-encoding of)
a legal sequence.

A partial strategy o on a game G is a non-
empty, prefix-closed set of legal sequences o C L¢g
satisfying

o P-determinism. Whenever sm,sn € o with
plsm(m) - plsn(n) - P, then m =n.

e O-contingent completeness. If sm € Lg with
pl,,(m) =0 and s € o, then sm € 0.

A winning sequence is a legal sequence which is
prefix-maximal in Lg and in which P performed
the last action, and a winning strategy is a par-
tial strategy that is the prefix-closure of a set of
winning sequences.

One way to specify the set of legal sequences
of a game is to enforce a particular causal re-
lationship between the actions. An arena is a
pair (Actq, F4) where Acty is a set of actions
and F4, the enabling relation of A, is a binary
relation between Act + {x} (“4” denotes disjoint
union) and Act such that for each a € Act there
exists a unique finite path xF ... Fa.

a /i\ c
AN /TN

SN

2The domain of definition need only be sequences
reached according to the previous play dictated by the strat-

egy.

The direct descendents of the initialising
action x are called initial actions, which in
the graph above are the actions a,b and ¢. An
A-sequence is a justified sequence s on the set of
actions Act + {x} such that

1. Justification respects enabling: x*\gy® only
ifakab.

2. Every non-initialising event is justified: for
any event 3 with b # % there exists an event

x such that z 0.

Any non-empty A-sequence necessarily begins
with an unjustified initialising action by P. An
A-game is a game (Acta + {x}, Lg) for which
L consists only of A-sequences.

The next section highlights how the structures
defined so far relate to previous work on game se-
mantics, and can skipped by a reader steering a
direct course for system F'.

3.2 Relationship with HO-games

A justified sequence s is a P-view if justifica-
tion by O is only ever to the immediately preceding
P-event. Define the P-view game on an arena
A to be the maximal A-game whose set of legal
sequences consists only of P-views, and in which
there is at most one occurrence of the initialising
action . Define a starting strategy to be a par-
tial strategy in which P successfully performs his
first x action, i.e. which is not equal to the single-
ton set consisting of the empty sequence.

Proposition 1 (HO-correspondence.) — Starting
strategies on P-view games correspond to innocent
strategies on answer-free HO-arenas.

The proof is trivial: actions correspond to ques-
tions, and given a legal sequence on a P-view
game, delete the P-action x from the front in order
to obtain an HO-P-view.

4 Second-order structure

A wuniverse of actions is a set U such that
U+U—U and U xU — U. Let R* denote

the reflexive, transitive closure of a binary re-
lation R, and let NT =N\ {0}. A polymor-
phic arena A on the universe U is a quadruple
(Actg, ka4, arg, ref4) consisting of

e An arena (Acty, 4) such that Acty C U.

e A function ary : Act4 — N assigning an arity
to each action a. By convention ar4(x) = co.

e A function refy : Acty — (Acty + {*})xNT
assigning a reference further up the
Fa-tree: if ref4(a) = (b,7) then i < ary(b)
and b % a. We write b; for (b,1).

A selection of polymorphic arenas are shown in
Figure 1. If non-zero, the arity of an action is
placed to its left; the reference is placed in brack-
ets to the right. We take A, B, C, ... to range over
polymorphic arenas, and the set of polymorphic
arenas on U is denoted PA (/). Take the judge-
ment n = A to mean that i < n for each reference
*; of A, in which case we say A is in context n.
(The overloading of the symbol - should not cause
any confusion.)

A second-order polymorphic arena A over
the universe U is a polymorphic arena on the
universe PA(U). We take A,B,C... to range
over second-order polymorphic arenas, and the set
PA(PA(U)) of second-order polymorphic arenas
over U will be abbreviated to PA*(U/).

A *
A/Jg\c
/N / 1\
D E F G H
/N
I J

A polymorphic arena A € PA(U) will be called a
1-arena, and its actions a € U called 1-actions.
A second-order polymorphic arena A € PA¥(U)
will be called a 2-arena, and its actions A €
PA(U) called 2-actions. Thus 2-actions are 1-
arenas. By convention % is both a l-action and a
2-action.

4.1 Located sequences

A (second-order) located sequence s
in a universe U of actions is a structure
(Es, <s, just,, plg, acts, locs) consisting of

e A justified sequence on the set of actions
U +PAU) + {x}. In other words act, assigns
either a 1-action or a 2-action to each event.

e A function loc, : B, — PAU) + PA®(U) set-
ting the location of each event.

The structure is required to satisfy the following
conditions:

L1. Events are well-located: for all events x® of
s, we have o € Actioc, (o) + {*}-

L2. Justification respects location: if x+,y then
locs(x) = locs(y).

L3. Justification respects enabling locally: if
Ty then = Fioe, (2) Y-

L4. Demands for the other player to play an
initial move on a new arena are satisfied
uniquely and immediately: if actg(x) = *
then z¥ gy if and only if succs(z) = y.

Define z € FE5 to be a I-event or a 2-event
according as the location of x is a l-arena or a
2-arena.

A typical located sequence is depicted below.

A’\k\m V2
) (¢] []

[] O [] o [] Ok\.
*x A E * a [* a x]
A A A A A A E FE B B

The first action is by P, initialising the 2-arena A
which was pictured above. This forces O to play
an initial action in A, and she chooses the 2-action
A, a l-arena. P continues inside A by responding
to A with the l-arena E. Now O initialises the
l-arena A, which occurred earlier as a 2-action in
the sequence (the restriction to a previous 2-action
is not a consequence of the conditions above, but
will be required later). P obliges with an initial
l-action a inside A. Justifying back to the original
thread of play inside the 2-arena A, O continues
with the 2-action I. Now P forces O to play an

initial 1-action in E by locating the initialising
move * in F, a previous 2-action in the sequence.
And so on. Note that the 1-action a occurs both as
a P-action and as an O-action, and located inside
two different arenas.

We end this section with a relationship between
the enabling structure of a 1-arena and the justi-
fication structure of a located sequence.

Lemma 1 Let s be a located sequence. Suppose
x% is a 1-event of s located in the 1-arena A, and
that c Fa. Then there ewists a unique I-event z¢
of s such that z°~\;x®.

TN T N T N T
z) o)) x

¢ Fa " Fa d Fa o Fa a
A A A A A

Proof: The existence and uniqueness of z¢
comes from conditions L.1-3 and the fact that the
enabling relation forms a tree. O

5 Games for system F'

We shall require only one particular 2-arena, a
“flat” 2-arena with actions the set of all polymor-
phic arenas. We denote this 2-arena by K, for
“Kind”, as its elements are “types”:

Whenever a player performs a l-event x% with
arity n (i.e. the arity of a is n inside the location
l-arena of x) it will be followed by 2n actions lo-
cated in K. Because of condition L4 and the fact
that K is flat, this means we are forced to “import”
n new l-arenas which may become initialised in
the future:

X Oh. Oh.
a * A *x A
A K K K K

A~
[¢] []
* A,

K K B

Y
b

We will be considering only P-views as the pro-
jection used later for interaction is quite com-
plex. Furthermore it is easier to extract defin-
ability from a standard notion of strategy on a
P-view rather than the corresponding notion of

a “second-order” innocent strategy on the total
view (compare with Proposition 1). The compo-
nent additional to HO-projection is that the col-
lapse to a P-view involves the uniformity or type-
independence associated with polymorphism: P
has to proceed without the knowledge of which
particular l-arenas A were imported by O as
2-events located in . In going to the P-view we
package all 2-actions A, B,C, ... by O into a spe-
cial symbol 2, indicating a parcel whose contents
shall remain forever unknown to P. For example
in the P-view the actions of the sequence displayed
above would become a*x 2 x ... x 2b. Secondly
the fact that in the full view of the history of in-
teraction these 2-actions may become initialised
is also not visible in the P-view. Intuitively this
is uniformity again: if we cannot see the 1-arena
A hidden inside the parcel ¢, we certainly cannot
observe play inside A.

In system F' there is a dependency of first-order
entities (terms) on second-order entities (types).
In a located sequence the dependency is achieved
via a pointer from l-events to previous 2-events,
regulating the way in which new locations become
initialised during the game.

Finally, P is constrained by a “copy-cat” condi-
tion, related to the notion of a copy-cat strategy,
which is a standard concept in game semantics.
The intuition is that during the composition (in-
teraction) of strategies, moves will be played by
P (unknowingly) inside the parcels of O. Since P
is unaware of the contents of the ?-parcels, the
only safe way of achieving this is by playing uni-
formly, copying moves between different threads
of play in the same parcel. As soon as a parcel
is “instantiated” to an arena B (corresponding to
the substitution of a type B for a type variable
— see section 6), the copy-cat condition becomes
“instantiated” to a copy-cat strategy between oc-
curences of B.

5.1 Conditions on located sequences

We specify eight conditions on a located se-
quence s that will be required in order to model
system F'. First adjoin the symbol 2 to the set of
l-arenas PA(U). Let K = (Acta, a4, ara, refy)

be the 2-arena given by Actx = PA(U), A bx B if
and only if A = x and B € PAU), arc(A) = 1,
and refic(A) = (A,1). (Arity and reference are
in fact arbitrary as this structure on X is never

used.)

F1. The only 2-arena 1is K. Whenever

locs(z) € PA¥(U), locs(z) = K.

F2. Importation of new 1-arenas. Every non-
initialising 1-event x“ is followed immediately
by 2n 2-events, where n is the arity of a
(arjoc, (z+)(a)), and then by a 1-event y?. (Un-
less s terminates beforehand.) See the dia-
gram above.

F3. First-order P-view. O’s pointers do not
skip over any of her own actions apart from
initialisations: if z¥ gy and pl(y) = O,
then whenever = <, 2% <y y with pl,(z*) = O,
o= *.

F4. Second-order P-view. For any 2-event z4,
A = ? if and only if ply(z4) = O. For any
1-event x?, locs(z%) # 2.

F5. Contexts. Let n be the number of occur-
rences of 2 preceding the 2-event x4, where
A # xand A # 2. Then nt A. Let m be
the number of occurrences of ¢ preceding the
first 1-event z* of s, and let A be the location
of z*. Then m 4 A.

F6. Locations. Let A be the location of the first
1-event z* of s. Then every 1-event of s is lo-
cated either in A or in the 2-action associated
with an earlier 2-event.

The following is the formalisation of the depen-
dency of l-events on 2-events as motivated in the
informal discussion. Let z® be a l-event of s lo-
cated inside a 1-arena A, and suppose it is not the
last 1-event of s. Let ¢; = ref4(a), the reference
of the action a inside A.

1. If ¢ # * then let z¢ be as defined by Lemma
1, and let 24¢ be the (2i)*" 2-event after z¢ in
s. (By condition F2 and the fact that x® is
not the last 1-event, s is of sufficient length
for 24 to exist.)

2. If ¢ = % then let the 2-event w® be the
occurrence of O’s 2-action 2 in s. (By condi-

tions F'5 and F'6, s has at least ¢ occurrences
of 2.)

Define the 2-reference of x in s by

(i
2
:

To understand case 1, insert the following segment
in place of z in the diagram following Lemma 1:

if ¢ # *,

reff(m“) ol

z o/’\o z ok\o
c * A A; * A,
A K K K K K
Note that A; = 2 if the O and P nodes are the

other way round.

F7. Initialisation of locations. Let x® be the
most recent 1-event before the 1-event 3, and
let &8 = ref?(z%), the 2-reference of z®. If
B # ? thenb=xand locy(y’) = B. If B= %
then b # % (consequently 4° is a justified event
in one of the old locations).

- A A
T r o e o e Y
B a * A -+ *x A, «*
K A K K KK K B

F8. Copy-cat. Whenever P makes a “hidden”
2-reference it must be the same as the most
recent “hidden” 2-reference made by O. Sup-
pose z% is a non-initialising 1-event associated
with P, and act,(ref?(z%)) = 2. Let z° be
the most recent l-event before z% such that
act(ref?(z¢)) = 2. Then ref?(z®) = ref?(2%).

5.2 The game associated with a 1-arena in
context

Given a l-arena in context n b+ A, let start(A,n)
be the located sequence consisting of 2n actions
located in K followed by the initialisation of A:

ok\o ok\o Ok\. o
x 2 x 2 - % ? %
K K K K K K A

Let L4, be the set of located sequences in U
satisfying conditions F'1-8 above that are prefixes

of or are prefixed by start(A,n). Define L, ,, to be
the set of justified sequences on U + PA(U) + {*}
obtained by forgetting location structure (in gen-
eral a non-injective operation).

Lemma 2 L, , = Lan

Proof: Whenever a justified move is made the
location is determined by L2, and whenever an ini-
tialising move is made, the location is determined
by F7. O

Thus by identifying L4, with Ly ,, we are able
to define the game G(A,n) associated with
n kA to be (U +PAU) + {x}, Lay), within the
scope of the definition of section 3.1.

5.3 Examples

We examine some play on the 1-arenas depicted
in Figure 1 and consider the winning strategies
available on each. Below are the system F encod-
ings of the interpreted types:

Emp = IIX. X,
Sgl = IIX. X — X,
Bool = IIX.X - X — X,
Nat = IIX. X - (X - X) — X.

The game G([unit],0). The only possible ac-
tion is the initialisation of the game by P. Thus
there is a unique winning strategy.

The game G([Emp],0). This time O has the
action a to continue with after the initialisation.
Since the arity of a is 1, by condition F2 there
must follow two actions inside K. Since P cannot
respond after this there are no winning strategies.
(F'7 forces him to play a justified move: he cannot
justify from a because there is no action below a
in the tree).

The game G([Sgl],0). The first four moves
are as for [Emp]. This time P can justify back
to the original thread of play inside [Sgl], play-
ing ¢. The game is over, as there are no more
actions beneath ¢ in the tree and F'7 forces O to
play a justified move. Thus there is exactly one
total strategy for P. The copy-cat condition F'8
is satisfied as the 2-reference of P’s action c is the

[unit] *

G([unit],0) : *
[unit |
G Emp]0): @ w7

G([Sl],0) : * a x 7 e

G([Bool],0) : * b * ? X

G([Nat],0) : * n * ? s m s m z
N N K K N N N N N

Figure 1. A selection of 1-arenas and located sequences.

8

fourth event, the same 2-reference as O’s (most
recent and only) 1-action a.

The game G([Bool],0). This game is just
like G([Sgl],0) but for the fact that P now has
the choice of the winning action as either y =t or
x = f, so there are two total strategies. Think of
b as a request for boolean data by O, and t or f
as the reply of true or false. These two winning
strategies are the interpretation of the terms

t = AXXNSAfXt,
F = AXXENYS,

which are the system F' encodings of true and
false.

The game G([Nat],0). Displayed is the win-
ning position of the strategy interpreting the term
AX. AzX AsX~X 552, which is the encoding of the
natural number 2. We abbreviate N = [Nat].
Think of the action n as a request for a number
by O, z as zero by P, s as demand for output from
the successor function by P, and m as a request
for input by O to the successor function.

The game G([Bool — Bool],0). A type quan-
tifier occurs on the left of an arrow in the type
Bool — Bool, and so we finally witness the full
second-order machinery of “types as moves”. We
consider the interpretation of one particular sys-
tem F' encoding of the not function,

not = AbP°! b Bool fft.

Figure 2 shows one of its four winning po-
sitions on G([Bool — Bool],0). ~We abbrevi-
ate B =[Bool], B = [Bool — Bool], and
X =[X1]. The corresponding sequence of reg-
ulatory conditions is: start(BB ,0), L4, F2, F2
and L4, P choice of b, F'2, F2 and 1.4 and P choice
of importing the arena B, F'7, L4, F2, F'2 and 14
and P choice of importing X, F'7, L4, O choice of
t inside BB, F7, L4, F2, F2 and L4, P choice of
f inside B.

6 Structure on PA(U)

We define the product A x B, function space
A= B, universal quantification V,,(A), and substi-
tution of l-arenas, and an equivalence of 1-arenas
“up to renaming of actions”,

Product. A x B is obtained by laying the
F-trees side by side and then identifying the two
copies of x:
Actg + Actp,
alaborabpghb,

ActaxB =
atapb <—
[ar 4, arp],
[ref 4, ref g],

ar AxB =
ref 4xB =

where for functions f: P— Rand g: Q — R,
[f,9] : P+Q — Risdefined on x € P4+Q as f(x)
or g(z) according as x € P or x € () respectively.
Note that the range of a includes *.

Function space. Morally A = B is obtained
by identifying the initial actions of B with the ini-
tialising action of A, in other words allowing B to
use A as a resource:

Actg + Actp,
(a#*and at-4b)oralkpbd
or (xFaband x Fpa),

Act s-p =
atspb —

[ar4, arp],
[ref 4, ref],

al A=p =
ref 4op =

but since this labelled graph is not a tree, we make
a separate copy of A underneath each of the ini-
tial actions of B. Thus we change Acta.p to be
Acty x I + Actp, where I is the set of initial ac-
tions of B, and duplicate the enabling and la-
belling structure accordingly. See HO for a similar
construction.

Universal quantification. Given n > 0 and
n+1 F A the l-arena n -V, (A) is obtained by in-
crementing the arity of each initial vertex of A to
“create a new hole”, and then “binding” every oc-
currence of the reference x,41. For a € Acty let a
be the unique initial action lying on the path from
* to a, and define m, = arg(a) + 1.

ACtVn (A) = ACtA,
aby, b <= atab,

N @ = arg(a) +1, when xF4a
Vn(A) o ara(a), otherwise
(@,mg), if refa(a) = *pt1
refy, (a) (a) { ref4(a), otherwise.

As an example, [Bool] = Vo(A) where A is the
l-arena:

T A
OK_\. o [] (@] [] (@] [] (@] [] (@] [] o []
*

y * ? b *x B x b

BB

Figure 2. One of the four winning positions of

*

|
b(*1)
AN
f(x1)

Equivalence. Write A ~ B if there exists a
bijection 6 : Acty — Actp that preserves and re-
flects structure, an equivalence relation respected
by the previous three constructions.

Substitution. We define substitution of
l-arenas for references x; of 1-arenas. It is easiest
just to poach the definition of substitution from
the type syntax:

/
)

t(*l

Lemma 3 Fvery system F type in context
[X1, Xo,..., X, T has an interpretation as a fi-
nite 1-arena in context nt[T]. Conversely any
finite 1-arena in contexrt nt A defines a type in
context [X1,Xo, ..., X, F A such that [A] ~ A.

Proof: The first half of the lemma is by struc-
tural induction on the type. [unit] is (0, 0, 0, 0)
and [X;] is given by Actjx,) = {a}, xF[x,]4,
arpx;1(a) = 0 and reff x,j(a) = *;, for some a € U.
Product, function space and II-types are inter-
preted by the product, function space and uni-
versal quantification of 1-arenas respectively.

The converse is by recursion on the depth of
the forest of A. For Acty = () define A = unit.
For A of non-zero depth, first consider the case
A has a unique initial token a. Let k be the ar-
ity of a and let a',a?,...,a™ be the direct de-
scendents of a. Define A’ to be the 1-arena with
Actyi = {b | a'F%b} and structure inherited
from A, but with references a; replaced by %, ;.
Being of strictly smaller depth they define types
[X1,..., Xptk] B AL Now define

A=TX,41. ..Xn_i_k.(/il — L A X)),

*

BB XK K BB K K B B K K X X BB B B K

10

T T

o [] o

* b

e}

X *

a t *

o9

[]
?
K
[not] on G([Bool — Bool],0).

where | = i when ref 4(a) = %; and [= n+ j when
ref 4(a) = a;. Since in general any 1-arena A is the
product of 1-arenas B!, ..., B* each with a unique
initial vertex (inspect the definition of product of
l-arenas), we define

A=B'x (.. x(B¥2x(B¥'xB*)..). O

Given nt A and an n-tuple § = [Al,... A"
of l-arenas m - A?, the substitution of A by

92 Ao 0, is Athe interpretation of the type
A[AY /Xy, ..., A"/ X,]. Thus mE Aof.

7 The fibred category I of games

First define an auxiliary fibration p : G — B
with Ob(B) = N and Ob(G,,) the set of finite
l-arenas in context n. A morphism in B(m,n)
is an n-tuple of objects of G,,. Composition® is
substitution, product is addition, and the termi-
nal object is 0. Define a starting strategy on
G(A,n) to be a strategy that contains start(A,n).
A morphism in G, (A, B) is a starting strategy on
Gfm(A= B,n), the subgame of G(A= B,n) ob-
tained by restricting all 2-actions to be finite 1-
arenas.

Composition of strategies is a “second-order”
version of HO-projection from a history of interac-
tion. With condition F'4 and the related concepts
outlined in the introduction of section 5 the rest is
just a combinatorial grind, and there is only one
way to proceed.

The fibre G,, is a CCC with product and func-
tion space as given in the previous section. Iden-
tities are copy-cat strategies as usual, extended to
second order by the fact the i*" occurrence of the
2-action ? made by O is copied by P as the single-
ton arena a(*;). The generic object is a(x1) € G.

3As stated here in the informal outline of the fibration,
composition is only associative up to ~. Further technical
details are to be found in the author’s thesis [Hug].

Cartesian maps are based on a form of copy-cat
strategy. Indexed products are provided by uni-
versal quantification of 1-arenas, and the verifica-
tion of the adjunction is trivial because the first
2n+3 moves of any sequence on V,,(A) are a simple
permutation of start(A,n + 1).

This structure provides an interpretation of sys-
tem F as detailed in [Pho]. We now present a
lemma which will help us to construct our model
F. The proof is by structural induction on normal
forms.

Lemma 4 FEvery normal form is interpreted in G
as a winning strategy.

The proof of the theorem below is similar in
flavour to the HO definability proof.

Theorem Given any finite 1-arena in context
n A, every winning strategy o on GT'"(A,n) de-
fines a system F' n-expanded, B-normal form s, of
type fl, and the interpretation of s, in G is o.

Proof: By recursion on the size of o (our
games are finitely branching at O-moves, so win-
ning strategies are finite, by Koénig’s Lemma). If
o = start(A,n) then A is necessarily the empty
l-arena, and we define s, = () of type A = unit.
First consider the case A has a unique initial ac-
tion a, with direct descendents bi1bia,...,b1p,.
Let @ = x2 x ... % 2 of length 2m, where m
is the arity of a. The initial segment of play
is of the form start(A,n)ad’ﬁz * ﬁ; S Ed
where ﬁ_; = big, * Ai1 x Ajp... x Ajy, and, for
2 <1 <d, bjr,bio, ..., by, are the initial actions of
the 1-arena A;;_1), for some 1 <e; <n;_;.

We construct an arena A’ such that there is
a 1-1 correspondence between possible continua-
tions of the rest of the game on A above, and com-
plete games on A’. Let a;1,...,a;, be the direct
descendents of b;,,. Then define

A = H(C:>Fw),
1,
where the product symbol indexed by 1 < i < d
and 1 < j < r; is the product of l-arenas, and
C =C1xCyx...xCp,. C represents the contin-
uations that are available to P in the future by

11

justifying back to O’s initial move a, and Fj; rep-
resents the possible continuations of A that would
result from O playing the token a;; directly de-
scendent from b;;,. The construction of C' and
of the Fj; involves the substitution of 1-arenas for
variables, as defined in section 6 (details omitted).

By the 1-1 correspondence stated above, o on
the rest of A determines a winning strategy ¢’ on
A’, which is equivalent to a strategy o;; on each of
the 1-arenas (C'= Fj;). Since ¢ is strictly smaller
than o, by the induction hypothesis we have nor-
mal forms s;; defined by the o7;.

We now define the term s,. For 2 < i < d define
the context

m[...]:{

where the number of consequtive “Snd”s in the
first case is ¢; — 1, and in the second case is ¢;, and
the context

Snd...Snd Fst]..],
Snd...SndSnd|..],

if ¢; = ps,

EZ[.] = (7‘(2[.]) AilAiQ N Aimsilsig <o Siry

The normal form s, is given by
AX1 X5 X Aoy £V Ab1S2 . Aby, O v

where

v = EdEd—l e Eg[alqlAll e A1n1811812 N 8151].

The verification that the interpretation of s, is o
comes from within the proof of Lemma 2.

Finally, in the case that A has more than one
initial action, we take the terms that are generated
by restriction of ¢ to each of the components, and
then form the appropriate (,)-pairings of these
terms that correspond to the product type A as
defined in Lemma 3. O

Now we define F as the subcategory of G ob-
tained by reducing the hom-sets in the fibres to
the winning strategies. To show that the com-
position of winning strategies is winning, we lift
them to System F' (Theorem), sequentially com-
pose the terms, normalise, and reinterpret back
into the model (Lemma 4).

8 Conclusions and future research

Interestingly, the definability theorem does not
provide a one-to-one correspondance between win-
ning strategies and n-expanded, S-normal forms,
since the interpretation map induces the follow-
ing equations on types (and terms include types
in general):

vt xT = T, unit - T = T,
T — unit = unit, IX.unit = wunit,
T — 1Ty — T3 Ty xTy — Tj,
Ty — ToxTs = (Ty — Te)x(Ty — T3),
IX. Ty xTy, = (IIX.T))x((IIX.T3),
T - IIXT, = IIX. T1 — T,

where in the last axiom X is not free in T7.
Work in progress that has stemmed from this
model:

e Adaptation of the games in an attempt to ob-
tain a Reynold’s parametric model of system
F [Rey83].

e In order to model system F' using our hierar-
chy we required only the use of one particu-
lar 2-arena, the “flat” arena K. Can we ob-
tain applicative structure at second order by
allowing arbitrary 2-arenas, so that we can
model higher-order polymorphism [Cro95]?

e Can we adapt the games in order to model
linear polymorphism [Abr95]?

Future work:

e Give a direct proof of compositionality of win-
ning strategies.

e Can we derive the copy-cat condition from
a more general notion of game, rather than
enforcing it?

e Investigate the abstract machine that corre-
sponds to composition in the model.

e Can we model dependent types with a dual
version of 2-reference which relates 2-arenas
back to previous 1-arenas?

12

A long-term objective is to try and adapt the mod-
elling techniques used in this paper in order to
conquer every vertex of the A-cube [Bar84].

Acknowledgements Many thanks to Luke Ong,
who originally suggested polymorphism as a the-
sis topic in March 1996. Also to Martin Hyland,
Ralph Loader and Guy McCusker for helpful dis-
cussions and comments. Finally Ben Worrell and
Adele Carney for their help with ITEX.

References

[Abr95] S. Abramsky. Semantics of Interaction. Notes
for CLICS II Summer School, Cambridge. Sum-
mer 1995.

[AJM94] S. Abramsky, R. Jagadeesan, and P.
Malacaria. Full abstraction for PCF (extended
abstract). Number 789 in Lecture Notes in Com-
puter Science, 1994.

[Bar84] Henk P. Barendregt. The Lambda Calculus:
Its Syntax and Semantics, North-Holland, 1984.

[CGWS89] T. Coquand, C. Gunter and G. Winskel. Do-
main theoretic models of polymorphism. Informa-
tion and Computation, 81:123-167, 1989.

[Cro93] R. L. Crole. Categories for types. Cambridge
University Press, 1993.

[Gir89] J.-Y. Girard. Proofs and Types. Cambridge
Tracts in Theoretical Computer Science, 45:159-
192, 1989.

[HO94] J. M. E. Hyland and C.-H. L. Ong. On Full
Abstraction for PCF: I, II and III. ftp-able at
ftp.comlab.ox.ac.uk, 1994.

[Hug] D. J. D. Hughes. Games, polymorphism and
parametricity. DPhil thesis, University of Oxford.

[McC96] G. McCusker. Games and Full Abstraction
for FPC. LiCS 1996.

[Nic94] H. Nickau. Hereditarily sequential functionals.
Proceedings of the Symposium on Logical Foun-
dations of Computer Science: Logic at St. Peters-
burg. Springer, 1994.

[Pho] W. Phoa. An introduction to fibrations, topos
theory, the effective topos and modest sets. Lec-
ture Notes, University of Edinburgh, Scotland,
U.K.

[Rey83] J. C. Reynolds. Types,
parametric polymorphism. Information Process-
ing 83:513-523. North-Holland, 1983.

abstraction, and

