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Abstract—Complex, multi-task missions require the coordina-
tion of heterogeneous robots at multiple inter-connected levels,
such as coalition formation, scheduling, and motion planning.
This challenge is exacerbated by dynamic changes, such as
sensor and actuator failures, communication loss, and unexpected
delays. We introduce Dynamic Iterative Task Allocation Graph
Search (D-ITAGS) to simultaneously address coalition formation,
scheduling, and motion planning in dynamic settings involving
heterogeneous teams. D-ITAGS achieves resilience via two key
characteristics: i) interleaved execution, and ii) targeted repair.
Interleaved execution enables an effective search for solutions
at each layer while avoiding incompatibility with other layers.
Targeted repair identies and repairs parts of the existing solution
impacted by a given disruption, while conserving the rest. In
addition to algorithmic contributions, we derive accurate bounds
on schedule suboptimality and provide insights into the inherent
trade-off between time and resource optimality in these settings.
Our experiments reveal that i) D-ITAGS is signicantly faster
than recomputation from scratch in dynamic settings, with little
to no loss in solution quality, and ii) the theoretical bounds on
optimality gap consistently hold in practice.

I. INTRODUCTION

Heterogeneous multi-robot systems (MRS) bring together

robots with complementary capabilities. They have been

proved useful in domains as diverse as agriculture [1], as-

sembly [2], and warehouse automation [3]. To achieve effec-

tive teaming in such complex domains, researchers have ad-

dressed challenging problems in coalition formation (who) [4],

scheduling (when) [5], multi-robot motion planning (how) [3],

and the combination of all these problems [6], [7].

Many algorithms developed for heterogeneous MRS co-

ordination assume a static problem domain – one in which

specications and resources remain constant. However, real-

world MRS do not enjoy the luxury of a predictable world,

much less an unchanging one. Sensor and actuator failures,

communication loss, and unexpected delays are all but a few

examples. These events, even at the individual robot level,

could cascade into catastrophic system-wide failures [8]. Note

that robust task allocation methods [9], [10], while capable

of effectively handling various forms of uncertainty, do not

consider abrupt dynamic changes to the problem domain.

An obvious way to handle dynamic problems is to recom-

pute the solution when unexpected events occur. However, as

we demonstrate, this naı̈ve approach is inefcient. Efcient

approaches have been developed within the contexts of homo-

geneous robots [8], single-robot or decomposable tasks [11],

and instantaneous task allocation [12]. However, we still lack

approaches that can simultaneously handle task allocation,

scheduling, and motion planning in dynamic settings involving

multi-robot tasks and heterogeneous teams.

This work was supported by the Army Research Lab under Grants
W911NF-17-2-0181 (DCIST CRA) and W911NF-20-2-0036
The authors are with the Institute for Robotics and Intelligent Ma-

chines, Georgia Institute of Technology, Atlanta, GA, USA {gneville,
chernova, harish.ravichandar}@gatech.edu

This work introduces the Dynamic Trait-Based Time Ex-

tended Task Allocation problem. Our formulation can be seen

as an instance of the well-known ST-MR-TA problem [13],

with additional constraints to account for motion planning

and dynamic changes. Specically, we consider a variety of

changes to the environment or the team (e.g., robot failures,

task delays, etc.) that are unknown until after the fact.

To address the above, we develop Dynamic Incremental Task

Allocation Graph Search (D-ITAGS), an efcient algorithm to

solve dynamic problems (see Fig. 1 for the architecture). D-

ITAGS provides resilience against dynamic events due to two

important characteristics: i) interleaved executions of individ-

ual modules, and ii) targeted repair of existing solutions.

First, leveraging our recent work [7], [14] which inter-

leaves the execution of task allocation, scheduling, and motion

planning, D-ITAGS effectively searches for solutions at each

layer while ensuring compatibility with those at downstream

layers. For instance, D-ITAGS will only consider allocations

that do not violate scheduling constraints, and schedules with

realizable motion plans. Indeed, we recently demonstrated that

this interleaved approach is signicantly more efcient than

the often-used sequential approach [7], [14]. Compared to our

prior methods, D-ITAGS includes a more efcient scheduler,

and accounts for travel times to more tightly integrate schedul-

ing and motion planning (see Sec. VII-A).

Second, we leverage the insight that many events do not

render all computations performed for the existing solution

invalid. For instance, when a robot is damaged, only alloca-

tions involving the damaged robot and the ones downstream

are impacted. We develop a targeted repair mechanism that

i) identies and conserves parts of the solution that remain

valid after an event, and ii) only recomputes parts that are now

stale. Our approach can handle changes to i) robot capabilities,

ii) task requirements, and iii) task duration, covering a wide

spectrum of unexpected events. We demonstrate that targeted

repair signicantly decreases computation time compared to

recomputing solutions from scratch, with little to no loss in

solution quality (see Sec. VII-B).

In addition to the above computational and empirical ben-

ets, we contribute theoretical insights into the operation of

D-ITAGS. Specically, we demonstrate that trait-based time-

extended task allocation can be viewed as an inherent trade-

off between time optimality (shortest makespan) and resource

optimality (fewest allocations), and that one could traverse this

trade-off spectrum by altering a single hyperparameter in our

search heuristic. Leveraging this insight, we derive bounds on

D-ITAGS’ sub-optimality in terms of makespan under mild

assumptions. These bounds provide guarantees on solution

quality, and guide users in choosing hyperparameters. We also

demonstrate that these bounds consistently hold in practice.

In summary, we contribute i) a formal denition of the

dynamic trait-based time-extended task allocation problem, ii)



Figure 1: The proposed D-ITAGS algorithm leverages targeted repair and interleaved execution to simultaneously address

coalition formation, scheduling, and motion planning in dynamic settings involving heterogeneous teams.

a resilient and efcient algorithm to handle dynamic changes,

iii) theoretical insights into the inherent trade-off between time

and resource optimality, and iv) performance guarantees.

II. RELATED WORK

ST-MR-TA methods: While the multi-robot task allocation

problem has many variants [13], [15], we limit our focus to

single-task (ST) robots, multi-robot (MR) tasks, and time-

extended (TA) allocation, as it closely relates to our work.

ST-MR-TA problems require assigning coalitions of agents to

tasks under temporal constraints. These constraints can take

many forms, including precedence and ordering constraints,

spatio-temporal constraints (e.g., travel time), and deadlines.

Auction-based methods to solve ST-MR-TA problems in-

volve auctioning tasks to robots through a bidding process

based on a utility function that combines the robot’s (or the

coalition’s) ability to perform the task with any temporal

constraints [16], [17]. Auctions have been shown to be highly

effective, but typically either i) require multi-robot tasks to

be decomposable into sub-tasks, each solvable by a single

robot, or ii) assume that the ideal distribution of agents for

each task is known (e.g., Task 1 requires one ground and

one aerial robot). Optimization-based methods form another

class of solutions that formulate the ST-MR-TA problem as a

mixed-integer linear program (MILP) to optimize the overall

makespan or a utility function [18]. However, these methods

assume that some tasks can be left uncompleted [19] or require

that all tasks be decomposable into single-agent tasks [20]. In

contrast to auction-based and optimization-based approaches,

our approach does not require task decompatibility and ensures

the completion of all tasks.

Our approach to task allocation is most closely related to

trait-based methods [4], [6], [14], [21], [22], which utilize a

exible modeling framework that encodes task requirements

in terms of traits (e.g., Task 1 involves traveling at 10m/s

while carrying a 50-lb payload). Each task is not limited

to a specic set or number of agents. Instead, the focus

is on nding a coalition of agents that collectively possess

the required capabilities. However, most existing trait-based

approaches are limited to ST-MR-IA problems that do not

require scheduling [4], [14], [21], [22], with one notable

exception [6]. Further, none of them can handle dynamic

problems involving changes to the domain.

Dynamic Task Allocation: The approaches discussed above

deal with static domains in which all aspects of the problem

are known a priori and remain constant. Researchers have stud-

ied dynamic task allocation problems that consider unexpected

events that occur during execution [23]. Similar to static prob-

lems, solutions to dynamic problems include game-theoretic

methods [24], auction-based methods [11], and optimization

methods [25]. However, these approaches do not solve the ST-

MR-TA variant of task allocation. Further, existing approaches

to dynamic problems inherit the limitations of their underlying

methodology, and i) are limited to single-robot (SR) tasks

[11], [23], ii) rely on decomposable tasks [20], iii) require

specication of ideal agent distribution [23], or iv) entirely

ignore scheduling and motion planning [12]. Complementary

to approaches that explicitly consider dynamic events, robust

task allocation methods [9], [10] attempt to nd allocations

that are robust to uncertainty and more likely to be valid

even when information about the environment is uncertain.

However, robust approaches require pre-specied models of

uncertainty. In contrast, D-ITAGS leverages trait-based mod-

eling and provides an efcient approach to handle unexpected

changes in ST-MR-TA problems with heterogeneous robots.

III. PROBLEM DESCRIPTION

We begin by formalizing the problem of dynamic trait-based

time-extended task allocation with spatial constraints. We rst

present the static variant, which closely aligns with prior work

[4], [6], [22], [26], and then introduce the dynamic variant.

Consider a team of N heterogeneous robots, with the ith

robot’s capabilities described by a collection of traits q(i) =


q
(i)
1 , q

(i)
2 , · · · , q

(i)
U



, where q
(i)
u ∈ R≥0 corresponds to the

uth trait for the ith robot. We assign q
(i)
u = 0 when the ith

robot does not possess the uth trait (e.g. retrucks have a water

capacity, but other robots may not). As such, the capabilities

of the team can be dened by a team trait matrix:

Q =


q(1)
⊺

, · · · , q(N)⊺
⊺

∈ R
N×U
+

where Qiu corresponds to the ith robot and uth trait.

We model the set of M tasks that need to be completed

as a Task Network T : a directed graph G = (E ,V), with
vertices V representing a set of tasks {am}Mm=1, and edges E
represent relationships between any two tasks ai and aj , such

as a precedence constraint (ai ≺ aj) requiring that Task ai
be completed before the Task aj can begin (e.g., a re must

be put out before repairs can begin) and a mutex constraint

(ai ̸= aj) ensuring that ai and aj do not occur simultaneously

(e.g. a robot cannot pick up two objects simultaneously). The

team is required to complete all tasks, and robots can complete

tasks individually or collaborate as a coalition, depending on

the available resources.



Let the traits required to complete the mth task be denoted

by y(m) =


y
(m)
1 , y

(m)
2 , · · · , y

(m)
U



, where y
(m)
u ∈ R≥0 is the

amount of uth trait required for Task m. If the uth trait is not

required by the mth task, we set y
(m)
u = 0. We can thus model

the requirements of all tasks using the desired trait matrix:

Y ∗ =


y(1)
⊺

, · · · , y(N)⊺
⊺

∈ R
M×U
+

where Y ∗

mu corresponds to the mth task and uth trait.

To execute Task am, a robot (or a coalition) requires a

collision-free paths from its current conguration to the task’s

initial conguration Cm
I , as well as from Cm

I to the task’s nal

terminal conguration Cm
T (e.g., in a transport task, a robot

needs collision-free paths to the package, as well as from the

pickup to the dropoff). To compute such paths, a world model

W is provided which describes all of the static geometric

information about the environment, including obstacles.

With the above denitions, we can dene the problem

domain using the tuple D = ⟨T , Q, Y ∗, Ic, LT , W ⟩,
where T is the task network, Q is the team trait matrix,

Y ∗ is the desired trait matrix, Ic and LT are respectively

the sets of all initial and terminal congurations associated

with tasks and W is a description of the world state. Note

that non-spatial tasks can be modeled by setting their initial

and terminal congurations to be equal.

A solution to the problem specied by D consists of three

components: i) an allocation of robots to tasks, ii) a task

schedule, and iii) a set of associated motion plans.

We denote the allocation of robots to tasks using the

allocation matrix A ∈ A as follows

A =







o1,1 · · · o1,n
...

. . .
...

om,1 · · · om,n







where on,m = 1 if nth robot is assigned to the mth task.

An allocation is considered valid when the aggregated traits

of each coalition satisfy the trait requirements of the task to

which it is assigned [4]. Formally, A is a valid allocation if

and only if AQ is element-wise greater than or equal to Y ∗
π
.

We denote the set of all valid by Nsol.

Formally, we dene the solution to the problem dened

by D using the tuple S = ⟨A, X, σ⟩ where A is a valid

allocation, X is a nite set of collision-free motion plans, and

σ is a schedule, represented by the set of start times for all

tasks {si}
M

i=1, that respects all temporal constraints.

Note that the problem formulation from above assumes

that all elements of the problem (e.g., tasks, requirements,

robots, and world model) are static. As such, any valid solution

S to the problem dened in D would be rendered invalid

when an unexpected change occurs (e.g., robot failures and

introduction of new tasks). To capture dynamic environments

with unforeseen changes, we dene a new class of problems

we call Dynamic Trait-Based Time Extended Task Allocation.

Formally, we model the dynamic problem domain as

Dk = ⟨T k, Qk, Y ∗

k, Ick, LT k, Wk⟩ ,

where the subscript k is used to denote the fact each domain

denition is only valid for Iteration k until an unexpected

change redenes the problem domain to Dk+1. Similarly,

we denote a solution to the current problem denition using

Sk = ⟨Ak, Xk, σk⟩ where Ak is a valid allocation, Xk is

a nite set of motion plans, and σk is a schedule for all tasks.

As we solve the dynamic trait-based time-extended task

allocation problem, we are interested in two objectives: i) time

efciency: measured by the makespan C(σ) of the Schedule

σ, and ii) resource sufciency: when aggregated traits AQ are

element-wise greater than or equal to the requirements Y ∗.

Problem statement: Given any new problem denition

specied by Dk, compute the solution Sk by optimizing for

time efciency while ensuring resource sufciency.

IV. OVERVIEW OF APPROACH

To solve the dynamic trait-based time-extended task alloca-

tion problems with spatial constraints, as dened in Section III,

we introduce our Dynamic Incremental Task Allocation Graph

Search (D-ITAGS) algorithm. Though several approaches have

been proposed for instantaneous trait-based task assignment

[4], [21], [22], we are aware of only one approach – ITAGS [6]

– that addresses the time-extended trait-based task allocation

problem. Since D-ITAGS can be seen as a direct extension of

ITAGS, we begin with a high-level summary of the similarities

and differences, and provide details in Section V.

D-ITAGS shares two fundamental properties with ITAGS.

First, D-ITAGS adopts a three-layer nested architecture from

ITAGS, in which the processes of Task Allocation, Scheduling,

and Motion Planning are interleaved. Second, D-ITAGS and

ITAGS compute solutions incrementally by performing graph-

based searches while leveraging heuristics.

D-ITAGS differs from and improves upon ITAGS in several

ways. First, D-ITAGS constructs schedules by solving mixed-

integer linear programs (MILPs) using GUROBI’s branch-and-

cut (B&C) solver, while ITAGS employs TABU search (TS).

Note that the B&C solver we use can encode more temporal

constraints and, unlike TS, provide bounds on suboptimality.

While TS can produce schedules of comparable makespan,

our experiments reveal that D-ITAGS is more efcient than

ITAGS. Second, unlike ITAGS, D-ITAGS accounts for travel

times between tasks while optimizing schedules by efciently

querying the motion planner for estimates. We demonstrate

that these two differences signicantly improve computational

efciency without sacricing solution quality (see Section

VII). Note that these improvements persist even when solving

static time-extended trait-based task allocation.

The most signicant difference is that D-ITAGS employs a

targeted repair module when dynamic and unexpected changes

render the existing solution invalid. In contrast, ITAGS was not

designed to handle such unexpected events and thus would

have to resort to recomputing a new solution from scratch.

V. D-ITAGS

In this section, we discuss each module within D-ITAGS.

A. Task Allocation

The task allocation layer of D-ITAGS uses a greedy best-

rst search through the task allocation space, A. The task

allocation space is modeled as a directed graph in which



Node N denotes the allocation AN . The directed edge from a

parent node Np to a child node N represents the incremental

allocation of a single robot to a particular task, with the

root node containing no allocations. As such, all possible

allocations exist within the full graph. Further, each node N

also contains a schedule σN associated with its allocation AN .

This graphical representation allows us to start from a node

with no assignments and incrementally assign robots until we

satisfy the trait requirements of all tasks.

Similar to ITAGS [6], we consider two heuristics to search

the task allocation graph: i) APR: Allocation Percentage Re-

maining guides the search based on allocation quality, and ii)

NSQ: Normalized Schedule Quality guides the search based on

schedule quality. To balance the benets of both heuristics, we

use their convex combination, which we call TETAQ: Time-

Extended Task Allocation Quality.

APR computes the percentage trait mismatch error as below

fapr(N̄) =
||max(E(AN̄ ), 0)||1,1

||Y ∗||1,1
(1)

where N̄ is the node being evaluated and AN̄ is its allocation,

and ||·||1,1 is the element-wise l1 norm. The trait mismatch er-

ror E(AN̄ ) is dened as E(AN̄ ) ≜ Y ∗−(AN̄ Q), where AN̄ Q

denotes the resources aggregated at each of the tasks given the

allocation AN̄ . Note that any element of max(E(AN̄ ), 0) will
be zero if aggregated traits surpass the required traits of the

corresponding task. As such, fapr ∈ [0, 1] quanties the degree
to which a given allocation meets the requirements.

NSQ measures the relative reduction in makespan as below

fnsq(N̄) =
C(σN̄ )− C(σLB)

C(σUB)− C(σLB)
(2)

where C(·) returns the makespan of a given schedule, σN̄ is

the schedule associated with the node N̄ being evaluated, σLB

is the estimated shortest schedule constructed by ignoring any

constraints from allocation and motion planning, and σUB is

the longest schedule constructed by total ordering with the

longest possible motion plans. While any upper bound on

path length can be used, we use the sum of all edges in the

task network T in our experiments. As such, fnsq ∈ [0, 1]
quanties the relative length of the schedule being evaluated.

TETAQ is a convex combination of APR and NSQ as below

ftetaq(N̄) = αfapr(N̄) + (1− α)fnsq(N̄) (3)

where α ∈ [0, 1] is a user-specied parameter that controls the

relative weighting of NSQ and APR heuristic.

B. Scheduling and Motion Planning

D-ITAGS’ scheduling layer checks the feasibility of

scheduling a particular assignment and helps compute NSQ.

We consider three different temporal constraints: precedence

constraints, mutex constraints, and travel time constraints.

Precedence constraints P ensure that one task happens before

another (e.g., re must be doused before repairs). Mutex con-

straints M ensure that two tasks do not happen simultaneously

(e.g. a robot cannot pick up two objects simultaneously).

Travel time constraints ensure that robots have sufcient time

to travel between task sites (e.g., traveling to the location of

re before dousing). We formulate and solve the mixed-integer

linear program as:

min
{si}M

i=1

C

s.t. C ≥ si + di, ∀i = 1, ..,M

sj ≥ si + di + xij , ∀(i, j) ∈ P

si ≥ xi, ∀i = 1, ..,M

sj ≥ si + di + xij −M(1− pij) ∀(i, j) ∈ MR

si ≥ sj + dj + xji −Mpij ∀(i, j) ∈ MR

(4)

where C is the makespan, si and di are the start time and dura-

tion of Task ai, xij is the time required to transition from ai to

aj , pij = 1 iff ai precedes aj , β ∈ R+ is a large scalar, P and

M are sets of integer pairs containing the lists of precedence

and mutex constraints, with MR = M − P ∩ M denoting

mutex constraints with precedence constraints removed.

D-ITAGS constructs an initial schedule by estimating travel

times based on the Euclidean distance between travel sites. As

the search proceeds, the scheduling layer iteratively queries

the motion planner to account for and accurately estimate

travel times, until all motion plans required by the schedule

are instantiated. Note that while our implementation uses the

probabilistic roadmap planner [27], D-ITAGS is agnostic to

the choice of motion planner.

D-ITAGS includes careful design choices that reduce the

burden of motion planning placed on the scheduler. First, D-

ITAGS memoizes all motion plans for future use. Second, it

shares motion plans across robots with identical capabilities

since their travel times between any two locations are likely

similar. Further, our prior work has demonstrated that the inter-

leaved approach adopted by D-ITAGS can handle signicantly

more tasks and robots than other existing approaches [6], [7].

In addition to constructing a valid schedule, the scheduling

layer is also responsible for computing the bounds σUB and

σLB used in the NSQ heuristic. For estimating the upper

bound, we compute the worst-case makespan as follows

C(σUB) =
2Mz

w
+

M


m=1

dm (5)

where z is the length of the longest possible path (e.g., the

sum of all edges in the probabilistic roadmap) in W , and w is

the speed of the slowest robot. We set lower bound to be equal

to the duration of the longest task: C(σLB) = maxm dm.

C. Targeted Repair
When an unexpected event renders the current solution

invalid, D-ITAGS efciently recomputes a solution via targeted

repair of the task allocation graph. D-ITAGS can specically

handle three categories of unexpected changes: i) changes

in robots’ capabilities, ii) changes in task requirements, iii)

changes in task duration. Note that these three classes of

changes encompass a wide variety of events, such as loss or

reinforcement of robots, unexpected additional tasks, partial

loss of robot capabilities, and unforeseen delays due to envi-

ronmental conditions. Our only assumption is that any of the

above specied events can be detected and identied using



other techniques (e.g., [12]). In Section VII, we demonstrate

D-ITAGS’ ability to handle eight distinct event types.

To enable efcient repair, D-ITAGS leverages the inherent

structure of the task allocation graph to identify and repair only

a subset of the nodes. For example, when a robot’s sensor is

damaged or lost, D-ITAGS will identify nodes in the graph

that allocated the damaged robot and recompute their APR,

ignoring other nodes that will not contribute to a new solution.

D-ITAGS makes changes to three types of nodes: i) open

set: collection of unexpanded nodes, ii) the closed set: col-

lection of expanded nodes, and the iii) pruned set: collection

of nodes deemed infeasible. We provide a detailed owchart

describing D-ITAGS’ targeted repair mechanism in Fig. 2. D-

ITAGS begins by adding the (now invalid) existing solution

to the open set. Then, it incrementally checks for ve specic

changes and makes modications as described below:

• Agent or Task Loss: When an agent or a task is lost, D-

ITAGS removes nodes that utilize the lost agent or those

that involve the lost task. When a task is lost in particular,

D-ITAGS checks to nd nodes in the open and closed set

that might satisfy the requirements (APR = 0) after the
task loss, and then continues the search with only the

newly-identied solutions.

• Reduced Traits or Increased Requirements: When agent

capabilities decrease or task requirements increase, the

nodes in the closed and pruned sets remain infeasible

(APR < 0). As such, D-ITAGS ignores them and only

updates the APR of the nodes in the open set.

• Increased Traits or Reduced Requirements: When agent

capabilities increase or task requirements decrease, D-

ITAGS updates the APR of the nodes in the open set

and checks if any of nodes in the closed and pruned sets

have now become viable (APR = 0) after the increase

(decrease) in capabilities (requirements).

• Changed Duration: When task duration or travel times

change, APR remains unchanged. As such, D-ITAGS

updates the NSQ of the nodes in the open set and ignores

all other nodes as they remain infeasible (APR < 0).
• New Agent: When a new agent becomes available, D-

ITAGS adds a new node as a child of the root node, and

in turn appends the open set.

Leveraging the above insights, D-ITAGS avoids unnecessary

recomputations when responding to dynamic events.

VI. THEORETICAL ANALYSES

To better understand D-ITAGS’ performance, we analyze

the effect of α – the user-specied parameter that determines

the relative importance of our two heuristics – on the op-

timality of the obtained solution. We consider two notions

of optimality: i) time optimality (shortest makespan), and

resource optimality (fewest assignments). We demonstrate that

the choice of α determines the trade-off between the two

notions of optimality, with each extreme value, α = 0 or

α = 1, respectively guaranteeing time or resource optimality.

A. Analysis of Time Optimality

We derive strict bounds on the time optimality gap of

solutions generated by D-ITAGS as measured by makespan.

Theorem 1. For a given trait-based time-extended task as-

signment problem, let C(σ∗) be the optimal makespan and

C(σ̂) be the makespan of the solution generated by D-ITAGS.

If α < 0.5 in Eq. (3), then

C(σ̂)− C(σ∗) ≤
α

1− α
(C(σUB)− C(σLB)) (6)

where C(σLB) and C(σUB) are estimated lower and upper

bounds, respectively, on the makespan of any valid solution.

Proof. Since any expansion of a parent node represents the

addition of an assignment, any given node N is guaranteed

to have more agents assigned than its parent Np. This obser-

vation, when combined with the fact that adding assignments

can never reduce the makespan (as adding assignments can

only introduce new constraints to the MILP), yields

fnsq(N) ≥ fnsq(Np) (7)

Consequently, we can infer that the NSQ value of all nodes

in the unopened set U ⊆ N of a D-ITAGS graph is lower

bounded by that of their respective predecessors in the opened

set O ⊆ N . As such, the smallest NSQ value in the unopened

set must be greater than that in the opened set:

min
N∈U

fnsq(N) ≥ min
N∈O

fnsq(N) (8)

Irrespective of the location of the node N∗ with optimal

makespan C(σ∗), the inequality in (8) implies that

C(σ∗) ≥ min
N∈O

C(σN ) (9)

As we require any valid solution to satisfy all trait require-

ments, the solution node (N̂ ) will have an APR value of zero.

Thus, the TETAQ heuristic (dened in (3)) of N̂ is given by

ftetaq(N̂) = (1− α)fnsq(N̂) (10)

Given the relationship in (8) and the fact that D-ITAGS selects

a solution from the open set based on a best-rst search, the

TETAQ value of the solution node can be bounded as follows

ftetaq(N̂) ≤ ftetaq(N), ∀N ∈ O (11)

Expanding the denition of TETAQ and using (10) leads to

(1− α)
C(σ̂)− C(σLB)

C(σUB)− C(σLB)
≤

αfapr(N) + (1− α)
C(σN )− C(σLB)

C(σUB)− C(σLB)
, ∀N ∈ O

(12)

Using the inequality in (8), the bound in (9), and the fact that

fapr(·) ≤ 1, we rewrite the above equation as

(1−α)
C(σ̂)− C(σLB)

C(σUB)− C(σLB)
≤ α+(1−α)

C(σ∗)− C(σLB)

C(σUB)− C(σLB)

By simplifying and cancelling equivalent terms, we get

(1− α)(C(σ̂)− C(σLB)) ≤

α(C(σUB)− C(σLB)) + (1− α)(C(σ∗)− C(σLB))
(13)

On rearranging the terms, we arrive at the bound in (6). □

Note that the above result on time optimality gap is sensible

only when α < 0.5. When α ≥ 0.5, the bound in (6)



Figure 2: Flow chart illustrating D-ITAGS’ targeted repair mechanism when responding to different unexpected events.

Figure 3: D-ITAGS is considerably faster than ITAGS (left),

without sacricing solution quality (right). Runs in which D-

ITAGS is better (worse) than ITAGS are shown in green (red).

loses signicance as it grows beyond the maximum difference

possible difference in makespan (C(σUB) - C(σLB)).
The bound presented in (6) can be tightened after the

execution of the D-ITAGS, facilitating post-hoc performance

analyses. Specically, instead of bounding fapr(N), ∀N ∈ O
by 1, we can compute the exact minimum (minN∈O fapr(N)).
Following similar algebraic manipulations as in the proof

above, a tighter bound can then be derived as

C(σ̂)− C(σ∗) ≤
α

1− α

(C(σUB)− C(σLB)) min
N∈O

fapr(N) (14)

B. Analysis of Resource Optimality
Below, we show that we achieve resource optimality (i.e.,

the fewest number of assignments) when α = 1.

Theorem 2. Let R(A) = ∥A∥1 denote the total number of

assignments in A, and ANA∗
be the allocation with the fewest

assignments. Then, when α = 1,

R(A
N̂
)−R(ANA∗

) = 0 (15)

Proof. Since any expansion of a parent node represents the

addition of an assignment, any given node N is guaranteed to

have more agents assigned than its parent Np. As additional

agents can never increase APR, we have

fapr(N) < fapr(Np), ∀N ∈ N (16)

The above inequality and the fact that D-ITAGS will only

consider APR (and ignore NSQ) when α = 1 suggest that D-

ITAGS will begin at the root node and continue along the same

branch until nding a solution, expanding only the nodes that

decrease APR by the largest amount. As such, D-ITAGS will

take the shortest route to the solution when α = 1, leading to

the fewest assignments (i.e., resource optimality). □

We do not include the bound on resource suboptimality in

the interest of space and due to the fact that true resource

optimality gap can be efciently computed post-hoc since D-

ITAGS takes the least amount of time to compute the resource

optimal solution (α = 1), in stark contrast to the time-optimal

solution (α = 0) required to compute the time optimality gap.

VII. EVALUATION

We evaluated D-ITAGS using three sets of experiments

in a simulated emergency response domain [6], [26], [28]–

[30] in which a team of robots must rescue survivors, deliver

medicines, douse res, and rebuild damaged buildings. We

generated problems from this domain by varying the number

of robots between 8 and 16, the number of tasks between 20

and 40, and the location of tasks. In all experiments, we used

maps from the Robocup Rescue Competition [30].

A. Comparison to Existing Task Allocation Algorithms

In the rst set of experiments, we analyzed how D-ITAGS

performed on 20 static problems in our survivor domain rela-

tive to the ITAGS [6]. We chose to compare our approach with

ITAGS as i) it has been shown to perform better than other

state-of-the-art time-extended task allocation algorithms, and

ii) ITAGS’ trait-based task allocation inspired our approach.

We compared the performance of D-ITAGS and ITAGS

in terms of computation time and solution makespan (see

Fig. 3). As can be seen, D-ITAGS is capable of producing

high-quality solutions on par with ITAGS while requiring far

less computation time. The superior computational efciency

of D-ITAGS demonstrates that the D-ITAGS’ branch-and-

cut method is considerably more efcient than ITAGS’ Tabu

search. Given these observations and the fact that ITAGS has

been shown to outperform state-of-the-art algorithms for ST-

MR-TA [6], [7], we can conclude that D-ITAGS offers state-

of-the-art computational efciency without sacricing quality.

B. Performance on Dynamic Reallocation

We evaluated D-ITAGS on dynamic task allocation prob-

lems in which unexpected events can alter the problem domain

at any point of execution, and compared it against the default

strategy of existing approaches: running the task allocation

algorithm from scratch given the updated problem domain.

Note that the baseline used in these experiments is identical

to D-ITAGS, except for missing the crucial targeted repair

module. As such, any observed improvements can be attributed

to the repair module and not to other improvements introduced

by D-ITAGS (e.g., the MILP-based scheduler). We created a

set of 500 dynamic repair problems in our survivor domain,

and separated them into ten groups of 50 problems each. We

measured the performance of both D-ITAGS and simple real-

location in terms of computation time and solution makespan.

Across a wide variety of dynamic conditions, we found

that D-ITAGS produced high-quality solutions on par with



Figure 4: After unexpected changes, D-ITAGS (targeted repair) is signicantly faster than recomputing solutions from scratch.

Green (Red) dots indicate instances in which targeted repair performs better (worse) than complete reallocation.

Figure 5: D-ITAGS (targeted repair) generates solutions of quality (makespan) similar to recomputing solutions from scratch.

Green (Red) dots indicate instances in which targeted repair performs better (worse) than complete reallocation.

reallocation from scratch (see Fig. 5), but required signicantly

less computation time (see Fig. 4). These improvements in

computation efciency are likely due to D-ITAGS’ ability to

identify and repair only the impacted nodes, while reusing

the other nodes. We also found that D-ITAGS is particularly

faster on problems that affect the allocations of nodes (e.g.,

changes to agents traits or the loss/addition of agents) as such

changes do not require D-ITAGS to recompute the schedules

of the affected nodes, saving expensive optimizations. Even

for problems that require D-ITAGS to recompute schedules

(e.g., task duration changes and lost/gained tasks), D-ITAGS

performs signicantly better than naive reallocation as it reuses

cached motion plans and allocations from the existing solution

that remain valid. It is important to note that D-ITAGS’

solution quality could be worse than simple reallocation when

a new agent is gained unexpectedly. This is caused by the

fact that D-ITAGS’ targeted repair favors efciency by reusing

valid existing nodes, even if they do not utilize the newly

available agent. While the baseline benets from the new agent

as it reallocates, it takes longer to compute a solution.

C. Validation of Makespan Guarantees
In our nal experiment, we empirically examined the valid-

ity of our theoretical guarantees on makespan from Sec. VI-A.

We created a set of 35 problems in our survivor domain, each

of which was solved multiple times while varying α between

[0, 0.5]. For every combination of problem and α value, we

computed the actual normalized time optimality gap and the

corresponding normalized theoretical bound. As can be seen

from Fig. 6, the time optimality gaps consistently respect

the theoretical bound across all values of α. As expected,

the values α = 0 (ignore APR) and α = 1 (ignore NSQ)

respectively result in the shortest and longest schedules.

VIII. CONCLUSIONS

We introduced D-ITAGS, an algorithm for task allocation

in dynamic environments involving heterogeneous robots. D-

ITAGS achieves efcient resilience by estimating and conserv-

ing portions of the existing solution that remain unaffected by

the change. We showed that D-ITAGS trades-off between time

and resource optimality and comes with theoretical guaran-

tees on performance. Our detailed experiments conclusively

demonstrate the effectiveness of D-ITAGS and its relative

computational benets over existing state-of-the-art task algo-

rithms that resort to complete reallocation. A notable limitation

of our work is that D-ITAGS assumes that unexpected events

can be detected and identied. While such approaches are



Figure 6: The theoretical bound consistently holds for varying

values of α. A value of zero for a normalized time-optimality

gap represents an optimal schedule, and a value of one

represents the longest schedule seen during allocation.

currently being developed (e.g., [12]), we still require tools that

can detect events and solve the credit assignment problem.

While D-ITAGS provides an efcient mechanism to solve

dynamic ST-MR-TA problems, there are opportunities for im-

provement. First, the relative benets of repair over complete

reallocation are yet to be fully characterized. While D-ITAGS

always chooses to repair, it might sometimes be benecial

to reallocate from scratch to better leverage positive changes

despite the additional computation cost (e.g., our results show

that reallocation might produce better-quality solutions when

new agents become available, albeit at a signicantly higher

computational burden). Second, not all events require repair.

For instance, when requirements reduce, we could continue

using the current solution as it would remain valid despite

becoming inefcient. In such circumstances, the benets of

repair must be weighed against its computational cost.
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