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Decoding Orders for Securing Untrusted NOMA
Sapna Thapar, Deepak Mishra, and Ravikant Saini

Abstract—This letter focuses on exploring a new decoding or-
der to resolve the secrecy issue among untrusted non-orthogonal
multiple access users. In this context, firstly, we identify the
total number of possible decoding orders analytically. Then, we
propose a decoding order strategy ensuring positive secrecy rate
for all users, and obtain the number of feasible secure decoding

orders based on this proposed strategy numerically. Thereafter,
we present a suboptimal policy to avoid the computational
complexity involved in finding the best secure decoding order.
Numerical results illustrate that the suboptimal solution provides
a performance gain of about 137% over the relevant benchmark.

Index Terms− 5G communications, physical layer security,
non-orthogonal multiple access, untrusted users.

I. INTRODUCTION

Non-orthogonal multiple access (NOMA) is confronted with

critical secrecy issues due to the broadcast nature of wireless

transmission, and successive interference cancellation (SIC)

based decoding at the receivers [1]. Physical layer security

(PLS) has recently emerged as a revolutionizing approach for

security provisioning over wireless links in NOMA [2].

Utilizing the concept of PLS, existing works have mostly

focused on securing NOMA against external eavesdroppers

[2]. Due to the inherent possibility of decoding other users’

data while performing SIC, the design of secure NOMA when

users are assumed to be untrusted is a challenge. Untrusted

users’ network is a practical and hostile situation where users

have no mutual trust, and each user focuses on securing its

own data from all others, which leads to complex resource

allocations [3], [4]. In this context, assuming only far users as

untrusted, sum secrecy rate of trusted near users is investigated

in [5] for a NOMA system. In [6] also, the far user is assumed

as untrusted and secrecy outage probability of trusted near user

is analyzed. However, near user has to decode far user’s data

to apply SIC, this results in a crucial security risk for the

far user in case of untrusted near user. In this regard, secure

decoding order for a two-user untrusted NOMA is proposed

in [4] which ensures positive secrecy rate for both the users.

Compared to the two-user case [4], the selection of secure

decoding order for multi-user untrusted scenario is a combi-

natorial and complicated problem. Besides, [4] assumed an

ideal setup with perfect SIC, which is not practical due to

various implementation problems such as decoding error and

complexity scaling [1], [7]. To this end, considering imperfect

SIC at receivers, we study secure decoding order selection

problem for multi-user untrusted NOMA, which to the best of

our knowledge, has not been investigated yet in the literature.
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The key contributions are as follows: (1) A novel decoding

order strategy for multi-user untrusted NOMA system is

proposed. The key idea is to obtain positive secrecy rate

at each user. (2) For a system having N untrusted users,

we analytically obtain the total number of possible decoding

orders. Based on the proposed decoding order strategy, we

present insight on the count of possible secure decoding

orders that ensure positive secrecy rate to all users. (3) To

reduce the computational complexity involved in exploring

the best secure decoding order, we explore such favourable

secure decoding orders that can provide higher secrecy rate for

each user. We also offer a suboptimal decoding order policy.

(4) Numerical results are provided to validate the proposed

approach and quantify the achievable secrecy rate performance

gain by the suboptimal solution over the relevant benchmark.

II. SECURE NOMA WITH UNTRUSTED USERS

A. System Model and NOMA Principle

We consider the power-domain downlink NOMA system

with a base station (BS) and N untrusted users. The n-th user

is denoted by Un, where n ∈ N = {1, 2, ..., N}. Each node

in the system is equipped with a single antenna. The Rayleigh

fading channel gain coefficient between BS and Un is denoted

by hn. The channel power gain |hn|2 follows exponential dis-

tribution with mean λn = Lcd
−e
n , where Lc, e, and dn denote

path loss constant, path loss exponent, and distance from BS to

Un, respectively [6]. Without loss of generality, channel power

gains are sorted such as |h1|
2 > |h2|

2 > ... > |hN |2. The

BS superimposes users’ information signals and broadcasts

the generated mixture with total transmission power Pt. αn

denotes power allocation (PA) coefficient, i.e., the fraction of

Pt assigned to Un satisfying
∑

p∈N αp = 1. At receiver side,

Un extracts the desired signal from the superimposed signal

by cancelling the interfering signals through the SIC process.

Without loss of generality, we assume received additive white

Gaussian noise for all users with zero mean and variance σ2.

We consider an imperfect SIC process where SIC could not

be performed ideally due to practical limitations. Therefore,

residual interference from imperfectly decoded signals exists

while decoding later users. The residual interference can be

expressed by a factor ζ, (0 ≤ ζ ≤ 1), where ζ = 0 represents

perfect SIC while ζ = 1 refer to totally unsuccessful SIC [7].

B. Proposed Decoding Order Representation

While performing SIC, each user decodes its data as well

as other users’ data in a certain sequence. Thus, the collection

of such sequences allocated for each user in the system can

be defined by “decoding order” of the system. According

to conventional decoding order strategy [1], a stronger user

first decodes data of all weaker users in ascending order of
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users’ channel gain strength and then decodes its own data,

and a weaker user never decodes the stronger user’s data.

Conversely, in the case of untrusted users, each user can

decode data of itself as well as all other users. Note that

SIC on the receivers’ side is a physical layer capability which

enables the receiver to decode packets that arrive collectively.

Therefore, each user can decode data of any user at any

stage [5]-[4], [8] which results in a large number of decoding

orders, which we will discuss in more detail in Section III-A.

Considering these possibilities into account, let us represent

the decoding order for an N -user system as an N ×N matrix

Do, where o is an index indicating the o-th decoding order. The

m-th column of matrix Do, where m ∈ N , is represented by a

column vector dm of size N ×1, which demonstrates the SIC

sequence followed by Um. More specifically, k-th element of

dm, i.e., [dm]k = n signifies that Um decodes data of Un at k-

th stage, where n, k ∈ N and [dm]1 6= [dm]2 6= ... 6= [dm]N .

C. Achievable Secrecy Rates at Users in Untrusted NOMA

The signal-to-interference-plus-noise-ratio, γo
nm, when Um

decodes data of Un, where m,n ∈ N , can be defined as

γo
nm =

αn|hm|2(
ζ
∑

i∈Ubn
om

αi +
∑

j∈Uan
om

αj

)
|hm|2 + 1

ρt

. (1)

Ubn
om denotes set of users’ indices, i, which are decoded before

decoding of Un by Um, where i ∈ N \ {n}. Similarly, set

Uan
om denotes those users’ indices, j, which will be decoded

after decoding of Un by Um, where j ∈ N \ {n}. Thus,

Ubn
om and Uan

om are disjoint sets such that Ubn
om ∩Uan

om = ∅ and

Ubn
om∪Uan

om = N \{n}. ρt
∆
= Pt

σ2 is BS transmit signal-to-noise

ratio. The corresponding achievable data rate is given by

Ro
nm = log2(1 + γo

nm). (2)

Utilizing the concept of PLS, we investigate the achievable

secrecy rate Ro
sn at Un, which is given by [2], [3]

Ro
sn = {Ro

nn − max
m∈N\{n}

Ro
nm}+, (3)

where {△}+ = max(0,△). Note that the key idea of achiev-

ing positive secrecy rate at Un is to ensure that the condition

Ro
nn > Ro

nm, simplified as γo
nn > γo

nm, must be satisfied.

III. DECODING ORDER STRATEGY FOR SECURE NOMA

A. Possible Decoding Orders for Untrusted NOMA

Below we first identify the total number of possible decod-

ing orders for an N -user untrusted NOMA system.

Proposition 1: The total number of possible decoding orders

for an N -user untrusted NOMA system is equal to (N !)N .

Proof: In an untrusted NOMA system, each user can

decode its data as well as other users’ data. Thus, for an N -

user system, each user has a total of N stages to decode data

of all users. Considering the possibility to decode itself and

other users’ data at any stage, the number of permutations

at each user is N !. As a result, we see that the count of

total permutations for an N -user system, i.e., the number of

possible decoding orders is N !×N ! ... N !︸ ︷︷ ︸
N times

= (N !)N .

Let us define a set of total possible decoding orders for an

N -user system as T = {Do|1 ≤ o ≤ (N !)N}.

B. Conventional NOMA Strategy in Untrusted Scenario

Extending the conventional decoding order strategy [1] in

untrusted scenario, all users decode signals in ascending order

of users’ channel gain strength. Thus, γo
nm can be written as

γo
nm =

αn|hm|2(
ζ
∑N

i=n+1 αi +
∑n−1

j=1 αj

)
|hm|2 + 1

ρt

. (4)

Below we provide a key result on the inability of conven-

tional NOMA strategy to secure an untrusted NOMA system.

Lemma 1: Utilizing the conventional decoding order strat-

egy of NOMA in an untrusted scenario, the data of a weaker

user cannot be secured from its respective stronger user.

Proof: To analyze the secrecy performance for a weaker

user against the stronger user, we study secrecy rate Ro
sn at

Un against Um as defined in (3), where m < n and m,n ∈ N .

The required condition γo
nn > γo

nm given in Section II-C for

positive Ro
sn at Un gives |hn|2 > |hm|2 which is infeasible as

|hm|2 > |hn|2 is considered. Thus, positive secrecy rate for a

weaker user against the stronger user cannot be obtained.

Next, we provide a result on the secrecy rate performance

for stronger users against weaker users by Corollary 1.

Corollary 1: With conventional NOMA strategy, the stronger

user’s data is always safe from its respective weaker user.

Proof: Using (3), we investigate Ro
sn at Un against Um,

where m > n and m,n ∈ N . We find that γo
nn > γo

nm,

required condition for positive Ro
sn, gives a feasible condition

|hn|2 > |hm|2, which ensures positive secrecy rate for Un.

Remark 1: It can be easily inferred from the aforementioned

results that by extending the conventional decoding order

strategy in an untrusted scenario, only the strongest user’s

data is secured from all other users, and therefore, this strategy

is not suitable for a secure NOMA system with untrusted users.

C. Proposed Decoding Order Strategy for Secure NOMA

Considering the motive to secure each user’s data from all

others, below we propose a new decoding order strategy.

Theorem 1: If Un decodes its data at k-th stage and Um

decodes data of Un at k′-th stage, where m,n, k, k′ ∈ N , m <

n, and k′ < k, then the weaker user’s data can be safeguarded

against the stronger user with a suitable constraint on PA .

Proof: We find γo
nn and γo

nm by using (1) to analyze the

secrecy rate Ro
sn defined in (3) for Un against Um, where

m < n and m,n ∈ N . For positive Ro
sn at Un, the required

condition γo
nn > γo

nm given in Section II-C gives

ζ
∑

i∈Ubn
om

αi +
∑

j∈Uan
om

αj +
1
ρt

ζ
∑

i∈Ubn
on

αi +
∑

j∈Uan
on

αj +
1
ρt

>
|hm|2

|hn|2
. (5)

If Un decodes its data at k-th stage and Um decodes data

of Un at k′-th stage, where k′ < k and k, k′ ∈ N , then it

means Um decodes data of Un at least one stage before the

stage of Un decoding itself. As a result, Ubn
om has at least one

less interfering term in comparison to Ubn
on , and Uan

om has at

least one more interfering term compared to Uan
on . Thus, due to

more interfering terms in Uan
om, we always find a PA condition

on solving (5). This result shows that we can obtain positive

secrecy rate for the weaker user against the stronger user with

a suitable PA constraint [4].
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Next, a key result on the secrecy rate performance for

stronger users against weaker users is given by Corollary 2.

Corollary 2: By using the proposed decoding order strategy

stated in Theorem 1, the stronger user’s data can also be

secured from the respective weaker user.

Proof: For positive Ro
sn at Un against Um when m >

n, the required condition γo
nn > γo

nm gives either a feasible

condition |hn|2 > |hm|2 or a suitable PA constraint. This result

ensures that positive secrecy rate at Un can be obtained.

Based on the proposed decoding order strategy given in

Theorem 1, a set of decoding orders can be obtained which

ensure positive secrecy rate for each user against all other

users. This set is denoted by S and is termed as set of secure

decoding orders. Let us analytically define the set of these

secure decoding orders for an N -user untrusted NOMA system

as S = {Do|1 ≤ o ≤ (N !)N , and [dn]k = n, [dm]k′ =
n,m < n, k′ < k,m, n, k, k′ ∈ N}. Thus, S ⊂ T . Note that

since the motive is to secure data of each user from all others,

we further focus on the secure decoding orders obtained based

on the proposed decoding order strategy in Theorem 1.

Remark 2: It is obtained numerically that the count of

secure decoding orders based on the proposed decoding order

strategy for 2, 3, and 4 users are 1, 12, and 3036, respectively.

Remark 3: We have studied the system with N ≤ 4 due

to two major reasons: first, the number of total decoding

orders is enormous with more users due to which excessive

computational complexity occurs in finding secure decoding

orders and second, the number of users should not be too

large in NOMA because it is an interference-limited system

and implementation complexity increases at the transmitter

side and receiver side with an increase in the number of users

[9]. However, the investigation can be extended for more users.

IV. LOW-COMPLEXITY SUBOPTIMAL DESIGN

After identifying set S of secure decoding orders, we focus

on finding an optimal secure decoding order that can maximize

the minimum secrecy rate among users. The corresponding

optimization problem over set S can be formulated as

OP : max
Do∈S

min
n∈N

Ro
sn, s.t. C1 : Ro

sn > 0.

OP is a complex combinatorial problem because a feasible

PA is to be obtained for each decoding order that satisfies C1
and optimization is to be performed over the set S of secure

decoding orders which keep increasing with N as given in

Remark 2. Therefore, to reduce this complexity, we select such

favourable secure decoding orders from set S that can provide

higher secrecy rate for each user by the approach given below.

A. Favourable Secure Decoding Orders

Proposition 2: The favourable secure decoding orders pro-

viding relatively higher secure rate are those in which each

user decodes its own data after decoding the data of all others.

Proof: For a decoding order Do, the secrecy rate Ro
sn

for each user Un defined in (3) can be increased by increasing

Ro
nn, where n ∈ N . From (2), we note that Ro

nn increases with

an increase in γo
nn, and a maximum value of γo

nn is obtained

when interference from other users is minimum. If Un decodes

its data at the last stage, then Uan
on = ∅ and Ubn

on = N \ {n}.

As a result, a maximum value of γo
nn is obtained since only

the residual interference due to imperfect SIC remains in the

denominator of γo
nn. Thus, decoding of own data at the last

stage by each user can improve secrecy rate performance.

Let us represent a set of such favourable secure decoding

orders in which each user decodes its data at the end as L. For

all remaining secure decoding orders of set S in which no user

decodes its data at the last stage, we define a set O. Here L ⊂
S, O ⊂ S, L ∩ O = ∅ and L ∪ O = S. Since the achievable

secrecy rate at each user is less in the secure decoding orders

of set O in comparison to the secure decoding orders of set L,

we neglect the set O to reduce the computational complexity

in finding the optimal solution. Next, an analytical insight on

the count of favourable secure decoding orders is provided.

Proposition 3: For an N -user system, the total number of

favourable secure decoding orders is ((N − 1)!)N .

Proof: In case of decoding own data at the last stage, each

user has (N − 1) stages to decode other users’ data. Thus, the

number of permutations at each user (N−1)!. As a result, the

count of favourable secure decoding orders for N -user system

is (N − 1)!× (N − 1)! ... (N − 1)!︸ ︷︷ ︸
N times

= ((N − 1)!)N .

From Proposition 3, we observe that secure decoding orders

in set L, are still in large number. Therefore, to avoid any

computational complexity, we now design a suboptimal policy.

B. Suboptimal Decoding Order Policy

Observing the dependence of secrecy rate performance on

PA, we consider two PA schemes such as (i) lesser PA to the

weaker user in comparison to the stronger user (LPWU), and

(ii) lesser PA to the stronger user in comparison to the weaker

user (LPSU). Let us define PA coefficient αn for Un as

αn =
1

(|hn|2)β
(∑

p∈N
1

(|hp|2)β

) , (6)

where β is a real number (−1 ≤ β ≤ 1) with β < 0 and

β > 0, respectively, representing LPWU and LPSU schemes.

Considering both the PA schemes, our proposed suboptimal

decoding order policy for an N -user system follows two steps:

• Step 1: For the first (N − 1) stages, each user decodes

data of other users in the sequence of weakest to strongest

user (W-S) for LPWU scheme, and in the order of strongest

to weakest user (S-W) for LPSU scheme → In the case of

LPWU scheme, the possibility of decoding weaker users’ data

by stronger users is higher due to their better channel gain

and more PA. In such a way, the chance of decoding the

weakest user’s data by all other users is maximum. For this

case, if the weakest user’s data is decoded at the first stage

by stronger users, then the achievable data rate decreases due

to interference by other users. As a result, the secrecy rate

for the weakest user improves. Considering this concept, we

find that the (W-S) approach should be followed at all users.

Similarly, LPSU scheme represents the maximum PA to the

weakest user. In this case, with a focus to increase the secrecy

rate for stronger users, (S-W) approach should be followed.
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• Step 2: At N -th stage each user decodes its data in both

PA schemes → As explained in Proposition 2, decoding own

data at last stage by each user improves secrecy performance.

The detailed methodology is outlined in Algorithm 1.

Algorithm 1 Suboptimal decoding order policy.

Input: N , β, N
Output: suboptimal secure decoding order

1: Define an N×N matrix Do for o-th decoding order as explained
in Section II-B

2: for each m-th column vector dm of matrix Do do
3: Obtain set N excluding the element m, such as N = N\{m}
4: for each q-th element t of set N do
5: Set [dm]q = t

6: Set [dm]N = m ⊲ m-th user decodes its own data at end
7: if β < 0 then ⊲ LPWU scheme - (W-S)
8: Sort the first N − 1 elements of dm in descending order
9: else if β > 0 then ⊲ LPSU scheme - (S-W)

10: Sort the first N − 1 elements of dm in ascending order

11: for each stage k of matrix Do do
12: Set [Do]k,m = [dm]k
13: return Do ⊲ Do as a suboptimal secure decoding order

We denote the suboptimal decoding order for LPWU and

LPSU schemes as D̃ and D̂, respectively. Note that the

proposed algorithm is based on the sorting of elements. So, the

computational complexity can be expressed as O(n log(n)).

V. NUMERICAL RESULTS AND DISCUSSION

In this work, users are distributed over a square field with

length l = 500m and BS is placed at its center. We have used

Lc = 1, e = 3, and small scale fading is assumed to have

Rayleigh distribution with mean value 1. Besides, ζ = 0.1,

Pt = 10dBm and σ2 = −90dBm. Numerical results for each

decoding order have been obtained in terms of the minimum

secrecy rate that can be ensured to each user.

We first validate the performance of our proposed approach

in Fig. 1. For this, the optimal secrecy rates achieved among

secure decoding orders in set L and O are depicted for

different PAs. The results reveal that the secure decoding

orders in which all users decode their data at the last stage

outperform that of other decoding orders. Fig. 1 validates that

D̃ and D̂, respectively, are the suboptimal decoding orders for

LPWU and LPSU schemes, except for some values of β. D̃

appears to work better than D̂ until a certain point β = 0.2
is reached, because, at the low value of β, the PA for weaker

users is not enough to compensate the interference caused.

Fig. 1 also exhibits that the secrecy rate achieved through our

proposed suboptimal solution match the optimal performance.

Thus, the accuracy of suboptimal policy is about 90%.

Next, Fig. 2 presents the performance comparison of pro-

posed suboptimal decoding orders with the benchmark. The

benchmark scheme considered here is the average secrecy

rate of all secure decoding orders in set S. We observe

that an average performance gain of about 137% is achieved

by suboptimal solution over the benchmark scheme. Fig. 2

also shows that the secrecy rate performance degrades on

increasing the number of users. This is because with an

increase in the number of users, the achievable data rate at

each user decreases due to interference by other users.

-1 -0.5 0 0.5 1
0

0.5

1

1.5

2

-1 -0.5 0 0.5 1
0

0.2
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1

1.2

Fig. 1. Validating the accuracy of proposed approach with a variation of
secrecy rate performance for different PAs.

Fig. 2. Comparison of the proposed suboptimal decoding order policy with
the benchmark average secrecy rate of all secure decoding orders in set S .

VI. CONCLUDING REMARKS

We have proposed a decoding order strategy for solving

secrecy issues in multi-user untrusted NOMA system. To avoid

the computational complexity in finding the best decoding

order out of the total possible secure decoding orders based

on the proposed strategy, we have recommended a suboptimal

policy. Significant improvement of 137% in secrecy rate is

achieved using the suboptimal solution over the benchmark.
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