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Abstract—We introduce geometric consideration into the the-
ory of formal languages. We aim to shed light on our understand-
ing of global patterns that occur on infinite strings. We utilise
methods of geometric group theory. Our emphasis is on large
scale geometries. Two infinite strings have the same large scale
geometry if there are colour preserving bi-Lipschitz maps with
distortions between the strings. Call these maps quasi-isometries.
Introduction of large scale geometries poses several questions.
The first question asks to study the partial order induced
by quasi-isometries. This partial order compares large scale
geometries; as such it presents an algebraic tool for classification
of global patterns. We prove there is a greatest large scale
geometry and infinitely many minimal large scale geometries.
The second question is related to understanding the quasi-
isometric maps on various classes of strings. The third question
investigates the sets of large scale geometries of strings accepted
by computational models, e.g. Büchi automata. We provide an
algorithm that describes large scale geometries of strings accepted
by Büchi automata. This links large scale geometries with
automata theory. The fourth question studies the complexity of
the quasi-isometry problem. We show the problem is Σ0

3-complete
thus providing a bridge with computability theory. Finally, the
fifth question asks to build algebraic structures that are invariants
of large scale geometries. We invoke asymptotic cones, a key
concept in geometric group theory, defined via model-theoretic
notion of ultra-product. Partly, we study asymptotic cones of
algorithmically random strings thus connecting the topic with
algorithmic randomness.

I. INTRODUCTION

Our goal is to introduce geometric considerations into the

theory of formal languages. We emphasise the study of large

scale geometries of infinite strings. Our hope is to shed light on

our understanding of global large scale patterns that occur on

infinite strings. Our motivation comes from geometric group

theory, a cutting edge research area in group theory linked with

geometry, topology, automata, logic, probability, complexity,

etc.

In geometric group theory, an important concept is that of

quasi-isometry between metric spaces. Let M1 = (M1, d1)
and M2 = (M2, d2) be metric spaces.

Definition I.1. A function f : M1 → M2 is called an

(A,B)−quasi-isometry from M1 to M2, where A > 1 and

B > 0, if for all x, y ∈ M1 we have

(1/A) · d1(x, y) −B 6 d2(f(x), f(y)) 6 A · d1(x, y) +B,

and for all y ∈ M2 there exists an element x ∈ M1 such that

d2(y, f(x)) 6 A.

Note that when B = 0, the mapping becomes bi-Lipschitz

(and hence continuous). Thus, a quasi-isometry f : M1 →
M2 behaves like a bi-Lipschitz map with distortion B between

the metric spaces. For instance, the metric spaces Z (integers)

and R (reals) with their natural metric are quasi-isometric

Informally, two metric spaces M1 and M2 are quasi-isometric

if these spaces (such as Z and R) look the same from far away.

The quasi-isometry relation forms an equivalence relation on

the class of all metric spaces.

Studying quasi-isometry invariants of groups turned out to

be crucial in solving many problems in group theory [6] [7]

[8]. Therefore, finding quasi-isometry invariants has become

an important theme in geometric group theory. Examples

of quasi-isometry invariants are: being virtually nilpotent,

virtually free, hyperbolic, having polynomial growth rate,

being finitely presentable, having decidable word problem,

asymptotic cones [4] [5] [8].

In formal language theory and logic, one of the main objects

are infinite strings α over finite alphabets Σ. These objects

are somewhat boring from a geometry point of view. The

strings α possess the natural metric inherited from the set of

natural numbers ω. The quasi-isometry type of ω is the metric

space R>0 of all positive reals. So, from a quasi-isometry view

point, ω viewed as a metric space is also somewhat uneventful.

However, one crucial difference from the setting in geometric

group theory is that the metric spaces α are coloured. Namely,

for every position i ∈ ω in α, the colour of the position i is σ
when α(i) = σ. These observations suggest that the notions

and methods of geometric group theory (e.g. quasi-isometry)

can be applied to coloured metric spaces. Here we investigate

quasi-isometries of coloured metric spaces with strings α as

our primary objects, thus initiating the study of large scale

patterns on strings.

A coloured metric space M is a tuple (M ; d, C), where

(M ; d) is the underlying metric space with metric d, C is a

colour function C : M → 2Σ, and Σ is a finite set of colours

that we call an alphabet. If σ ∈ C(m) then we say that m has

colour σ. As mentioned above, infinite strings α are coloured

metric spaces of the form (ω; d, α), where d is the natural

metric (so, d(i, j) = |i − j|) and α : ω → Σ is the colour

function. Every element in α has a unique colour. We always978-1-5090-3018-7/17/$31.00 ©2017 IEEE
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assume that the cardinality |Σ| of Σ is at least 2.

We denote the set of all infinite strings over Σ, considered

as coloured metric spaces, by Σω. We now adapt Definition

I.1 for coloured metric spaces.

Definition I.2. Assume we are given coloured metric spaces

M1 = (M1; d1, C1) and M2 = (M2; d2, C2). A colour

preserving quasi-isometry from (M1; d1) into (M2; d2) is

called a quasi-isometry from M1 into M2.

We write M1 6QI M2 if there is a quasi-isometry from

M1 into M2. For metric spaces the relation 6QI is an

equivalence relation, and hence it is symmetric. In contrast,

for coloured metric spaces the relation 6QI is not symmetric.

For instance, the mapping f : ω → ω defined as f(i) = 2i is a

quasi-isometry from the string 0ω = 00000 . . . into the string

(01)ω = 010101 . . .. There is no quasi-isometric mapping in

the opposite direction.

If M1 6QI M2 and M2 6QI M1 then we write this by

M1 ∼QI M2. The relation ∼QI is an equivalence relation in

the class of all coloured metric spaces, in particular on the set

Σω. Formally:

Definition I.3. The equivalence classes of ∼QI are called

the quasi-isometry types or, equivalently, the large scale

geometries. For the set Σω, we define Σω
QI = Σω/ ∼QI .

Denote the large scale geometry of string α by [α]. Thus,

Σω
QI = {[α] | α ∈ Σω}.

Non-symmetry of 6QI on coloured metric spaces allows

us to compare large scale geometries of these spaces, and

consider the partial order 6QI on the quasi-isometry types.

Importantly, the partial order 6QI can be restricted to the

large scale geometries of coloured metric spaces over a fixed

underlying metric space (e.g. ω with its natural metric). In

this sense the quasi-isometry on coloured metric spaces is a

much refined version of the usual quasi-isometry relation on

unclouded metric space. This is because the quasi-isometry

type of every uncoloured metric space trivialises to a singleton.

Introduction of large scale geometries and the quasi-

isometry relation 6QI poses a vast amount of natural ques-

tions. The contribution of this paper consists of investigating

the following questions:

The first question is concerned with understanding the

partial order 6QI on the set Σω
QI of all large scale geometries.

The order presents an algebraic tool aimed at classification

of global patterns that occur on strings. In Section II we

investigate properties of this partial order. Among several

results, we prove that the order has the greatest large scale

geometry, infinite chains and infinite anti-chains. We show that

there are infinitely many minimal large scale geometries.

The second question is related to understanding the quasi-

isometry relation ∼QI . This can be done by either restricting

the relation ∼QI on various subclasses of infinite strings or by

simplifying the definition of quasi-isometry. In Section III-A

we restrict the relation ∼QI to eventually periodic words, and

give a full description of quasi-isometry types in this class.

Section III-B gives a intuitively more easier yet equivalent

definition of the relation 6QI that we call component-wise

reducibility. We also give more refined version of 6QI , colour-

equivalence, that implies quasi-isometry. It is shown that

colour-equivalence is strictly stronger than quasi-isometry. It

is natural to ask if quasi-isometric maps between strings can

be replaced with order preserving quasi-isometric embeddings.

We give a negative answer to this question; however, we prove

that the answer is positive modulo ∼QI equivalence relation.

The third question is related to describing sets of large

scale geometries. We call such sets atlases. Let L be a

language of infinite strings. One considers the atlas [L] of

all large scale geometries of strings in L. So, the question is

related to understanding the atlas [L] given a description of

L. In particular, a natural question is if one can decide that

[L1] = [L2] given descriptions of languages L1 and L2. In

Section IV, we use Büchi automata as a description language

and provide a full characterisation of the atlases defined by

Büchi recognisable languages. As a consequence, we show that

for Büchi automata recognisable languages L1 and L2 there is

a linear time algorithm for deciding the equality of the atlases

[L1] and [L2]. This contrasts with the PSPACE completeness

of the equality problem for Büchi languages. This part of the

work links large scale geometries with automata theory and

complexity theory.

The fourth question addresses the complexity of quasi-

isometry relation on infinite strings in terms of arithmetical

hierarchy, thus connecting the topic with computability theory.

Recall that isometry is colour preserving and distance preserv-

ing map. So, quasi-isometry relation is weaker than isometry

relation. Hence, one might expect that quasi-isometry is easier

to detect than the isometry. We prove that the quasi-isometry

relation on computable infinite strings is Σ0
3-complete. This

is in contrast to Π0
1-completeness of the isometry relation on

computable strings. These are explained in Section V.

The fifth question asks how one encodes large scale geome-

tries of coloured metric spaces α into “limit” structures. For

this, we define structures obtained from “looking at α from far

away”. Dries and Wilkie [4], using ultra-filters, formalised this

intuitive notion through the concept of asymptotic cone. Their

work gave a logical context to Gromov’s work in [6] [8]. We

invoke the concept of asymptotic cone and study relationship

between large scale geometries of infinite strings and their

asymptotic cones. In Section VI we prove theorems akin to

results on asymptotic cones in geometric group theory, and

we show that asymptotic cones of Martin-Löf random strings

coincide when scaling factors are computable. These results

bridge the topic of this paper with algorithmic randomness and

model theory.

II. THE PARTIAL ORDER (Σω
QI ,6QI)

A. Basic Properties

The quasi-isometry relation 6QI naturally induces the par-

tially ordered set (Σω
QI ,6QI) on the set of all large scale

geometries [α]. Denote this partial order by Σω
QI thus identi-

fying it with its domain. Say that [β] covers [α] if [α] 6= [β],
[α] 6QI [β], and for all [γ] such that [α] 6QI [γ] 6QI [β]
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we have [γ] = [α] or [γ] = [β]. An element is an atom if it

covers a minimal element.

Proposition II.1. The partial order Σω
QI has the following

properties: (1) There exists a greatest element; (2) There exist

at least |Σ| minimal elements; (3) There exist at least |Σ| ·
(|Σ| − 1)/2 atoms.

Proof. Assume that Σ = {σ1, ..., σk}. For part (1), we claim

that α = (σ1...σk)
ω is the greatest element in ΣQI . Indeed,

take any β ∈ Σω. We write α as v0v1 . . . where each vi is

σ1 . . . σk . Define f : β → α such that f maps any position

n (in β) to the position kn in the portion vn of the string

α such that β(n) = α(kn). For part (2), consider the quasi-

isometry types [σω
i ]. These form minimal elements in Σω

QI .

Indeed, if α 6QI σω
i , then each element of α has colour σi.

For part (3) , consider σi(σj)
ω, where i 6= j. Clearly, σω

j 6QI

σi(σj)
ω. Moreover, for any β 6= σω

j if β 6QI σi(σj)
ω then

β finitely many positions of β are coloured with σi, and all

other positions are coloured with σj . Hence, β ∼QI σi(σj)
ω.

Thus, we have found at least k · (k − 1)/2 of the atoms.

A quasi-isometry g : α → β can produce cross-overs, e.g.,

pairs n and m with n < m but g(m) < g(n). The definition

of quasi-isometry does not obviously prohibit large cross-

overs. Nevertheless, the following lemma shows that there is

a uniform bound on cross-overs.

Lemma II.2 (Small Cross Over Lemma). Consider a quasi-

isometry map g : α → β. There is a constant C 6 0 such that

for all n < m we have g(m)− g(n) > C.

Proof. Let n < m be given and suppose we have g(m) −
g(n) < C for some C 6 0. The goal is to provide a lower

bound for C. Define q = min(g−1(p) ∩ [m + 1,∞)) and

p = min(g([m+ 1,∞)) ∩ [g(n) + 1,∞)). Then, we obtain

d(g(n), p) > (1/A) · d(n, q)−B > (1/A)d(n,m)−B

> (1/A)(1/A)(d(g(n), g(m)) −B)−B

> −C/A2 − ((A2 + 1)/(A2))B.

We have g([m, q]) ⊂ [0, g(n)] ∪ [p,∞) by our definition of p
and q. Note g(m) ∈ [0, g(n)] and g(q) ∈ [g(p),∞). Hence,

there exists rC ∈ [m, q − 1] such that g(rC) ∈ [0, g(n)] and

g(rC + 1) ∈ [g(p),∞), which means

d(g(n), p) 6 d(g(rC), g(rC + 1)) 6 A+B.

From these inequalities we have a lower bound on C.

Lemma II.3. Let f : α → β be a quasi-isometric mapping.

Then there exists constants A′ and B′ such that for all

positions x, y ∈ β with x 6 y we have

(1/A′) · d2(x, y)−B′ 6

d1(min f−1([x, y]),max f−1([x, y])) 6 A′ · d2(x, y) +B′.

Proof. The inequality in the definition of quasi-isometry im-

plies:

(1/A) · d2(f(n), f(m))− (B/A) 6 d1(n,m)

6 A · d2(f(n), f(m)) +AB.

For given x 6 y ∈ β, let Mxy = max f−1([x, y]) and

mxy = min f−1([x, y]). Then we have d1(mxy,Mxy) 6

A · d2(f(mxy), f(Mxy)) +AB 6 A · d2(x, y) +AB. For the

lower bound of d1(mxy,Mxy), let M ′
xy = max([x, y]∩f(α))

and m′
xy = min([x, y]∩f(α)). Then due to the last condition

of quasi-isometricity it holds that d2(y,M
′
xy) 6 2A and

d2(x,m
′
xy) 6 2A. Also from Lemma II.2 we have

d2(f(Mxy),M
′
xy) 6 −C

and

d2(f(mxy),m
′
xy) 6 −C.

Hence d2(f(mxy), f(Mxy)) > d2(x, y) − 4A + 2C. In

summary, for any x 6 y ∈ β it holds that

(1/A) · d2(x, y) − (4A+B − 2C)/A
6 d1(mxy,Mxy) 6 A · d2(x, y) +AB.

Set A′ = A and B′ = (4A+B − 2C)/A+AB.

Corollary II.4. Let f : α → β be a quasi-isometry. There is

a C > 0 so that |f−1(y)| < C for all y ∈ β.

B. Structure theorems

Elementary properties of the partial order Σω
QI are in

Proposition II.1. Now we provide several structure theorems

describing algebraic properties of Σω
QI .

Theorem II.5. The partial order Σω
QI has a chain (αn)n∈Z

of the type of integers, that is ∀n ∈ Z[αn <QI αn+1].
Furthermore, the partial order Σω

QI has a countable anti-

chain.

Proof. We prove the first part. Take two distinct element in

Σ, say 0 and 1, respectively. Let

αn =

{

(01)2
n

(011)2
n

...(012
k

)2
n

... (n > 0)

(01)(012
2−n

)...(01(2
k)2

−n

)... (n < 0)

The idea is the following. The string α0 is of the form:

(01)(011)(01111) . . . (012
k

) . . .

Let us call the substrings (012
k

) blocks of α0. The above

definition tells us that α1 is obtained from α0 by doubling

each block of α0; α−1 is obtained from α0 by removing every

other block. This is propagated to all αn’s.

We show that αn <QI αn+1 for all n > 0. For negative

n, the proof is similar. To see αn 6QI αn+1, consider the

mapping which sends an interval (012
k+1

) in αn to (012
k

)2

in αn+1 in an obvious injective way. This mapping is a quasi-

isometry from αn into αn+1.

To see that the converse is not true, assume that g is a

quasi-isometry from αn+1 into αn. Then using Lemma II.3

and Lemma II.2, one sees that g needs to be strictly monotone

on almost every point of αn+1 with colour 0; that is, we need

to have M ∈ N such that for all m,m′ > M and m > m′

we have αn+1(m) = αn+1(m
′) = 0 ⇒ g(m) > g(m′).
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But this is not possible; indeed, let mi,n ∈ ω be the po-

sition of i-th 0 in αn. If mi,n+1 > M and g(mi,n+1) =
mj,n, then from monotonicity and injectivity we should have

d(g(mi,n+1), g(mi+k,n+1)) > mj+k,n−mj,n for each k ∈ N.

For any i and j we can easily verify

lim
k→∞

mj+k,n −mj,n

mi+k,n+1 −mi,n+1
= +∞,

which means we cannot have any bound A as in Definition

1. This is contradiction, and hence there is no quasi-isometry

from αn+1 into αn.

Now we prove the second part. Consider the following

sequence of strings βn, n ∈ ω:

βn = 0102
n

12
n

03
n

13
n

...0k
n

1k
n

...

We claim that this sequence forms an anti-chain in Σω
QI . Take

any n,m ∈ N and suppose βn 6QI βm via f . It suffices to

show n = m.

Let An′,k′ be the “k′-th block” of zeros in βn′ , i.e.

An′,k′ = [2

k′−1
∑

i=0

in
′

, 2

k′−1
∑

i=0

in
′

+ (k′)n
′

− 1]

Then by easy argument we can show that there exists k, l ∈ N

such that (1) f(An,k) ⊆ Am,l, and (2) for every k′ ∈ N, we

have f(An,k′+k) ⊆ Am,k′+l. Intuitively, these say that from

some point f maps βn in “block by block” manner without

vacancy. For quasi-isometricity of f we should have an upper

and positive lower bound of the rate

|An,k′+k|

|Am,k′+l|
=

(k′ + k)n

(k′ + l)m

with respect to k′, since otherwise we do not have any bound

A as in Definition 1. Clearly n = m is the only case that

satisfies this condition.

The trivial large scale geometries [0ω] and [1ω], as noted

above, are minimal elements of Σω
QI . The next theorem shows

that there are non-trivial minimal large scale geometries.

Theorem II.6. Let {an}n∈N be an unbounded nondecreas-

ing sequence. Then the large scale geometry of the string

α = 0a01a10a21a3 ...0a2k1a2k+1 . . . is a minimal element in

the partial order Σω
QI .

Proof. Let In be the interval that corresponds to pan (p ∈
{0, 1}) in α, that is,

In = [

n−1
∑

k=0

ak, (

n
∑

k=0

ak)− 1].

Suppose β 6QI α via f,A,B. We claim that β is of the form

vw′
0w1w

′
1w2w

′
2 . . . wnw

′
n . . ., where wn and w′

n are sequences

for which we have constants A′, B′, D, and n0 such that for

all n we have |w′
n| 6 D, (1/A′) · an0+n − B′ 6 |wn| 6

A′an0+n+B′ and wn = 0|wn| if n0+n is even or wn = 1|wn|

if n0 + n is odd. If the claim is true, then β =QI α.

Let Mn = max f−1(In) and mn = min f−1(In). From

Lemma II.3, there exist A′′ and B′′ such that

(1/A′′) · an −B′′
6 Mn −mn 6 A′′an +B′′

for each n. Then there are numbers n0 and D > 0 such that

for all n > n0 we have mn+2 > Mn and −D 6 mn+1 −
Mn 6 1. Indeed, let D = B − A(C − 1) and n0 satisfies

an0
> A′′(−2AC+3max{B,B′′})+2, where C is a constant

such that f(y)− f(x) > C for all x < y (Lemma II.2). Then

mn+1−Mn 6 1 holds since otherwise there exists x ∈ N such

that Mn < x < mn+1 which should be mapped to a point

other than In ∪ In+1, and we can find x ∈ [Mn,mn+1 − 1]
such that d(f(x), f(x+1)) > D > A+B, which contradicts

the quasi-isometricity of f . For a lower bound, if mn+1 < Mn

then f(Mn)− f(mn+1) > C due to Lemma II.2, and hence

mn+1 −Mn = −d(mn+1,Mn)

> −A · d(f(mn+1), f(Mn))−B

= A · (f(Mn)− f(mn+1))−B

> AC −B > −D.

We also have

mn+2 −Mn =
(mn+2 −Mn+1) + (Mn+1 −mn+1) + (mn+1 −Mn)

> 2AC − 2B + (1/A′′) · an+1 −B′′ > 1.

Now for each n > n0 let Jn = [Mn−1 + 1,mn+1 − 1] and

J ′
n = [mn+1,Mn] if mn+1 < Mn, or otherwise J ′

n = φ.

Let wn and w′
n be the strings that corresponds to Jn0+n and

J ′
n0+n, respectively. Then β is of the form vw′

0w1w
′
1w2w

′
2 . . . ,

and by the inequality above

|wn| = mn0+n+1 −Mn0+n−1 − 1 >

(1/A′′) · an0+n + 2AC − 2B −B′′

Also, |wn| 6 Mn0+n − mn0+n + 1 6 A′′an0+n + B′′ + 1.

Hence letting B′ = max{−2AC + 2B + B′′, B′′ + 1} and

A′ = A′′ and we have a proof.

Corollary II.7. The partially ordered set Σω
QI possesses

uncountably many minimal elements.

Consider the string α = 0n01m00n11m1 . . . from {0, 1}ω,

where ni,mi > 1. Call the substrings 0ni and 1mi the 0-

blocks and 1-blocks, respectively. Define:

• X (0) = {[α] | in α all the lengths of 0-blocks are

universally bounded},

• X (1) = {[α] | in α the lengths of all 1-blocks are

universally bounded},

• X (u) = {[α] | in α there is no universal bound on the

lengths of both 0-blocks and 1-blocks },

• X (b) = {[α] | in α the lengths of both 0-blocks and

1-blocks are universally bounded}.

Upward closed sets are called filterers, and downward closed

sets ideals. We use this terminology in the next theorem.

Theorem II.8. The sets X (0), X (1), X (u), X (b) satisfy the

following:

4



1) The sets X (0) and X (1) are filters.

2) The set X (u) is an ideal.

3) The set X (b) is the singleton {[(01)ω]}.

Proof. We prove that X (0) is a filter. Assume that α ∈ X (0)
and α 6QI β through a quasi-isometry f with constants A and

B. We need to show that β ∈ X (0). Assume that the length

of 0-blocks in β is unbounded. Let K be the length of the

largest 0-block in α. Now, take a 0-block β(i) . . . β(i + n0)
in β, where n0 is sufficiently large. We give bound on the

value of n0 below. Since f is a quasi-isometry, there exists

a β(i0) that belongs to the block such that β(i0) has a pre-

image α(j0) and β(i0) is within distance A from the center

of the 0-block β(i) . . . β(i + n0). The length of the block in

α that contains α(j0) is bounded by K , hence the string

α(j0 −K − 1) . . . α(j0) . . . α(j0 +K + 1)

must contain 1. The length of this interval is 2K + 2. There

exists a C such that f -image of all intervals of length 2K+2
is contained in the intervals in β of length at most C. So, it

must be the case that n0 6 C. Hence β ∈ X (0). The same

proof shows that X (1) is a filter.
The proof of Part 2 is similar to the proof above.
For the last part for all the strings α, β if in both the lengths

of 0-blocks and 1-blocks are universally bounded, then α and

β are quasi-isometric to each other since they are colour-

equivalent. They are also quasi-isometric to (01)ω.

Corollary II.9. For all α ∈ X (0), β ∈ X (1), γ ∈ Σω, if

α 6QI γ and β 6QI γ then γ ∼ (01)ω.

Consider the join operation ⊕ that, given α and β, produces

the string α ⊕ β = α(0)β(0)α(1)β(1) . . .. The operation is

often used (e.g., in computability and complexity theory) to

produce the least upper bounds. It turns out this operation is

not well-behaved with respect to the large scale geometries.

Indeed, consider the string α = 010011 . . . (0)2
n

(1)2
n

. . . and

the string β = 101100 . . . (1)2
n

(0)2
n

. . . Then [α ⊕ β] =
[(01)ω]. But, [(01)ω] 6= [α], [(01)ω)] 6= [β], and [α] = [β].

Even though the operation ⊕ is not well-behaved with

respect to ∼QI -classes, the operation can still be useful in

constructing counter-examples as shown below.

Corollary II.10. The sets X (0), X (1) are not ideals.

Proof. Consider the strings β = 010011 . . .0n1n . . . and α =
β ⊕ 1ω. It is clear that α ∈ X (0). It is also easy to see that

β 6 α. However, β 6∈ X (0).

Corollary II.11. Both X (0) and X (1) have countable chains

and anti-chains. In addition, X (u) has an infinite anti-chain

consisting of minimal elements.

Proof. The chain constructed in Theorem II.5 is in X (0).
Hence, both X (0) and X (1) have countable chains. Let βn

be the sequence in the proof of Theorem II.5. Then in

the same manner as in the proof of Theorem II.5 we can

show that {βn ⊕ 1ω}n∈N ⊂ X (0) is an anti-chain. Similarly

{βn⊕0ω}n∈N ⊂ X (1) is an anti-chain. The minimal elements

constructed in Theorem II.6 are in X (u).

III. REFINING QUASI-ISOMETRY

The relation 6QI could be analysed in several ways. One

is to restrict 6QI to a particular class K of infinite strings,

and describe the partial order 6QI restricted to large scale

geometers of strings from K . In Section III-A, we fully de-

scribe the partial order 6QI restricted to the class of eventually

periodic words. The second way is to refine the definition

of 6QI and study its implications. Section III-B provides an

equivalent, more intuitive, characterisation of quasi-isometry

called component wise reducibility.

A. Eventually periodic spaces

For a string α (that might be finite) consider the set of all

colours in α: Cl(α) = {σ ∈ Σ | ∃i(α(i) = σ)}. Write u ⊑ v
if Cl(u) ⊆ Cl(v). We easily get the following:

Lemma III.1. If f : α → β is a quasi-isometry then Cl(α) ⊆
Cl(β). So, if α ∼QI β then Cl(α) = Cl(β).

A particularly simple strings are eventually periodic:

Definition III.2. Metric space α ∈ Σω is eventually periodic

if there are finite words x, u ∈ Σ⋆ such that α = xuuu . . ..
Call u the period of α.

Let α = xuω be eventually periodic word. We assume that

Cl(u) ⊆ Cl(x) as we can change the prefix x to xu. With

this assumption, we have the following theorem:

Theorem III.3. For eventually periodic words α, β we have

α 6QI β iff there are x, y, u, v ∈ Σ⋆ such that α = xuω,

β = yvω, Cl(x) ⊆ Cl(y), and Cl(u) ⊆ Cl(v).

Proof. If α 6QI β then it is easy to select finite strings

x, y, u, v that satisfy the statement of the theorem.

Assume that there are x, y, u, v ∈ Σ⋆ such that α = xuω,

β = yvω, Cl(x) ⊆ Cl(y) and Cl(u) ⊆ Cl(v). Construct

a quasi-isometry f from α to β as follows. First, map the

prefix x into prefix y so that colours are preserved. Secondly,

we consider the set X = {x1, . . . , xk} of all distinct colours

that appear in u. Now map xi coloured position in the kth

copy of u in the string α into the xi coloured position in the

kth copy of v in the string β. Set A = max{|x|, |y|, |u|, |v|}
and B = A. It is clear that f preserves colours and the

quasi-isometry inequality between the distances d(x, y) and

d(f(x), f(y)) with constants A,B as required.

Let P1(Σ) be the set of all non-empty subsets of Σ.

Consider the following partial order on the domain:

X = {(A,B) | A,B ∈ P1(Σ) and A ⊇ B},

where the partial order on X is the component-wise inclusion.

From the theorem above, we obtain the a full description of

the partial order 6QI restricted to large scale geometers of

eventually periodic strings.

Corollary III.4. The partial order 6QI restricted to the set

EP = {[α] | α is eventually periodic string over Σ} is

isomorphic to the partial order X .
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Let f : α → β be a quasi-isometric map, and let P be a

property. Say that f is eventually P if there is an i such that f
restricted to the suffix αi = α(i)α(i+1)α(i+2) . . . satisfies

P . A quasi-isometry f does not need to be eventually order

preserving map; neither f needs to be eventual embedding

(that is, eventually injective map). Now we show that if α and

β are eventually periodic words, then f can be computable

eventually order preserving injective map.

Theorem III.5. For eventually periodic strings α and β such

that α 6QI β there exists a computable quasi-isometric map

fα : α → β which is eventually order preserving and injective.

Proof. Consider α = xuuu . . . and β = yvvv . . .. We assume

that Cl(x) ⊆ Cl(y) and Cl(u) ⊆ Cl(v). Our desired mapping

fα maps x into y by preserving colours. (That is where fα
need not be order preserving embedding). So, it suffices to

construct a computable quasi-isometric embedding from α1 =
uω to β1 = vω. Let X = {x1, . . . , xk} be the set of all colours

that appear in α1, and hence in β1. Let ai be the number of

times that colour xi appears in v. Clearly ai > 1. Consider the

new string v1 obtained by writing v exactly a1+. . .+an times,

that is, v1 = (v)a1+a2+...+an . There exists an embedding f ′

from u into v1 that preserves colours and the order. Just like

in the theorem above, we can propagate this mapping f ′ to a

colour preserving embedding fα from α1 into β1. The map

fα : α → β thus built is a desired function.

B. Componentwise Reducibility

We formulate an equivalent more intuitive condition for

quasi-isometry between coloured metric spaces.

Definition III.6. Say α is componentwise reducible to β,

written α 6CR β, if we can write α = u1u2 . . . and β =
v1v2 . . . such that ui ⊑ vi for each i and |ui|, |vi| are uniformly

bounded by a constant C. Call these presentations of α and β
witnessing partitions.

It is clear that α 6CR β implies α 6QI β: any colour-

preserving map that maps each interval ui in α to vi in β is

quasi-isometry. Showing the converse is not trivial. The main

difficulty is showing that 6CR is transitive.

Definition III.7. An atomic crossing map is a function f :
α → β of the following form: we have {ai, bi}i∈I , where I
is an at most countable index set such that ∃C∀i[(ai < bi <
ai+1) ∧ (bi − ai 6 C)] and

f(a) =







bi (a = ai)
ai (a = bi)
a (otherwise)

Clearly, every atomic crossing map is bijective. The next result

is a step towards transitivity of 6CR.

Proposition III.8. Any quasi-isometry f : α → β can be

decomposed into the following form:

α
f1
−→ γ1

f2
−→ γ2

f3
−→ β,

where f1 is a monotonic injection, f2 is a monotonic surjec-

tion, f3 is a bijection, and f1, f2, f3 are all quasi-isometric.

Furthermore, f3 can be decomposed into the following form

for some n > 1:

γ2
g1
−→ δ1

g2
−→ . . .

gn
−→ β,

where each gk is an atomic quasi-isometry.

Proof. Let f : α → β be a quasi-isometry. First we decompose

it to α
f ′

−→ γ2
f3
−→ β, where f ′ is monotonic and f3 is a

bijection. By Small Cross Over Lemma we have a bound D <
0 such that f(m)−f(n) > D for all n < m. Let {(ni,mi)}i∈I

be the set of all pairs of natural numbers such that ni < mi

and f(mi) − f(ni) = D, where I is an at most countable

index set that depends on f . We define β̃ as the sequence that

is same as β except that colours of the position ni and mi are

swapped for each i ∈ I: that is,

β̃(n) =











β(mi) (n = ni)

β(ni) (n = mi)

β(n) (otherwise)

Notice that ni,mi, nj and mj are all distinct element for

distinct i, j ∈ I , and hence the above definition is well-

defined. Also let f̃ be a function that executes this swapping,

i.e. f̃(mi) = ni, f̃(ni) = mi and f̃(n) = n otherwise. It

is easy to show that f̃ ◦ f is a QI map from α to β̃ such

that f̃ ◦ f(m) − f̃ ◦ f(n) > D + 1 for all n < m. Iterating

this procedure (−D) times we get γ2 and a bijective QI map

g : β → γ2 such that g ◦ f is monotonic. let f ′ = g ◦ f and

f3 = g−1. From the construction it is clear that g−1 is a finite

composition of certain atomic crossing functions.

Now we decompose f ′ to α
f1−→ γ1

f2−→ γ2, where f1
is a monotonic injection and f2 is a monotonic surjection.

For γ2 = c1c2 . . ., let γ1 = (c1)
n1(c2)

n2 . . ., where ni =
max{1, |f−1

1 (ci)|}. Let f1 be a map that sends each interval

f ′(ci) in α to (ci)
ni in γ1 in an obvious injective, monotonic

way. Also let f2 be a map that sends each (ci)
ni in γ1 to ci

in γ2. This is the desired decomposition.

Corollary III.9. If α 6QI β, then there is β′ ∼QI β so that

α 6QI β′ via strictly monotonic quasi-isometry.

Proof. The strings γ1 is a desired β′ as β′ is obtained

through the composition of quasi-isometric maps f−1
3 and

λn.min f−1
2 (n) applied to β.

Informally, the proposition above says that any quasi-

isometry can be decomposed into three parts. The first part

is the mapping f1 which can be viewed as a “pollution” of α,

the second part is the map f2 that can be called a “collapsing”

map, and the third part is f3 that can be called “mixing” since

it mixes atomic crossing maps. Note that the mixing part is

the one that makes things complicated: below we show that

mixing functions preserve componentwise reducibility.

Lemma III.10. Suppose α 6CR β and β 6QI γ via an

atomic crossing map f : β → γ. Then α 6CR γ.
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Proof. Let α = u1u2 . . . and β = v1v2 . . . be witness parti-

tions. Let γ = w1w2 . . . be a partition such that |wn| = |vn|
for all n. We construct a strictly increasing sequence {nk}k∈N

such that vnk
. . . vnk+1−1 ⊑ wnk

. . . wnk+1−1 for each k.

Through the proof we identify a finite sequence un in a parti-

tion α = u1u2 . . . and an interval [|u1 . . . un−1|, |u1 . . . un|−1]
in α, and write as “a ∈ un” for given a ∈ N.

We can assume f satisfies the following conditions without

loss of generality:

1) f is characterised by {ai, bi}i∈N such that C(ai) 6=
C(bi) for all i ∈ N.

2) For each i, ai ∈ ui and bi ∈ ui+1.

The following claim is the crucial part of our proof.

Claim. Let n ∈ N be given. If C(bn) ∈ C(wn+i) for some

1 6 i 6 |Σ|, then there exists j such that 1 6 j 6 |Σ|(Σ +
1) such that vn+1 . . . vn+j ⊑ wn+1 . . . wn+j and c(bn+j) ∈
c(wn+j+i′ ) for some 1 6 i′ 6 |Σ|.

Note that for given n, there are n1, n2 ∈ {n, . . . , n + |Σ|}
such that n1 < n2 and C(bn1

) = C(bn2
): this is immediate

from the pigeonhole principle. This implies that C(bn1
) ∈

C(wn2
) and n2 − n1 6 |Σ| − 1. Also for given n, let

A = {m | m > n ∧ C(am) 6∈ C(wn+1 . . . wm)}.

Then |A| 6 |Σ| − 1, as m ∈ A only if C(am) 6= C(an), and

for any distinct m,m′ ∈ A we have C(am) 6= C(a′m).
Now assume C(bn) ∈ C(wn+i) holds for some 1 6

i 6 |Σ|. From the facts above, we have 1 6 m 6 |Σ|2

such that for all m′ 6 |Σ| we have C(bn), C(an+m+m′) ∈
C(wn+1 . . . wn+m+m′). Notice that from this we have

vn+1 . . . vn+m+m′ ⊑ wn+1 . . . wn+m+m′ . Finally, we can find

m′ and i′ such that m′ < m′ + i′ 6 |Σ| and C(bn+m+m′) =
C(bn+m+m′+i′ ), hence C(bn+m+m′) ∈ C(wn+m+m′+i′),
where 1 6 i′ 6 |Σ|. This m+m′ is the desired j.

Find n so that u1 . . . un ⊑ w1 . . . wn and C(bn) ∈ C(wn+i)
for some 1 6 i 6 |Σ|, then iterate finding j in the claim above.

This is a procedure that gives the desired {nk}.

Theorem III.11. α 6QI β implies α 6CR β.

Proof. Let f : α → β be a quasi-isometry. Decompose it into

α
f1
−→ γ1

f2
−→ γ2

f3
−→ β according to Proposition III.8. For any

monotonic QI map g : α′ → β′ we easily have α′ 6CR β′:

Indeed, enumerate all elements of an image of g as {bn}n∈N,

where bn < bn+1 for all n, let un = g−1(bn) and vn =
[bn, bn+1 − 1]. Then α′ = u1u2 . . . and β′ = v1v2 . . . are

witnessing partitions. Hence we have α 6CR γ2, and Lemma

III.10 completes the proof.

One could attempt to go further, namely say α and β are

colour-equivalent if they are componentwise reducible to each

other via the same witnessing partitions. It is clear that if α
and β are colour-equivalent, then they are quasi-isometric. Can

we show that α ∼QI β implies their colour-equivalence?

Proposition III.12. There are colour-equivalent α and β such

that no eventual embeddings witness quasi-isometry between

α and β.

Proof. Consider the following coloured metric spaces over the

alphabet {0, 1}:

α = 00120014 . . . 12n00 . . . and β = 01012 . . . 01n . . . .

We now prove that no eventual embeddings exist witnessing

quasi-isometry between α and β.

Assume that f : α → β and g : β → α are eventual

embeddings with witness constants Af , Bf and Ag, Bg. Let

in and in + 1 be the sequence of consecutive positions in α
with colour 0. Since f is quasi-isometry we have

|f(in + 1)− f(in)| 6 Af |in+1 − in|+Bf = Af +Bf .

There exists a position in such that f(in) < f(in + 1) and

the number of consecutive 1s immediately on the right side of

f(in) is greater that Af + Bf . Hence, f(in + 1) − f(in) >
Af +Bf . This is a contradiction with quasi-isometry.

Proposition III.13. There are sequences α and β such that

α and β are quasi-isometric via monotonic embeddings but α
and β are not colour-equivalent.

Proof. Let Σ = {0, 1, ∗} and define α, β ∈ Σω as follows.

We first define β by:

010 ∗ 0 ∗ 1 ∗ 0 ∗ ∗ ∗ . . . 0(∗)n1(∗)n0(∗)2n+1 . . .

Thus, the nth-part of β is the string 0(∗)n1(∗)n0(∗)2n+1. We

re-write β with subscripts on each 0 and 1 as pointers for

easier readability:

00100 1
2
∗ 01 ∗ 11 ∗ 0 3

2
∗ ∗ ∗ ...0n(∗)

n1n(∗)
n0 2n+1

2

(∗)2n+1...

Let α be obtained from β by omitting the second occurrence

of 0 in the nth-substring of β. So,

α = 01 ∗ 0 ∗ 1 ∗ ∗ ∗ ∗ . . . 0(∗)n1(∗)n(∗)2n+1 . . .

So, the nth-substring of α is 0(∗)n1(∗)n(∗)2n+1. As above

we re-write α with with subscripts as pointers:

α = 0010 ∗ 01 ∗ 11 ∗ ∗ ∗ ∗...0n(∗)
n1n(∗)

3n+1...

Constructing a quasi-isometry f : α → β is straightforward,

since eliminating 0 2n+1

2

for each n ∈ N from β we have the

sequence α. We define g : β → α as a map that sends certain

intervals in β to intervals in α monotonically and as equally

as possible, as follows:

• g maps each sequence 0n(∗)n1n in β to the sequence

02n(∗)2n12n in α;

• 1n(∗)
n0 2n+1

2

in β to 12n(∗)
6n+202n+1 in α; and

• 0 2n+1

2

(∗)2n+10n+1 in the string β to the sequence

02n+1(∗)2n+112n+1(∗)6n+302(n+1) in α.

Then d(i, j) 6 d(g(i), g(j)) 6 6d(i, j) and g is a monotonic

embedding, thus it is a witness for quasi-isometric embedding.

For non-colour equivalence, assume the contrary and let

α = u1u2... and β = v1v2... be a witness. We should have

only finitely many ui and vi that contain more than one

occurrences of 0 and/or 1, since otherwise we do not have

a bound of |ui| or |vi|. Let I ∈ N be a number such that for

all i > I this does not happen.
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Let p > I and suppose up contains 1n. Then vp contains

1n+k for some k ∈ Z, and for all 1n′ and p′ > I such that

up′ contains 1n′ , vp′ contains 1n′+k (otherwise some up′ or

vp′ contains multiple 1s).

Now suppose p′ > p > I and up and up′ contain 1n
and 1n+1, respectively. Then from the construction of α there

should be exactly one q ∈ [p+1, p′−1] with the corresponding

interval uq contains 0. On the other hand vp and vp′ contain

1n+k and 1n+k+1, respectively, and from the construction of

β we should have two elements in [p + 1, p′ − 1] with the

corresponding interval contains 0, which is the contradiction.

IV. BÜCHI AUTOMATA AND LARGE SCALE GEOMETRIES

Let L ⊆ Σω be a language, where we assume that Σ =
{0, 1}. The notion of quasi-isometry leads us to consider the

quasi-isometry types of strings from L:

Definition IV.1. An atlas is a set of quasi-isometry types.

In particular, the atlas defined by the language L is the set

[L] = {[α] | α ∈ L}, where [α] is the quasi-isometry type of

α.

A question of a general character is concerned with under-

standing the set [L] given a description of L. In particular, a

natural question is if one can decide that [L1] = [L2] given

descriptions of languages L1 and L2. In this section, we study

the atlases defined by Büchi automata recognisable languages.

We show that for Büchi automata recognisable languages

L1 and L2 there is an efficient algorithm that decides if

[L1] = [L2]. We recall basic definitions for Büchi automata.

Definition IV.2. A Büchi automaton M is a quadruple

(S, ι,∆, F ), where S is a finite set of states, ι ∈ S is the

initial state, ∆ ⊂ S×Σ×S is the transition table, and F ⊆ S
is the set of accepting states.

A run of M on α = σ0σ1 · · · ∈ Σω is a sequence of states

r = s0, s1, . . . such that s0 = ι and (si, σi, si+1) ∈ ∆ for all

i ∈ ω. The run is accepting if the set Inf(r) = {s : ∃∞i(qi =
s)} has a state from F . The automaton M accepts the string

α if it has an accepting run on it. The language accepted by

M, denoted L(M), is the set of all infinite words accepted

by M.

Let M be a Büchi automaton. Our goal is to describe the

atlas defined by the language L(M). We call such [L] Büchi

recognisable. We need to do some state space analysis of the

automation M.

A loop (in M) is a path L of states s1, . . . , sn+1 in the state

space S such that s1 = sn+1. We say that a word σ1 . . . σn

labels the loop L if (si, σ, si+1) ∈ ∆ for 1 6 i 6 n. If all

symbols σi are 0 only (or 1 only), then we say that the loop

is 0-loop (or respectively, 1-loop). In the loop L we do not

require that the states are pairwise distinct. Any state in a loop

is a loop state.

The state space S can naturally be considered as a directed

graph, where the edges between states are transitions of M
with labels removed. Hence, we can write S as a disjoint union

of its strongly connected components (sccs). Call a scc X ⊆ S
non-trivial if |X | > 1, where |X | is the cardinality of X . Thus

we write S as the union T ∪ S1 ∪ . . . ∪ Sk, where T is the

union of trivial strongly connected components and each Si is

a nontrivial scc. Every successful run of M on every infinite

string α eventually ends up in one of the sccs Si. Consider

Büchi automata M1, . . ., Mk such that the initial states and

the state diagrams of Mi all coincide with that of M but

Fi = F ∩ Si. It is clear that

(⋆) L(M) = L(M1) ∪ . . . ∪ L(Mk).

Hence describing the atlas [L(M)] boils down to describing

the atlases of [L(Mi)], i = 1, . . . , k. Assume that α is

accepted by Mi. Then we can write α as vα′ such that

an accepting run of Mi after reading v stays inside Si.

Therefore, the large scale geometry [α] of α is quasi-isometric

to either [0α′] or [1α′] (or both). Therefore, we can postulate

the following assumption till the end of this section unless

otherwise stated.

Postulate. The state space S can be written as {q0}∪S′ such

that (1) q0 is the only initial state and q0 6∈ S′, (2) S′ is the

only nontrivial strongly connected component of M, and (3)

any transition from q0 goes into S′.

Lemma IV.3. If M has a 0-loop and a 1-loop, then the atlas

[L(M)] coincides with the atlas [Σω] \ X for some X ⊆
{[0ω], [1ω], [10ω], [01ω]}.

Proof. Assume that L0 is a 0-loop and L1 is a 1-loop.

Let α be a string with ω-many 0s and ω-many 1s. Say,

α = 0n01m00n11m1 . . .. We can build a β of the form

u 0n
′

1v1m
′

1w 0n
′

2v1m
′

2w 0n
′

3v1m
′

3w . . . 0n
′

iv1m
′

iw . . .

such that (1) β is accepted by M, (2) ni = n′
i + ci and

mi = m′
i + c′i, where ci < |S| and c′i < |S| for all i, (3) v is

a string that labels a path from a state s0 in L0 to a state s1
in L1, and (4) w is a string that labels a path from s1 to s0,

and (5) v is a string that labels a path from the initial state

to s0. This implies that α and β are colour-equivalent. Hence

they are quasi-isometric.

Note that none of the strings 0ω, 1ω, 10ω, 01ω is quasi-

isometric to a string with both ω-many 0s and 1s. Also, these

four strings are pairwise not quasi-isometric. Hence, the choice

of X is dependent on whether or not M accepts some (or

all) of these four strings. For instance, 0ω ∈ X iff 0ω is not

accepted by M.

Lemma IV.4. If M has no 0-loop and has no 1-loop, then

the atlas [L(M)] equals the singleton atlas [{(01)ω}].

Proof. Let α = σ0σ1 . . . be a string accepted by M. Let ρ =
s1, s2, . . . be an accepting run of M on α. We can write α as

w1w2 . . . so that (1) the length of each wi is bounded by |S|
and (2) the run ρ along each wi has a loop; that loop within

wi contains both 0 and 1. This implies that (01)ω and α are

colour-equivalent. Hence they are quasi-isometric.
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Lemma IV.5. Suppose that M contains no 1-loop but has a

0-loop L0. Then the atlas [L(M)] coincides with one of the

following atlases:

[{0ω}], [{10ω}], [{0ω, 10ω}],
[{0n110n210n3 . . . | ni > 0} \ {0ω}] or

[{0n110n210n3 . . . | ni > 0} ∪ {0ω}].

Proof. The assumption of the lemma implies that if α is

accepted by M then (1) α contains infinitely many 0s and

(2) the lengths of any sequence of consecutive 1s occurring

in α is bounded by |S|. If L(M) = V 0ω for some regular

language V ⊆ Σ⋆, then the atlas [L(M)] is either [{0ω}] or

[{10ω}] or [{0ω, 10ω}]. So, we assume that M accepts a string

with ω many 1s’. Let α be any string of the form 0t110t21 . . .,
where all ti > 0 for all i. We can build a string β of the form

u 0n1v 0n2v 0n3v . . . 0niv . . . such that (1) β is accepted

by M, (2) ti = ni + ci, where ci < |S| for all i, and (3) v
is a string that labels a path from a state s0 in L0 back to s0,

and v contains 1. The string β is quasi-isometric to string β′

obtained from β by replacing all occurrences of v with 1 and

removing the prefix u. In turn β′ is colour equivalent to α.

Hence, α ∼QI β.

Now suppose that β is accepted by M and β has infinitely

many 1s. Then β is of the form u0n11m10n21m2 . . . where

we have ni,mi > 0 for all i. As noted above the numbers

mi are uniformly bounded. The string β is quasi-isometric to

string β′ obtained from β by replacing all 1mi with just 1 and

removing the prefix u. Clearly β′ is of the form desired. Note

that M accepts the string quasi-isometric to 10ω. Hence, if

0ω is accepted by M then the atlas [L(M)] coincides with

[{0n110
n210n3 . . . | ni > 0} ∪ {0ω}]. Otherwise, the atlas

[L(M)] equals [{0n110
n210n3 . . . | ni > 0} \ {0ω}].

Lemma IV.6. Suppose that M contains no 0-loop but has a

1-loop L0. Then the atlas [L(M)] coincides with one of the

following atlases:

[{1ω}], [{01ω}], [{1ω, 01ω}],
[{1n101n201n3 . . . | ni > 0} \ {1ω}] or

[{1n101n201n3 . . . | ni > 0} ∪ {1ω}].

We now remove our postulate put on the state space of Büchi

automata. Using equality (⋆) given above, and the lemmas,

we obtain the following characterisation result:

Theorem IV.7. Any Büchi recognisable atlas [L] is a union

from the following list of atlases:

• [Σω] \X , where X ⊆ {[0ω], [1ω], [10ω], [01ω]}.
• [{0n110n210n3 . . . | ni > 0} \ {0ω}], [{1ω}],
• [{0n110n210n3 . . . | ni > 0} ∪ {0ω}], [{0ω}],
• [{01ω}], [{10ω}], [{0ω, 10ω}], [{1ω, 01ω}],
• [{1n101n201n3 . . . | ni > 0} \ {1ω}],
• [{1n101n201n3 . . . | ni > 0} ∪ {1ω}].

We obtain the following complexity-theoretic result solving

the equality problem for Büchi recognisable atlases. In com-

parison, the equality problem for Büchi automata is PSPACE

complete.

Corollary IV.8. There exists an algorithm that, given Büchi

automata A and B, decides if the atlases [L(A)] and [L(B)]
coincide. Furthermore, the algorithm runs in linear time on

the size of the input automata.

Proof. Let M be a Büchi automaton. Our goal is to find

atlases from the list provided in Theorem IV.7 such that the

union of these atlases coincides with the atlas [L(M)]. For

this, we decompose M into k automata M1, . . ., Mk so that

the equality (⋆) holds and each Mi satisfies the postulate. This

decomposition can be done in linear time on the size of M
(e.g. using Tarjan’s algorithm that decomposes a directed graph

into strongly connected components). Now for each Mi, we

check the assumptions of Lemma IV.3 through Lemma IV.6.

This can also be done in linear time.
As an example, the assumptions of Lemma IV.3 can be

checked as follows. Assume that the automaton under consid-

eration is Mi. In order to check if Mi contains a 0-loop, we

remove all transitions labeled with 1 from the state diagram of

Mi. This gives us a directed graph whose edges are transitions

labelled with 0. In this graph we check if there is a loop. If

there exists a loop, then Mi has a 0-loop. Otherwise Mi

does not have a 0-loop. Similarly, to check if Mi contains a

1-loop, we remove all transitions labeled with 1. This gives us

a directed graph. If there is a loop in this directed graph, then

Mi has a 1-loop; Otherwise, not. To find the set X from (the

statement of) the Lemma we just need to check which of the

strings 0ω, 1ω, 10ω, 01ω is accepted by Mi. This can also be

done in linear time on the size of Mi.

The argument shows that we can find, in linear time on

size of M, the atlases from the list provided in Theorem IV.7

such that the union of these atlases is the atlas [L(M)]. Thus,

given Büchi automata A and B we can decide in linear time

if [L(A)] = [L(B)].
V. THE QUASI-ISOMETRY PROBLEM

The quasi-isometry problem QIP is to find if, given strings

α and β, there is a quasi-isometry from α to β:

QIP = {(α, β) | α, β ∈ Σω & [α] 6QI [β]}.

Let α and β be coloured metric spaces and A,B be constants.

Our goal is to construct a rooted tree T (α, β,A,B) such that

the following properties hold:

1. The tree T (α, β,A,B) is finitely branching and computable

in α and β. In particular, if α and β are computable then so

is T (α, β,A,B).
2. For any n one can effectively compute, with an oracle for

α and β, the number of nodes in the tree at distance n from

the root.

3. The tree T (α, β,A,B) is infinite iff there exists an (A,B)-
quasi-isometric map from α into β.

4. There is a bijection between (A,B)-quasi-isometric maps

from α to β and the set [T (α, β,A,B)] of all infinite paths

of the tree T (α, β,A,B).

Informally, the nodes of T (α, β,A,B) are finite partial

functions that can potentially be extended to (A,B)-quasi-

isometric maps from α to β. Formally:
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1. The root of the tree T (α, β,A,B) is the empty set ∅, that

is, nowhere defined partial function.

2. Let x be a node of the tree T (α, β,A,B) constructed so far,

and fx be the partial function associated with x. We identify

x and fx. We assume that

1) x is at distance n from the root, and fx =
{(0, i0), . . . , (n− 1, in−1)}.

2) For all k,m from the domain of fx we have that

fx is colour preserving and the (A,B)-quasi-isometry

condition is satisfied:

(1/A) · d(k,m)− B < d(fx(k), fx(m))
< A · d(k,m) +B.

We list all the extension φ of fx such that the domain of

φ is the set {0, 1, . . . , n} and φ satisfies the the (A,B)-
quasi-isometry condition. The children of fx will be all these

functions φ extending fx.

In Part 2 of the construction the number of extensions φ
of fx is finite since these extensions must satisfy the quasi-

isometry condition. Moreover, the number of these extensions

is computed with an oracle for α and β. If such extensions φ
of fx do not exist, then x is a leaf.

Lemma V.1. The tree T (α, β,A,B) is infinite iff there is an

(A,B)-quasi-isometric map from α into β. There is a bijection

between all infinite paths of T (α, β,A,B) and (A,B)-quasi-

isometric maps from α to β.

Proof. If g : α → β is an (A,B)-quasi-isometric map from α
to β then the sequence {gi}i∈ω, where gi is the restriction of g
on the initial segment {0, . . . , i}, is an infinite path through the

tree T (α, β,A,B). If x1, x2, . . . is an infinite path through the

tree T (α, β,A,B) then f defined as the limit of the sequence

fx1
, fx2

, . . . is an (A,B)-quasi-isometry from α to β.

The next theorem that solves the quasi-isometry problem.

Theorem V.2. The following statements are true:

1) Given quasi-isometric strings α and β, there exists a

quasi-isometry between α and β computable in the

halting set relative to α and β.

2) The quasi-isometry problem between computable strings

is a complete Σ0
3-set.

Proof. Assume that α and β are (A,B)-quasi-isometric. The

tree T (α, β,A,B) is infinite by the Lemma above. Such a tree

has a path computable in the halting set for the tree [10]. The

tree, as we constructed above, is computable in α and β. This

proves the first part.

We prove the second part of the theorem. By Lemma V.1

computable strings α and β are quasi-isometric if and only if

there exists are constants A,B such that the computable tree

T (α, β,A,B) is infinite. This is a Σ0
3-statement. Hence, the

quasi-isometry problem between computable strings α and β
is a Σ0

3-set. To prove that the problem is complete, we reduce

a Σ0
3-complete problem to the quasi-isometry problem. Below

is an informal explanation of the reduction.

Let W0,W1, . . . be a standard enumeration of all c.e. sets.

It is known that the set Fin = {i | Wi is finite} is a Σ0
3-

complete problem [12]. For each Wi we need to construct αi

and βi two infinite strings such that Wi is finite if and only if

αi and βi are quasi-isometric. For this we start enumerating

Wi by stages 1, 2, . . .. At stage 0, we consider αi,0 and βi,0

finite prefixes that can be extended to a (1, 1)-quasi-isometry

and set A0 = B0 = 1. By stage s we will have a finite

prefixes αi,s−1 of αi and βi,s−1 of βi built. If at stage s
the enumeration of Wi outputs a new element, then we start

extending αs and βs so that the following holds. If Wi never

increases its size from stage s on then α and β are (As, Bs)-
quasi-isometric but not (As−1, Bs−1)-quasi-isometric, where

As > As−1 and Bs > Bs−1. This can easily be achieved in

two steps. In the first step, one ensures that a large part of

α contains a long consecutive sequence of elements of one

colour, and the same positions of β have another colour. This

will guarantee that αi and βi are not (As−1, Bs−1)-quasi-

isometric. In the second step, one ensures that those long

sequences in the first step do not conflict with (As, Bs)-quasi-

isometry and one can continue on extending αi,s and βi,s so

that they are (As, Bs)-quasi-isometric. Thus, if Wi is infinite

then there is an infinite sequence s1, s2, . . . of increasing

stages at which the enumeration of Wi increases the size of

Wi. Hence, from stage si on α and β are not (Asi , Bsi)-quasi-

isometric. This implies that Wi is infinite then αi and βi are

not quasi-isometric.

VI. ASYMPTOTIC CONES

Let F be a non-principal ultra-filter on ω. Recall that a

non-principal ultra-filter is a non-empty maximal subset of

P (ω) that satisfies the following properties: (1) No finite set

belongs to F . So, F does not contain the empty set; (2) For

all A,B ∈ F we have A ∩ B ∈ F ; (3) For all A,B ⊆ ω if

A ∈ F and A ⊆ B then B ∈ F .

Every ultrafilter F has the following two properties: (1)

For every set A ⊆ ω, either A ∈ F or ω \ A ∈ F . (2) For

all pairwise disjoint sets A,B ⊆ ω if A ∪ B ∈ F then either

A ∈ F or B ∈ F .

Let α ∈ Σω and s be a strictly increasing monotonic

function on ω with s(0) = 1. Call the mapping s(n) a scaling

factor. Define the following sequence of metric spaces:

X0,α = (α, d0), X1,α = (α, d1), . . . , Xn,α = (α, dn), . . .

where dn(i, j) = |i − j|/s(n). Informally, we move α away

from us by scaling the metric down. For instance, in the metric

space X0,α the distance from 0 to s(n) equals s(n), while in

Xn,α the distance from 0 to s(n) is 1. We assume that the

domains of these metric spaces are disjoint pairwise: Xi,α ∩
Xj,α = ∅ for all i 6= j.

Let a = (an)n>0 be a sequence, where each an ∈ Xn,α for

all n. Call the sequence bounded if there is a constant L such

that the set {n | dn(0, an) < L} ∈ F . Let B(F , s) be the set

of all bounded sequences. Say that two bounded sequences a

and b are F -equivalent, written a ∼F c, if {n | dn(an, bn) 6
ǫ} ∈ F for every ǫ.
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Definition VI.1. Define the asymptotic cone of α, written

Cone(α,F , s), with respect to the scaling function s(n) and

the ultra-filter F to be the factor set

B(F , s)/ ∼F

equipped with the following metric D and colour C:

1) D(a,b) = r iff {n | r − ǫ 6 dn(an, bn) 6 r + ǫ} ∈ F
for all ǫ > 0.

2) C(a) = σ iff {n | an has colour σ} ∈ F .

This definition implies that some elements a of the asymptotic

cone might have several colours.

Lemma VI.2. The set {a ∈ Cone(α,F , s) | σ ∈ C(a)} is

closed for each σ ∈ Σ,

Proof. Let a be a limit point of the set above, an =
(anm)m>0 ∈ Cone(α,F , s) be a point of colour σ such that

D(a, an) 6 2−n. Also let r = D(0, a), rn = D(0, an), and

im be a number such that im 6 m and |r − dn(0, aimm)| 6
|r− dn(0, ajm)| for all j 6 m. Then b = (ainn)n>0 ∼ a and

σ ∈ C(b): indeed, let An = {m ∈ N | |rn − dm(0, anm)| 6
2−n}. Then for given n,

{m ∈ N | |r − dm(0, bm)| 6 2−(n+1)}

⊇ {m ∈ N | |r − dm(0, aimm)| 6 2−(n+1)} ∪ [n,∞)

⊇ An+2 ∪ [n,∞) ∈ F .

Also {m ∈ N | |r − dm(0, am)| 6 2−(n+1)} ∈ F , hence

{m ∈ N | dm(am, bm) 6 2−n} ∈ F .

Theorem VI.3. For eventually periodic word α = uvω all

asymptotic cones Cone(α,F , s) equal the coloured metric

space (R>0; d, C) such that every real r > 0 has colours

of v and the real 0 has colours of both u and v.

Proof. Let F be any filter and s : ω → ω be a monotonic

function. It is easy to see that 0 has all colours of both u and

v. Let r ∈ R and r > 0. For any σ present in v there is a

sequence (an)n>0 such that an ∈ Xn,α, the colours of an all

are σ and for every ǫ > 0 there is an Nǫ such that for all

n > Nǫ we have |dn(an, 0)−r| 6 ǫ. Indeed, for each n ∈ N

such that |u|/s(Nǫ) < r let an be any element which has the

colour σ and satisfies (|u|+ i|v|)/s(n) 6 dn(0, an) < (|u|+
(i+1)|v|)/s(n), where i is the unique integer which satisfies

(|u|+ i|v|)/s(n) 6 r < (|u|+ (i+ 1)|v|)/s(n). |dn(an, 0)−
r| 6 |v|/s(n). This inequality implies the claim.

We now prove a theorem akin to a known result in geometric

group theory stating that there are non-quasi-isometric groups

that realise the same cones. For instance, in [2] [3] it is proved

that all asymptotic cones of non-elementary hyperbolic group

are isometric.

Theorem VI.4. There are non-quasi-isometric strings α, β ∈
{0, 1}ω, a scale factor s(n), and filter F such that

Cone(α,F , s) = Cone(β,F , s) and α, β ∈ X (1).

Proof. Our scale factor is s(n) = 2n. The string α is such

that α(i) = 1 if and only if i is a power of 2. Let F be any

ultra-filter. Consider the cone Cone(α,F , s). It is note hard

to see that the cone coincides with the coloured metric space

(R>0; d, C), where d is the usual metric on reals, all reals

have colour 0, and a real r has also colour 1 iff r is an integer

power of 2 or r = 0.

So, we need to construct β and a filter F such that α and β
are not quasi-isometric but the cone Cone(β,F , s) coincides

with the above coloured metric space (R>0; d, C). Let β be a

string of the form

0m010m110m210m3 . . . 0mk10mk+1 . . .

such that the following properties hold:

1) The positions where β contains 1 are powers of

two, and let us list these positions as the sequence

2n0 , 2n1 , 2n2 , . . ..
2) For each i ∈ ω we have 2ni < ni+1.

3) The strings α and β are not quasi-isometric.

Now we construct our filter F . Let X be the set

{n0, n0 + 1, . . . , 2n0, . . . , nk, nk + 1, . . . , 2nk, . . .}.

Call the sequences of the form nk, nk + 1, . . . , 2nk blocks of

the set X . Note that the lengths of the blocks is unbounded.

For each integer i, consider the set X + i = {x + i | x ∈
X, x + i > 0}. Since the sizes of the blocks is unbounded,

the collections of sets is a bases of a filter:

X, X + 1, X − 1, X + 2, X − 2, . . . , X + i, X − i, . . .

Let F be the ultrafilter that contains the collection.

Consider the cone Cone(β,F , s). We can view the domain

of this cone as the set R>0. It is not too hard to note that

every real r gets colour 0 in the cone Cone(β,F , s). Now we

need to show that r gets colour 1 if and only if r is an integer

power of 2. It suffices to show that if r is an integer power of

2 then r has colour 1. But, this is implied by the fact that the

sets X + i are in F . Indeed, assume that r is of the form 2i.
Then, since X + i ∈ F , from the definition of Cone(β,F , s)
we see that r has colour 1.

To finish the proof, we just need to show that we can select

the sequence n0, n1, . . . such that α and β are not quasi-

isometric. To see this, let nk+1 = 2nk +2: then we can show

that α and β are not quasi-isometric in the same manner as

the proof of Theorem II.5.

In contrast to the theorem above, we show that the same

coloured metric space can produce two asymptotic cones

that are not quasi-isometric. This is similar to the result in

geometric group theory where one group can realise two non

homeomorphic asymptotic cones [1].

Theorem VI.5. There is a sequence α, scaling factors s0 and

s1 so that for all ultrafilters F cones Cone(α,F , s0) and

Cone(α,F , s1) are not quasi-isometric.

Proof. We construct α and two scaling factors s0 and s1 such

that in the asymptotic cone Cone(α,F , s0) all reals r > 1
have colour 0, and in the asymptotic cone Cone(α,F , s1) all
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reals r > 1 have colour 1 only. These two metric spaces are

clearly not quasi-isometric.

Define pn and qn, inductively, by: p1 = q1 = 1, and

pn+1 = n

n
∑

i=1

(pi + qi),

qn+1 = n

( n
∑

i=1

(pi + qi) + pn+1

)

Now consider the string α = 0p11q10p21q2 . . ., and define the

following two scale functions:

• s0(n) =
∑n

i=1(pi + qi), and

• s1(n) =
(
∑n

i=1(pi + qi) + pn+1

)

.

Also let dj,n(x, y) = |y−x|/sj(n) (j = 0, 1). Then all points

a in (α, dj,n) such that 1 < dj,n(0, a) < n have the colour j.

Hence for any r > 1, the colour of r is 0 in Cone(α,F , s0)
and 1 in Cone(α,F , s1).

The next theorem shows that the asymptotic cones of all

Martin-Löf random strings [11] coincide when the scaling

factor is a computable function.

Theorem VI.6. If α is Martin-Löf random, then for all com-

putable scaling factors s and ultra-filters F , the asymptotic

cone Cone(α,F , s) coincides with the space (R>0; d, C),
where every real has all colours from Σ.

Proof. We assume that Σ = {0, 1}. For given r ∈ R>0,

assume the following:

∃A ∈ F∀ǫ∀∞n ∈ A∃r′ ∈ αn[r−ǫ 6 r′ 6 r+ǫ∧Cn(r
′) = 0].

Then we have a sequence (an) such that the subsequence

{an | n ∈ A} converges to r and all elements of the

subsequence are coloured by 0, and hence Cone(α,F , s) has

the colour 0 at r.

Taking the contraposition of this fact and letting A = N,

we have the following: if Cone(α,F , s) does not have the

colour 0 at r (by virtue of Lemma VI.2 we can assume that

r ∈ Q>0), then for some ǫ > 0 we have infinitely many n ∈ N

such that all points r′ of αn in an interval [r − ǫ, r + ǫ] has

the colour 1.

Now assume such an r exists and consider the set:

Gn = {X ∈ 2ω | s(n)(r− ǫ) 6 i 6 s(n)(r+ ǫ) ⇒ X(i) = 1}

In the Cantor space {0, 1}ω, the sequence of open sets

(Gn) is uniformly computably enumerable and the sum of

the measures of Gn is bounded. Such sequences are called

Solovay tests. This Solovay test fails the string α, that is,

α ∈ Gn for infinitely many n (cf. Definition 3.2.18 in [11]). It

is known that falling Solovay tests is equivalent failing Martin-

Löf tests (cf. Proposition 3.2.19 in [11]). This shows that α is

not random.

A culmination of asymptotic cones construction is that

[α] = [β] implies bi-Lipschitz equivalence between

Cone(α,F , s) and Cone(β,F , s). The proof is standard with

the difference that our metric spaces are coloured. However,

since our base metric space is a linear order ω, the conclusion

of our theorem is a little stronger as it implies order preser-

vance.

Theorem VI.7. If strings α and β have the same large

scale geometry then there are colour-preserving and order

preserving homeomorphisms

H : Cone(α,F , s) → Cone(β,F , s) and

G : Cone(β,F , s) → Cone(α,F , s),

constants CH , CG such that for all a,b ∈ Cone(α,F , s)
and c,d ∈ Cone(β,F , s) we have:

(1/CH) ·D(a,b) 6 D(H(a), H(b)) 6 CH ·D(a,b)
and

(1/CG) ·D(c,d) 6 D(G(c), G(d)) 6 CG ·D(c,d).
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