
Games and Definability for System F

Dominic J.D. Hughes
Oxford University Computing Laboratory

Wolfson Building
Parks Road

Oxford OX1 3QD
United Kingdom∗

dhughes@comlab.ox.ac.uk

Abstract

We present a game-theoretic model of the poly-
morphic λ-calculus, system F , as a fibred cate-
gory. Every morphism σ of the model defines an
η-expanded, β-normal form σ̂ of system F whose
interpretation is σ. Thus the model gives a pre-
cise, non-syntactic account of the calculus.

1 Introduction

Polymorphism is of fundamental interest to
computer scientists. Consider the function map
in the setting of a typed functional programming
language which takes a function f : X → Y
and a list a1a2 . . . an of elements each of type
X and returns the list f(a1)f(a2) . . . f(an) of el-
ements each of type Y . Since the algorithm is
independent of the actual data types X and Y ,
it would be useful to have the flexibility of tak-
ing X and Y as type variables, to be instantiated
whenever map is called. For example, we might
write map(Nat)(Bool) to mean “the map function
as defined above, with X := Nat and Y := Bool”,
thus extending the notion of application from the
usual form term(term) to the form term(type).
The function map is said to be polymorphic, and

∗This is a slightly revised version of a paper appearing
in IEEE 12th Symposium on Logic in Computer Science,
Warsaw, June 1997.

is assigned the type

T = ΠX.ΠY. ((X → Y) → (listX → listY)).

The notation is designed according to the intuition
that this type is a “product” indexed by X and Y
ranging over all possible types.

A key tool for the analysis of polymorphism
is system F [Gir89], which is the simply-typed
λ-calculus extended by quantification over type
variables, as above. Models of system F do not
come about easily. The impredicative nature of
the definition of T , that T itself is in the range
of X and Y , raises problems for the semanticist.
The two standard classes of models are the PER
models [Cro93], and the domain models [CGW89].

Recent advances in our understanding of the na-
ture of sequential computation were made through
the paradigm of modelling term(term) application
intensionally, by interaction between function and
argument. Interaction occurs by the repeated ex-
change of basic data “tokens” (for example natural
numbers, booleans, and requests for data). Thus
higher-order functions do not necessarily have in-
stant access to the full information of the whole
graph of an argument function f : information can
be obtained only by testing the input-output be-
haviour of f , as a “black box”. This approach
forms the basis of game semantics, and has led
to many good results, for example the solution
of the long-standing full abstraction problem for
PCF [AJM94, HO94, Nic94].

In this paper we present a games model for

1

system F . A games model for polymorphism was
presented in [Abr95]. The new concept in our
approach is that we model not only term(term)
application intensionally, but also term(type) ap-
plication; interaction occurs not only through the
communication of basic data tokens, but also
by the direct exchange of types themselves. A
type is modelled as a first-order polymorphic

arena , the analogue for system F of the com-
putational arena of Hyland and Ong for PCF
[HO94]1. A second-order polymorphic arena

is an arena which has first-order polymorphic
arenas as moves. The HO notion of a justi-
fied sequence of moves is enriched to a structure
which we call a located sequence. Instead of the
whole justified sequence being inside one particu-
lar arena, each move is located in a different arena.
We use a special control move ?, called the ini-

tialising move, to open a new first-order thread of
play inside one of the previous second-order moves
of the sequence.

Our main result is that every strategy σ of the
games model F defines an η-expanded, β-normal
form σ̂, whose interpretation is σ. This provides us
with a very precise non-syntactic characterisation
of system F .

2 Syntax of system F

We fix the notation of system F . Types are
generated by

T ::= X | unit | T×T | T → T | ΠX.T

where X ranges over a countably infinite set of
type variables. Raw terms are generated by

s ::= x | 〈〉 | 〈s, s〉 | Fst(s) | Snd(s)
| λxT .s | ss | ΛX.s | sT

where x is any term variable, and T is any type.
See [Cro93] for further details of the language.

3 Games

We consider alternating, two-player games be-
tween P (think of Player, Program, or System) and

1In future we abbreviate this reference to “HO”.

O (Opponent, User, or Environment) in which P

starts. The following diagram represents a trace
or history of events in a game:

◦ •zz ◦
zz

•zz ◦yy • ◦zz •yy

a c c d b a c d

The labels a, b, c and d are actions names, just
like the actions of a labelled transition system.
Each node signifies an occurrence of an action, and
time runs from left to right. A hollow node ◦ in-
dicates that an action was performed by P, and
a solid node • indicates that an action was per-
formed by O. Arcs pointing backwards in time
indicate a causal relationship between actions, for
example P’s action c occurring in seventh position
was justified by O’s action d occurring in fourth
position.

We formalise these concepts in the defini-
tions below. A justified sequence of events

s on the set of actions Act is a structure
〈Es, <s , justs, pls, acts 〉 consisting of:

• Events. A finite set Es = {x, y, z, . . .} of
events, pictured as nodes in the diagram
above.

• Temporal relation. A strict linear ordering
<s on events. Denote the corresponding suc-
cessor partial function by succs : Es ⇀ Es.

• Justification pointer. A partial function
justs : Es ⇀ Es. Define the relation y is jus-

tified by x, written xxsy, if and only if
justs(y) = x.

• Association with players. A total function
pls : Es → {O,P} associating each event with
a particular player.

• Labelling with actions. A total function
acts : Es → Act, associating an action to each
event.

The structure is required to satisfy the following
conditions:

1.J Causality. Justification points backwards in
time: xxsy only if x<s y.

2

2.J P goes first. If x is the first event in s then
pls(x) = P.

3.J Alternating play. The players take turns, and
justification has to point to an event associ-
ated with the opposite player:

(a) If succs(x) = y, then pls(x) 6= pls(y).

(b) If xxsy, then pls(x) 6= pls(y).

Two justified sequences of events s and t are
isomorphic if there exists a bijection θ : Es → Et

of the underlying sets of events that preserves and
reflects structure. We say s is a subsequence of
t if there exists an injection i : Es → Et that pre-
serves and reflects structure, and s is a prefix of
t if in addition the image of Es is an initial seg-
ment of the events of t. The empty justified se-
quence of events ε is defined by Eε = ∅. A justi-

fied sequence is an isomorphism class of justified
sequences of events.

A move is the information content of the
“difference” between two consecutive justified se-
quences, i.e. a pair (a, i) where a is an action and
i is either an odd natural number indicating how
far back to justify, or i = 0 meaning no pointer. In
this way any justified sequence can be encoded as
a string of moves, (a, i)(b, j)(c, k) . . . ∈ (Act×N)∗.
This alternative representation is convenient for
manipulations of justified sequences that are “lo-
cal”, such as in the definition of strategy below,
where we are concerned only with the very end of
a justified sequence. The original notation is use-
ful for “global” operations such as the deletion of
events from a justified sequence.

Notation We take a, b, . . . to range over actions,
x, y, . . . to range over events, s, t, . . . to range over
justified sequences, and m,n, . . . to range over
moves. Furthermore we write xa to indicate that
the event x is labelled with the action a. We will
identify a justified sequence s with its encoding as
a string of moves. Concatenation of moves and of
strings of moves is represented by juxtaposition. If
it is clear from the context that an action a occurs
at a particular event x, for example in a string of
moves smn where m = (a, i), we will often abuse
notation and simply write the action a or the move
m to mean the event x.

3.1 Games, strategies, and arenas

A game is a specification of certain allowable
strings of moves. For example, the game of chess,
with moves such as “Knight f3−g5”, can be spec-
ified abstractly as the set of all strings of moves
that follow the rules. Formally, a game G is a pair
〈ActG, LG 〉 consisting of a set of actions ActG,
together with a non-empty, prefix-closed set LG

of justified sequences on ActG, called the legal

sequences of G.
A strategy on a game is a rule telling P what to

do given any reachable2 legal sequence in which it
is his turn to play next. It is best thought of as
a function that maps a reachable sequence s to a
move ms, such that sms is (the move-encoding of)
a legal sequence.

A partial strategy σ on a game G is a non-
empty, prefix-closed set of legal sequences σ ⊆ LG

satisfying

• P-determinism. Whenever sm, sn ∈ σ with
plsm(m) = plsn(n) = P, then m = n.

• O-contingent completeness. If sm ∈ LG with
plsm(m) = O and s ∈ σ, then sm ∈ σ.

A winning sequence is a legal sequence which is
prefix-maximal in LG and in which P performed
the last action, and a winning strategy is a par-
tial strategy that is the prefix-closure of a set of
winning sequences.

One way to specify the set of legal sequences
of a game is to enforce a particular causal re-
lationship between the actions. An arena is a
pair 〈ActA, `A 〉 where ActA is a set of actions
and `A , the enabling relation of A, is a binary
relation between Act + {?} (“+” denotes disjoint
union) and Act such that for each a ∈ Act there
exists a unique finite path ? ` . . . ` a.

?

a

5
uuuuu

b

_

c

	IIIIII

d

H
����

e

v6666

f

J

g

_

h

t4444

i

I
				

j

r2222

2The domain of definition need only be sequences
reached according to the previous play dictated by the strat-
egy.

3

The direct descendents of the initialising

action ? are called initial actions, which in
the graph above are the actions a, b and c. An
A-sequence is a justified sequence s on the set of
actions Act + {?} such that

1. Justification respects enabling: xaxsy
b only

if a `A b.

2. Every non-initialising event is justified: for
any event yb with b 6= ? there exists an event
x such that xxsy

b.

Any non-empty A-sequence necessarily begins
with an unjustified initialising action by P. An
A-game is a game 〈ActA + {?}, LG 〉 for which
LG consists only of A-sequences.

The next section highlights how the structures
defined so far relate to previous work on game se-
mantics, and can skipped by a reader steering a
direct course for system F .

3.2 Relationship with HO-games

A justified sequence s is a P-view if justifica-
tion by O is only ever to the immediately preceding
P-event. Define the P-view game on an arena
A to be the maximal A-game whose set of legal
sequences consists only of P-views, and in which
there is at most one occurrence of the initialising
action ?. Define a starting strategy to be a par-
tial strategy in which P successfully performs his
first ? action, i.e. which is not equal to the single-
ton set consisting of the empty sequence.

Proposition 1 (HO-correspondence.) Starting
strategies on P-view games correspond to innocent
strategies on answer-free HO-arenas.

The proof is trivial: actions correspond to ques-
tions, and given a legal sequence on a P-view
game, delete the P-action ? from the front in order
to obtain an HO-P-view.

4 Second-order structure

A universe of actions is a set U such that
U + U ↪→ U and U × U ↪→ U . Let R∗ denote

the reflexive, transitive closure of a binary re-
lation R, and let N

+ = N \ {0}. A polymor-

phic arena A on the universe U is a quadruple
〈ActA, `A , arA, refA 〉 consisting of

• An arena 〈ActA, `A 〉 such that ActA ⊆ U .

• A function arA : ActA → N assigning an arity

to each action a. By convention arA(?) = ∞.

• A function refA : ActA → (ActA + {?})×N
+

assigning a reference further up the
`A -tree: if refA(a) = (b, i) then i ≤ arA(b)
and b `∗

Aa. We write bi for (b, i).

A selection of polymorphic arenas are shown in
Figure 1. If non-zero, the arity of an action is
placed to its left; the reference is placed in brack-
ets to the right. We take A,B,C, . . . to range over
polymorphic arenas, and the set of polymorphic
arenas on U is denoted PA(U). Take the judge-
ment n ` A to mean that i ≤ n for each reference
?i of A, in which case we say A is in context n.
(The overloading of the symbol ` should not cause
any confusion.)

A second-order polymorphic arena A over
the universe U is a polymorphic arena on the
universe PA(U). We take A,B, C . . . to range
over second-order polymorphic arenas, and the set
PA(PA(U)) of second-order polymorphic arenas
over U will be abbreviated to PA

2(U).

A ?

A

ppppppp
B C

NNNNNNNN

D

����
E

;;;

F

���
G H

<<<

I

���
J

????

A polymorphic arena A ∈ PA(U) will be called a
1-arena , and its actions a ∈ U called 1-actions.
A second-order polymorphic arena A ∈ PA

2(U)
will be called a 2-arena , and its actions A ∈
PA(U) called 2-actions. Thus 2-actions are 1-
arenas. By convention ? is both a 1-action and a
2-action.

4

4.1 Located sequences

A (second-order) located sequence s
in a universe U of actions is a structure
〈Es, <s , justs, pls, acts, locs 〉 consisting of

• A justified sequence on the set of actions
U + PA(U) + {?}. In other words acts assigns
either a 1-action or a 2-action to each event.

• A function locs : Es → PA(U) + PA
2(U) set-

ting the location of each event.

The structure is required to satisfy the following
conditions:

1.L Events are well-located: for all events xα of
s, we have α ∈ Actlocs(xα) + {?}.

2.L Justification respects location: if xxsy then
locs(x) = locs(y).

3.L Justification respects enabling locally: if
xxsy then x `locs(x) y.

4.L Demands for the other player to play an
initial move on a new arena are satisfied
uniquely and immediately: if acts(x) = ?
then xxsy if and only if succs(x) = y.

Define x ∈ Es to be a 1-event or a 2-event

according as the location of x is a 1-arena or a
2-arena.

A typical located sequence is depicted below.

◦ •
zz

◦
zz

• ◦
zz

•yy ◦ •
zz

◦ •
zz

? A E ? a I ? a ? I
A A A A A A E E B B

The first action is by P, initialising the 2-arena A
which was pictured above. This forces O to play
an initial action in A, and she chooses the 2-action
A, a 1-arena. P continues inside A by responding
to A with the 1-arena E. Now O initialises the
1-arena A, which occurred earlier as a 2-action in
the sequence (the restriction to a previous 2-action
is not a consequence of the conditions above, but
will be required later). P obliges with an initial
1-action a inside A. Justifying back to the original
thread of play inside the 2-arena A, O continues
with the 2-action I. Now P forces O to play an

initial 1-action in E by locating the initialising
move ? in E, a previous 2-action in the sequence.
And so on. Note that the 1-action a occurs both as
a P-action and as an O-action, and located inside
two different arenas.

We end this section with a relationship between
the enabling structure of a 1-arena and the justi-
fication structure of a located sequence.

Lemma 1 Let s be a located sequence. Suppose
xa is a 1-event of s located in the 1-arena A, and
that c `∗

Aa. Then there exists a unique 1-event zc

of s such that zc
x

∗
sx

a.

z . . . •
yy . . . ◦zz . . . •{{ . . . xzz

c `A a′′′ `A a′′ `A a′ `A a

A A A A A

Proof: The existence and uniqueness of zc

comes from conditions L1-3 and the fact that the
enabling relation forms a tree. 2

5 Games for system F

We shall require only one particular 2-arena, a
“flat” 2-arena with actions the set of all polymor-
phic arenas. We denote this 2-arena by K, for
“Kind”, as its elements are “types”:

?

. . .

oooooooo
A1

����
A2 A3

????

. . .

OOOOOOOO

Whenever a player performs a 1-event xa with
arity n (i.e. the arity of a is n inside the location
1-arena of x) it will be followed by 2n actions lo-
cated in K. Because of condition L4 and the fact
that K is flat, this means we are forced to “import”
n new 1-arenas which may become initialised in
the future:

. . . x ◦ •
{{

◦ •
{{ . . . ◦ •

{{ y . . .

a ? A1 ? A2 . . . ? An b

A K K K K . . . K K B

We will be considering only P-views as the pro-
jection used later for interaction is quite com-
plex. Furthermore it is easier to extract defin-
ability from a standard notion of strategy on a
P-view rather than the corresponding notion of

5

a “second-order” innocent strategy on the total
view (compare with Proposition 1). The compo-
nent additional to HO-projection is that the col-
lapse to a P-view involves the uniformity or type-
independence associated with polymorphism: P

has to proceed without the knowledge of which
particular 1-arenas A were imported by O as
2-events located in K. In going to the P-view we
package all 2-actions A,B,C, . . . by O into a spe-
cial symbol ? , indicating a parcel whose contents
shall remain forever unknown to P. For example
in the P-view the actions of the sequence displayed
above would become a ? ? ? ? . . . ? ? b. Secondly
the fact that in the full view of the history of in-
teraction these 2-actions may become initialised
is also not visible in the P-view. Intuitively this
is uniformity again: if we cannot see the 1-arena
A hidden inside the parcel ? , we certainly cannot
observe play inside A.

In system F there is a dependency of first-order
entities (terms) on second-order entities (types).
In a located sequence the dependency is achieved
via a pointer from 1-events to previous 2-events,
regulating the way in which new locations become
initialised during the game.

Finally, P is constrained by a “copy-cat” condi-
tion, related to the notion of a copy-cat strategy,
which is a standard concept in game semantics.
The intuition is that during the composition (in-
teraction) of strategies, moves will be played by
P (unknowingly) inside the parcels of O. Since P

is unaware of the contents of the ? -parcels, the
only safe way of achieving this is by playing uni-
formly, copying moves between different threads
of play in the same parcel. As soon as a parcel
is “instantiated” to an arena B (corresponding to
the substitution of a type B̂ for a type variable
— see section 6), the copy-cat condition becomes
“instantiated” to a copy-cat strategy between oc-
curences of B.

5.1 Conditions on located sequences

We specify eight conditions on a located se-
quence s that will be required in order to model
system F . First adjoin the symbol ? to the set of
1-arenas PA(U). Let K = 〈ActA, `A , arA, refA 〉

be the 2-arena given by ActK = PA(U), A `K B if
and only if A = ? and B ∈ PA(U), arK(A) = 1,
and refK(A) = (A, 1). (Arity and reference are
in fact arbitrary as this structure on K is never
used.)

1.F The only 2-arena is K. Whenever
locs(x) ∈ PA

2(U), locs(x) = K.

2.F Importation of new 1-arenas. Every non-
initialising 1-event xa is followed immediately
by 2n 2-events, where n is the arity of a
(arlocs(xa)(a)), and then by a 1-event yb. (Un-
less s terminates beforehand.) See the dia-
gram above.

3.F First-order P-view. O’s pointers do not
skip over any of her own actions apart from
initialisations: if xxsy and pls(y) = O,
then whenever x<s zα <s y with pls(z

α) = O,
α = ?.

4.F Second-order P-view. For any 2-event xA,
A = ? if and only if pls(x

A) = O. For any
1-event xa, locs(x

a) 6= ? .

5.F Contexts. Let n be the number of occur-
rences of ? preceding the 2-event xA, where
A 6= ? and A 6= ? . Then n ` A. Let m be
the number of occurrences of ? preceding the
first 1-event x? of s, and let A be the location
of x?. Then m `s A.

6.F Locations. Let A be the location of the first
1-event x? of s. Then every 1-event of s is lo-
cated either in A or in the 2-action associated
with an earlier 2-event.

The following is the formalisation of the depen-
dency of 1-events on 2-events as motivated in the
informal discussion. Let xa be a 1-event of s lo-
cated inside a 1-arena A, and suppose it is not the
last 1-event of s. Let ci = refA(a), the reference
of the action a inside A.

1. If c 6= ? then let zc be as defined by Lemma
1, and let ẑAi be the (2i)th 2-event after zc in
s. (By condition F2 and the fact that xa is
not the last 1-event, s is of sufficient length
for ẑAi to exist.)

6

2. If c = ? then let the 2-event w? be the ith

occurrence of O’s 2-action ? in s. (By condi-
tions F5 and F6, s has at least i occurrences
of ? .)

Define the 2-reference of xa in s by

ref2s(x
a) =

{

ẑAi if c 6= ?,
w? if c = ?.

To understand case 1, insert the following segment
in place of z in the diagram following Lemma 1:

z • ◦
{{ . . . ẑ . . . • ◦

{{

c ? A1
. . . Ai

. . . ? An

A K K K K K

Note that Ai = ? if the O and P nodes are the
other way round.

7.F Initialisation of locations. Let xa be the
most recent 1-event before the 1-event yb, and
let x̃B = ref2s(x

a), the 2-reference of xa. If
B 6= ? then b = ? and locs(y

b) = B. If B = ?

then b 6= ? (consequently yb is a justified event
in one of the old locations).

. . . x̃ . . . x ◦ •
{{ . . . ◦ •

{{ y . . .

B a ? A1 . . . ? An ?

K A K K . . . K K B

8.F Copy-cat. Whenever P makes a “hidden”
2-reference it must be the same as the most
recent “hidden” 2-reference made by O. Sup-
pose xa is a non-initialising 1-event associated
with P, and acts(ref

2
s(x

a)) = ? . Let zc be
the most recent 1-event before xa such that
acts(ref

2
s(z

c)) = ? . Then ref2s(x
a) = ref2s(z

a).

5.2 The game associated with a 1-arena in

context

Given a 1-arena in context n ` A, let start(A,n)
be the located sequence consisting of 2n actions
located in K followed by the initialisation of A:

◦ •
zz

◦ •
zz . . . ◦ •

zz

◦
? ? ? ? . . . ? ? ?

K K K K . . . K K A

Let LA,n be the set of located sequences in U
satisfying conditions F1-8 above that are prefixes

of or are prefixed by start(A,n). Define LA,n to be
the set of justified sequences on U + PA(U) + {?}
obtained by forgetting location structure (in gen-
eral a non-injective operation).

Lemma 2 LA,n
∼= LA,n

Proof: Whenever a justified move is made the
location is determined by L2, and whenever an ini-
tialising move is made, the location is determined
by F7. 2

Thus by identifying LA,n with LA,n we are able
to define the game G(A,n) associated with

n ` A to be 〈 U + PA(U) + {?}, LA,n 〉, within the
scope of the definition of section 3.1.

5.3 Examples

We examine some play on the 1-arenas depicted
in Figure 1 and consider the winning strategies
available on each. Below are the system F encod-
ings of the interpreted types:

Emp = ΠX.X,

Sgl = ΠX.X → X,

Bool = ΠX.X → X → X,

Nat = ΠX.X → (X → X) → X.

The game G([[unit]], 0). The only possible ac-
tion is the initialisation of the game by P. Thus
there is a unique winning strategy.

The game G([[Emp]], 0). This time O has the
action a to continue with after the initialisation.
Since the arity of a is 1, by condition F2 there
must follow two actions inside K. Since P cannot
respond after this there are no winning strategies.
(F7 forces him to play a justified move: he cannot
justify from a because there is no action below a
in the tree).

The game G([[Sgl]], 0). The first four moves
are as for [[Emp]]. This time P can justify back
to the original thread of play inside [[Sgl]], play-
ing c. The game is over, as there are no more
actions beneath c in the tree and F7 forces O to
play a justified move. Thus there is exactly one
total strategy for P . The copy-cat condition F8
is satisfied as the 2-reference of P’s action c is the

7

?[[unit]]
?

[[Emp]]

1a(a1)

[[Sgl]]

?

1a(a1)

c(a1)

[[Bool]]

?

1b(b1)
�

�
��

t(b1)

T
T
TT
f(b1)

[[Nat]]

?

1n(n1)
�

�
��

z(n1)

T
T
TT
s(n1)

m(n1)

[[Bool → Bool]]

?

1b′(b′1)
�

�
��

t′(b′1)

T
T
TT
t′(b′1)

������
1b(b1)
�

�
��

t(b1)

T
T
TT
f(b1)

?

[[X1]]

a(?1)

G([[unit]], 0) :
◦
?

[[unit]]

G([[Emp]], 0) :
◦ •uu ◦ •yy

? a ? ?

[[Emp]] [[Emp]] K K

G([[Sgl]], 0) :
◦ •vv ◦ •yy ◦vv

? a ? ? c

[[Sgl]] [[Sgl]] K K [[Sgl]]

G([[Bool]], 0) :
◦ •uu ◦ •yy ◦ss

? b ? ? χ

[[Bool]] [[Bool]] K K [[Bool]]

G([[Nat]], 0) :
◦ •xx ◦ •yy ◦tt •xx ◦tt • ◦tt

? n ? ? s m s m z

N N K K N N N N N

Figure 1. A selection of 1-arenas and located sequences.

8

fourth event, the same 2-reference as O’s (most
recent and only) 1-action a.

The game G([[Bool]], 0). This game is just
like G([[Sgl]], 0) but for the fact that P now has
the choice of the winning action as either χ = t or
χ = f , so there are two total strategies. Think of
b as a request for boolean data by O, and t or f
as the reply of true or false. These two winning
strategies are the interpretation of the terms

tt = ΛX.λtX .λfX .t,

ff = ΛX.λtX .λfX .f,

which are the system F encodings of true and
false.

The game G([[Nat]], 0). Displayed is the win-
ning position of the strategy interpreting the term
ΛX.λzX .λsX→X .ssz, which is the encoding of the
natural number 2. We abbreviate N = [[Nat]].
Think of the action n as a request for a number
by O, z as zero by P, s as demand for output from
the successor function by P, and m as a request
for input by O to the successor function.

The game G([[Bool → Bool]], 0). A type quan-
tifier occurs on the left of an arrow in the type
Bool → Bool , and so we finally witness the full
second-order machinery of “types as moves”. We
consider the interpretation of one particular sys-
tem F encoding of the not function,

not = λbBool .bBool fftt.

Figure 2 shows one of its four winning po-
sitions on G([[Bool → Bool]], 0). We abbrevi-
ate B = [[Bool]], BB = [[Bool → Bool]], and
X = [[X1]]. The corresponding sequence of reg-
ulatory conditions is: start(BB, 0), L4, F2, F2
and L4, P choice of b, F2, F2 and L4 and P choice
of importing the arena B, F7, L4, F2, F2 and L4
and P choice of importing X, F7, L4, O choice of
t inside BB, F7, L4, F2, F2 and L4, P choice of
f inside B.

6 Structure on PA(U)

We define the product A×B, function space
A⇒B, universal quantification ∀n(A), and substi-
tution of 1-arenas, and an equivalence of 1-arenas
“up to renaming of actions”,

Product. A×B is obtained by laying the
`-trees side by side and then identifying the two
copies of ?:

ActA×B = ActA + ActB,

a `A×B b ⇐⇒ a `A b or a `B b,

arA×B = [arA, arB],

refA×B = [refA, refB],

where for functions f : P −→ R and g : Q −→ R,
[f, g] : P +Q −→ R is defined on x ∈ P +Q as f(x)
or g(x) according as x ∈ P or x ∈ Q respectively.
Note that the range of a includes ?.

Function space. Morally A ⇒ B is obtained
by identifying the initial actions of B with the ini-
tialising action of A, in other words allowing B to
use A as a resource:

ActA⇒B = ActA + ActB ,

a `A⇒B b ⇐⇒ (a 6= ? and a `A b) or a `B b

or (? `A b and ? `B a),

arA⇒B = [arA, arB],

refA⇒B = [refA, refB],

but since this labelled graph is not a tree, we make
a separate copy of A underneath each of the ini-
tial actions of B. Thus we change ActA⇒B to be
ActA×I + ActB, where I is the set of initial ac-
tions of B, and duplicate the enabling and la-
belling structure accordingly. See HO for a similar
construction.

Universal quantification. Given n ≥ 0 and
n+1 ` A the 1-arena n ` ∀n(A) is obtained by in-
crementing the arity of each initial vertex of A to
“create a new hole”, and then “binding” every oc-
currence of the reference ?n+1. For a ∈ ActA let ã
be the unique initial action lying on the path from
? to a, and define ma = arA(ã) + 1.

Act∀n(A) = ActA,

a `∀n(A) b ⇐⇒ a `A b,

ar∀n(A)(a) =

{

arA(a) + 1, when ? `A a
arA(a), otherwise

ref∀n(A)(a) =

{

(ã,ma), if refA(a) = ?n+1

refA(a), otherwise.

As an example, [[Bool]] = ∀0(A) where A is the
1-arena:

9

◦ •xx ◦ •
zz

◦vv • ◦
zz

• ◦
zz

• ◦
yy

• ◦
yy

•rr ◦ •
zz

◦ •
zz

◦ww

? b′ ? ? b ? B ? b ? X ? a t ? b ? ? f

BB BB K K BB K K B B K K X X BB B B K K B

Figure 2. One of the four winning positions of [[not]] on G([[Bool → Bool]], 0).

?

b(?1)

t(?1)

|||||

f(?1)

CCCCC

Equivalence. Write A ∼ B if there exists a
bijection θ : ActA → ActB that preserves and re-
flects structure, an equivalence relation respected
by the previous three constructions.

Substitution. We define substitution of
1-arenas for references ?i of 1-arenas. It is easiest
just to poach the definition of substitution from
the type syntax:

Lemma 3 Every system F type in context
[X1,X2, . . . ,Xn] ` T has an interpretation as a fi-
nite 1-arena in context n ` [[T]]. Conversely any
finite 1-arena in context n ` A defines a type in
context [X1,X2, . . . ,Xn] ` Â such that [[Â]] ∼ A.

Proof: The first half of the lemma is by struc-
tural induction on the type. [[unit]] is 〈 ∅, ∅, ∅, ∅ 〉
and [[Xi]] is given by Act[[Xi]] = {a}, ? `[[Xi]] a,
ar[[Xi]](a) = 0 and ref [[Xi]](a) = ?i, for some a ∈ U .
Product, function space and Π-types are inter-
preted by the product, function space and uni-
versal quantification of 1-arenas respectively.

The converse is by recursion on the depth of
the forest of A. For ActA = ∅ define Â = unit.
For A of non-zero depth, first consider the case
A has a unique initial token a. Let k be the ar-
ity of a and let a1, a2, . . . , am be the direct de-
scendents of a. Define Ai to be the 1-arena with
ActAi = { b | ai `∗

Ab } and structure inherited
from A, but with references aj replaced by ?n+j .
Being of strictly smaller depth they define types
[X1, . . . ,Xn+k] ` Âi. Now define

Â := ΠXn+1 . . . Xn+k.(Â1 → . . . → Âm → Xl),

where l = i when refA(a) = ?i and l = n + j when
refA(a) = aj . Since in general any 1-arena A is the
product of 1-arenas B1, . . . , Bk each with a unique
initial vertex (inspect the definition of product of
1-arenas), we define

Â = B̂1×(. . .×(B̂k−2×(B̂k−1×B̂k)) . . .). 2

Given n ` A and an n-tuple θ = [A1, . . . , An]
of 1-arenas m ` Ai, the substitution of A by
θ, A ◦ θ, is the interpretation of the type
Â[Â1/X1, . . . , Ân/Xn]. Thus m ` A ◦ θ.

7 The fibred category F of games

First define an auxiliary fibration p : G → B

with Ob(B) = N and Ob(Gn) the set of finite
1-arenas in context n. A morphism in B(m,n)
is an n-tuple of objects of Gm. Composition3 is
substitution, product is addition, and the termi-
nal object is 0. Define a starting strategy on
G(A,n) to be a strategy that contains start(A,n).
A morphism in Gn(A,B) is a starting strategy on
Gfin(A⇒B,n), the subgame of G(A⇒B,n) ob-
tained by restricting all 2-actions to be finite 1-
arenas.

Composition of strategies is a “second-order”
version of HO-projection from a history of interac-
tion. With condition F4 and the related concepts
outlined in the introduction of section 5 the rest is
just a combinatorial grind, and there is only one
way to proceed.

The fibre Gn is a CCC with product and func-
tion space as given in the previous section. Iden-
tities are copy-cat strategies as usual, extended to
second order by the fact the ith occurrence of the
2-action ? made by O is copied by P as the single-
ton arena a(?i). The generic object is a(?1) ∈ G1.

3As stated here in the informal outline of the fibration,
composition is only associative up to ∼. Further technical
details are to be found in the author’s thesis [Hug].

10

Cartesian maps are based on a form of copy-cat
strategy. Indexed products are provided by uni-
versal quantification of 1-arenas, and the verifica-
tion of the adjunction is trivial because the first
2n+3 moves of any sequence on ∀n(A) are a simple
permutation of start(A,n + 1).

This structure provides an interpretation of sys-
tem F as detailed in [Pho]. We now present a
lemma which will help us to construct our model
F. The proof is by structural induction on normal
forms.

Lemma 4 Every normal form is interpreted in G

as a winning strategy.

The proof of the theorem below is similar in
flavour to the HO definability proof.

Theorem Given any finite 1-arena in context
n ` A, every winning strategy σ on Gfin(A,n) de-
fines a system F η-expanded, β-normal form sσ of
type Â, and the interpretation of sσ in G is σ.

Proof: By recursion on the size of σ (our
games are finitely branching at O-moves, so win-
ning strategies are finite, by König’s Lemma). If
σ = start(A,n) then A is necessarily the empty
1-arena, and we define sσ = 〈〉 of type Â = unit.
First consider the case A has a unique initial ac-
tion a, with direct descendents b11b12, . . . , b1p1

.
Let ~α = ?? ? ? . . . ? ? of length 2m, where m
is the arity of a. The initial segment of play
is of the form start(A,n) a ~α ~β1 ? ~β2 ? . . . ? ~βd

where ~βi = biq1
? Ai1 ? Ai2 . . . ? Ain1

and, for
2 ≤ i ≤ d, bi1, bi2, . . . , bipi

are the initial actions of
the 1-arena A(i−1)ei

for some 1 ≤ ei ≤ ni−1.

We construct an arena A′ such that there is
a 1-1 correspondence between possible continua-
tions of the rest of the game on A above, and com-
plete games on A′. Let ai1, . . . , airi

be the direct
descendents of biqi

. Then define

A′ =
∏

i,j

(C⇒Fij),

where the product symbol indexed by 1 ≤ i ≤ d
and 1 ≤ j ≤ ri is the product of 1-arenas, and
C = C1×C2×. . .×Cp1

. C represents the contin-
uations that are available to P in the future by

justifying back to O’s initial move a, and Fij rep-
resents the possible continuations of A that would
result from O playing the token aij directly de-
scendent from biqi

. The construction of C and
of the Fij involves the substitution of 1-arenas for
variables, as defined in section 6 (details omitted).

By the 1-1 correspondence stated above, σ on
the rest of A determines a winning strategy σ′ on
A′, which is equivalent to a strategy σ′

ij on each of
the 1-arenas (C⇒Fij). Since σ′ is strictly smaller
than σ, by the induction hypothesis we have nor-
mal forms sij defined by the σ′

ij.

We now define the term sσ. For 2 ≤ i ≤ d define
the context

πi[. . .] =

{

Snd . . . SndFst[. . .], if 1 ≤ qi < pi,
Snd . . . SndSnd[. . .], if qi = pi,

where the number of consequtive “Snd”s in the
first case is qi−1, and in the second case is qi, and
the context

Ei[. . .] = (πi[. . .]) Âi1Âi2 . . . Âini
si1si2 . . . siri

The normal form sσ is given by

ΛX1X2 . . . Xm.λb11
Ĉ1 .λb12

Ĉ2 . . . λb1p1

Ĉp1 . v

where

v = EdEd−1 . . . E2[a1q1
Â11 . . . Â1n1

s11s12 . . . s1e1
].

The verification that the interpretation of sσ is σ
comes from within the proof of Lemma 2.

Finally, in the case that A has more than one
initial action, we take the terms that are generated
by restriction of σ to each of the components, and
then form the appropriate 〈 , 〉-pairings of these
terms that correspond to the product type Â as
defined in Lemma 3. 2

Now we define F as the subcategory of G ob-
tained by reducing the hom-sets in the fibres to
the winning strategies. To show that the com-
position of winning strategies is winning, we lift
them to System F (Theorem), sequentially com-
pose the terms, normalise, and reinterpret back
into the model (Lemma 4).

11

8 Conclusions and future research

Interestingly, the definability theorem does not
provide a one-to-one correspondance between win-
ning strategies and η-expanded, β-normal forms,
since the interpretation map induces the follow-
ing equations on types (and terms include types
in general):

unit×T = T, unit → T = T,
T → unit = unit, ΠX.unit = unit,

T1 → T2 → T3 = T1×T2 → T3,

T1 → T2×T3 = (T1 → T2)×(T1 → T3),

ΠX.T1×T2 = (ΠX.T1)×(ΠX.T2),

T1 → ΠX.T2 = ΠX. T1 → T2,

where in the last axiom X is not free in T1.
Work in progress that has stemmed from this

model:

• Adaptation of the games in an attempt to ob-
tain a Reynold’s parametric model of system
F [Rey83].

• In order to model system F using our hierar-
chy we required only the use of one particu-
lar 2-arena, the “flat” arena K. Can we ob-
tain applicative structure at second order by
allowing arbitrary 2-arenas, so that we can
model higher-order polymorphism [Cro95]?

• Can we adapt the games in order to model
linear polymorphism [Abr95]?

Future work:

• Give a direct proof of compositionality of win-
ning strategies.

• Can we derive the copy-cat condition from
a more general notion of game, rather than
enforcing it?

• Investigate the abstract machine that corre-
sponds to composition in the model.

• Can we model dependent types with a dual
version of 2-reference which relates 2-arenas
back to previous 1-arenas?

A long-term objective is to try and adapt the mod-
elling techniques used in this paper in order to
conquer every vertex of the λ-cube [Bar84].

Acknowledgements Many thanks to Luke Ong,
who originally suggested polymorphism as a the-
sis topic in March 1996. Also to Martin Hyland,
Ralph Loader and Guy McCusker for helpful dis-
cussions and comments. Finally Ben Worrell and
Adèle Carney for their help with LATEX.

References

[Abr95] S. Abramsky. Semantics of Interaction. Notes
for CLICS II Summer School, Cambridge. Sum-
mer 1995.

[AJM94] S. Abramsky, R. Jagadeesan, and P.
Malacaria. Full abstraction for PCF (extended
abstract). Number 789 in Lecture Notes in Com-
puter Science, 1994.

[Bar84] Henk P. Barendregt. The Lambda Calculus:
Its Syntax and Semantics, North-Holland, 1984.

[CGW89] T. Coquand, C. Gunter and G. Winskel. Do-
main theoretic models of polymorphism. Informa-
tion and Computation, 81:123-167, 1989.

[Cro93] R. L. Crole. Categories for types. Cambridge
University Press, 1993.

[Gir89] J.-Y. Girard. Proofs and Types. Cambridge
Tracts in Theoretical Computer Science, 45:159-
192, 1989.

[HO94] J. M. E. Hyland and C.-H. L. Ong. On Full
Abstraction for PCF: I, II and III. ftp-able at
ftp.comlab.ox.ac.uk, 1994.

[Hug] D. J. D. Hughes. Games, polymorphism and
parametricity. DPhil thesis, University of Oxford.

[McC96] G. McCusker. Games and Full Abstraction
for FPC. LiCS 1996.

[Nic94] H. Nickau. Hereditarily sequential functionals.
Proceedings of the Symposium on Logical Foun-
dations of Computer Science: Logic at St. Peters-
burg. Springer, 1994.

[Pho] W. Phoa. An introduction to fibrations, topos
theory, the effective topos and modest sets. Lec-
ture Notes, University of Edinburgh, Scotland,
U.K.

[Rey83] J. C. Reynolds. Types, abstraction, and

parametric polymorphism. Information Process-

ing 83:513-523. North-Holland, 1983.

12

