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Abstract—Autonomous navigation in unstructured natural
environments poses a significant challenge. In goal navigation
tasks without prior information, the limited look-ahead of
onboard sensors utilised by robots compromises path efficiency.
We propose a novel approach that leverages an above-the-
canopy aerial map for improved ground robot navigation. Our
system utilises aerial lidar scans to create a 3D probabilistic
occupancy map, uniquely incorporating the uncertainty in the
aerial vehicle’s trajectory for improved accuracy. Novel path
planning cost functions are introduced, combining path length
with obstruction risk estimated from the probabilistic map. The
D* Lite algorithm then calculates an optimal (minimum-cost)
path to the goal. This system also allows for dynamic replanning
upon encountering unforeseen obstacles on the ground. Extensive
experiments and ablation studies in simulated and real forests
demonstrate the effectiveness of our system.

Index Terms—Field Robots; Robotics and Automation in
Agriculture and Forestry; Mapping

I. INTRODUCTION

LONG-range navigation in natural environments such as
forests remains a hard problem. Despite recent advances

in perception and planning, ground robots may struggle to
identify traversable areas in vegetated environments and the
onboard sensor’s limited field of view can lead to ineffi-
cient paths, frequently facing dead-ends during deployment.
Aerial data, e.g., lidar or satellite images, collected prior to
the ground vehicle deployment, could offer a more global
perspective, potentially allowing the generation of paths that
avoid some of the obstacles visible from above (Fig. 1).

Although the problem of ground navigation using aerial
information has been investigated previously [1], [2], leverag-
ing airborne data for under-canopy robotic navigation poses
several challenges. The different perspectives between above-
and under-canopy views can lead to the occlusion of ground
obstacles from aerial images or under-sampling of ground
lidar points (the relevant points for ground-vehicle planning)
caused by canopy cover. Moreover, the sensing noise and
inevitable error in the estimated aerial vehicle’s trajectory
further hinder the creation of accurate aerial maps that can
guide the ground robot. Additionally, the path planner must
incorporate occupancy belief encoded in the probabilistic map
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Fig. 1: Sensors mounted on a ground robot can suffer from limited
range and occlusions. This local view often precludes efficient long-
distance navigation in complex scenarios, leading to dead-ends or
unsafe paths (right figure: yellow arrows). Aerial lidar data (top left
figure) acquired prior to operation can provide meaningful informa-
tion for global planning (bottom left and right figures: magenta paths)
allowing efficient navigation.

in addition to path length to minimise the risk of lengthy
detours and, ultimately, mission failure.

We address these problems in a novel framework for under-
canopy navigation in forests assisted by above-canopy aerial
lidar scans. Our system builds a 3D probabilistic occupancy
map from overhead lidar observations and uses occupancy
probabilities to estimate the likelihood of ground-level ob-
struction throughout the map. Standard occupancy mapping
techniques approach the problem as a pure mapping task with
perfect sensor poses. However, ignoring the inevitable error in
aerial sensor’s pose estimates (produced by, e.g., pose-graph
optimisation) can result in poor mapping accuracy, especially
at longer ranges in aerial scenarios (lidar hit-point position
error increases approximately linearly with the product of
angle and range). To address this issue, our mapping system
explicitly takes into account pose-estimation uncertainty and
averages occupancy probabilities over the set of possible aerial
vehicle trajectories using Monte Carlo sampling. The aerial
map is then used to plan a safe and efficient path for the
ground robot before its deployment. We introduce two path
planning cost functions designed to strike a balance between
minimising the travel distance and avoiding potential obstruc-
tions (inferred from the occupancy map). Our path planner is
based on D* Lite [3] which supports efficient replanning in
case the ground robot encounters a previously unseen obstacle
along its current path. Finally, we evaluate the performance of
our full system and its components in extensive experiments
conducted in simulated and real complex forest environments.

In summary, the main contributions of this work are: 1)
A method for navigation in dense forest environments using
aerial lidar observations as prior information; 2) A mapping
algorithm to estimate the obstructed areas under the canopy
using airborne lidar data; 3) A Monte Carlo sampling method
to propagate uncertainty from the aerial sensor trajectory to
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3D occupancy maps; 4) Experimental evaluation in simulation
and real-world experiments in a challenging forest area using
a mobile tracked robot.

II. RELATED WORK

A. Aerial mapping for ground navigation - Prior work has
proposed a range of approaches for generating traversability or
cost maps for ground navigation from aerial data. Applied to
forested areas, Vandapel et al. [4] estimate costs from airborne
lidar based on the “vegetationess” metric (ratio of ground
points and total number of points falling in a 2D grid region)
and a vehicle mobility analysis. Combinations of geometric
features (e.g., ground elevation) and semantic terrain classes
from airborne data (lidar, colour and multispectral images)
are used to estimate traversability or binary costs in [1], [5].
Similarly, in [6] semantic terrain classes, geometric features
(e.g., slope) and proprioceptive locomotion data (e.g., veloc-
ities, IMU) of different robotic platforms are processed to
generate traversal costs conditioned on the platform type and
terrain class. Lastly, Stentz et al. [7] learn high-cost features
from satellite images using ground-view lidar features for self-
supervision. Despite their relevance, these works neglect free-
space information [4], [5], [7] and measurement uncertainty
[1], [4], [5] in their costmap definitions, which are crucial
elements for traversability prediction. Our approach relies on
explicit probabilistic reasoning over voxel occupancy (free,
occupied, or uncertain), while also accounting for sensor noise
and pose-estimation error. We also incorporate probabilistic
obstruction and path length in our proposed cost functions for
planning with uncertain maps, unlike previous methods.

B. Sensor pose uncertainty in occupancy maps - Standard
occupancy mapping approaches [8] and many of its variants
[9]–[11] all assume that sensor poses are perfectly known
at the time lidar measurements are acquired. However, this
approximation can easily lead to high occupancy errors if
localisation uncertainty increases. To address this problem, it
is possible to incorporate sensor and localisation uncertainty
in Gaussian process (GP) occupancy mapping by consid-
ering inputs as noisy observations drawn from a Gaussian
distribution and integrating them in the kernel function [12].
However, such modifications increase the computational cost
of the approach by an order of magnitude, which may limit
its application in large datasets even in offline settings.

We revisit and extend the idea of using Monte Carlo
(MC) sampling to incorporate localisation uncertainty in 2D
occupancy maps. This approach was first proposed in [13] and
used more recently in [14]. The former samples trajectories
from a particle filter to marginalise poses from occupancy dis-
tributions, whereas the latter performs MC integration in the
log-odds occupancy ratio. While we also marginalise out poses
from occupancy probabilities using MC sampling, unlike [13],
[14] our approach generates samples from the approximated
posterior of a modern pose-graph SLAM system. Furthermore,
we apply this idea to 3D mapping and conduct extensive
experimental evaluations in simulated forest environments.

C. Path planning - Graph-based (D*, A*) or sampling-based
(Rapidly Exploring Random Trees - RRT*) methods have

Fig. 2: Overview of our proposed navigation system. First, aerial
lidar data are fused with uncertain sensor poses to generate a 3D
probabilistic occupancy map. Next, the 3D map is further processed
to generate a 2D ground obstruction map. Finally, obstruction scores
are passed through a cost function to the D* Lite planner to produce
global paths that guide the ground robot during operation.

been broadly used for global planning in costmaps [15]. When
applied to occupancy maps, occupancy probabilities are often
thresholded to classify grid cells as obstacle or free space,
subsequently assigning high and low costs to them [16], [17].
Other works [4], [18] propose heuristic functions of terrain
features to build costmaps. However, planning on thresholded
occupancy maps or feature-based costs without uncertainty
information can create a false sense of confidence in the
generated path, potentially leading to long detours. Some
authors address planning under uncertainty by minimising
a risk metric over map predictions [19]. In contrast, Banfi
et. al [20] generate multiple path hypotheses in unknown
areas, further reasoning on locally acquired information from
a “next-best view” (NBV) pose to take the best route.

Unlike the above approaches, our system generates a
minimum-cost path to the goal by minimising cost functions
that blend obstruction risk with path length. Additionally, we
use D* Lite to efficiently and optimally replan when the
ground robot encounters previously unmapped obstacles along
its current path.

III. SYSTEM OVERVIEW

We divide the problem of forest navigation using uncertain
prior maps from aerial lidar into two tasks: 1) offline mapping
and global planning using airborne sensing data; and 2) online
execution of waypoints and obstacle avoidance using onboard
perception on a ground robot. Since this work is focused
on offline mapping and planning, we utilise an off-the-shelf
onboard navigation system (local navigation module [21]) for
the online execution (task 2) in our experiments.

Fig. 2 summarises our system. The aerial mapping (Sec. IV)
aggregates airborne lidar scans and estimates the sensor tra-
jectory using a localisation system (Wildcat SLAM [22]).
Then, we estimate the ground height from the point cloud
(Sec. IV-A), in addition to building a 3D probabilistic occu-
pancy map from the aerial lidar observations (Sec. IV-B). For
improved map accuracy, we also encode the uncertainty from
sensor poses into occupancy distributions employing a Monte
Carlo integration method. Next, the ground height estimates
and occupancy values are fed into our scoring function to
estimate the obstructed (non-traversable) areas over the terrain
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(Sec. IV-C). Obstruction scores are finally integrated in two
evaluated cost functions, expected cost and log-reachability
cost, ultimately used by D* Lite to generate optimal paths.

IV. AERIAL MAPPING

A. Ground Filtering

The ground filtering module takes in a 3D point cloud and
produces a gridded (0.25 m side-length squares) 2D height
map representing the terrain’s supporting surface. Height esti-
mates are used in our mapping approach to estimate obstructed
regions above the terrain.

We first apply the Cloth Simulation Filtering (CSF) [23]
to segment ground points from the global point cloud. CSF
vertically (Z) inverts the point cloud data and simulates grav-
ity acting on a semi-rigid cloth – modeled as interconnected
mass-spring nodes – covering the inverted surface. Then, CSF
segments ground points by retaining the closest points in the
cloud to the CSF nodes within a height threshold (hcc) in each
grid cell. For cells without ground points, we use the closest
CSF node as a virtual ground. Finally, the minimum height
point in each grid cell is used as the ground height estimate.
By operating on inverted point clouds, CSF is less susceptible
to segmentation errors (e.g., lidar canopy reflections or high
vegetation mistakenly classified as ground) and generalises
well to distinct environments using only few parameters, i.e.,
cloth rigidness (RI = 3) and height threshold (hcc = 0.20m).

B. Occupancy mapping with imperfect pose estimates

In addition to the ground elevations, occupancy estimates
of the environment are also input to the obstruction estima-
tion module. We process lidar points above ground using
Occupancy Homogeneous Mapping (OHM) [24] to build an
occupancy grid map. OHM estimates occupancy probability
by taking into account lidar hits and pass-throughs for each 3D
grid element (voxel). Standard occupancy mapping methods
such as OHM assume lidar poses are perfectly known. How-
ever, in practice, poses are estimated by other state-estimation
systems (e.g., SLAM, pose-graph optimisation, GNSS) which
are inevitably subject to estimation errors due to sensor
noise. Ignoring pose estimation error leads to inaccurate maps.
We address this challenge by incorporating the estimation
uncertainty of the aerial vehicle’s trajectory from the pose-
estimation system into occupancy mapping.

The occupancy mapping module estimates the occupancy
probability of each voxel given aerial lidar measurements. We
denote the map by {p(mi | Z)}i where mi is a Bernoulli
random variable indicating the occupancy of the ith voxel, and
Z denotes the set of all measurements from the aerial vehicle
(e.g. lidar, IMU, and GNSS). Voxel occupancy probability is

p(mi | Z) =

∫
p(mi | X ,Z) p(X | Z) dX , (1)

where X denotes the robot’s trajectory (represented by a
finite set of poses). The first integrand p(mi | X ,Z) in (1)
is the voxel occupancy probability computed by standard
occupancy mapping systems given trajectory X . Note that
voxel occupancy mi is conditionally independent from sensor

Fig. 3: We reason on free, occupied and uncertain voxels by in-
tegrating lidar measurements in an occupancy grid map. Later the
occupancy probabilities are fused in our scoring method to estimate
the final obstruction map.

measurements given the trajectory X . This term can be further
simplified to p(mi | X ,Zlidar) where Zlidar ⊂ Z denotes the set
of lidar measurements. The second integrand p(X |Z) is the
posterior distribution over the trajectory given all measure-
ments. We use Monte Carlo (MC) integration to approximate
the intractable integral in (1) by sampling N independent
trajectories {X [k]}Nk=1 from the trajectory posterior, where
X [k] ∼ p(X | Z), and computing the following expression,

p(mi | Z) ≈ 1

N

N∑
k=1

p(mi | X [k],Zlidar). (2)

Equation (2) suggests the following scheme for incorporating
pose-estimation uncertainty into occupancy mapping: (i) build
an occupancy map using a standard occupancy mapping
method such as OHM for each trajectory sample X [k]; and
(ii) for each voxel compute the average of the resulting
N predicted occupancy probabilities. We term this approach
Uncertainty-Aware (UA) occupancy mapping.

Note that the details of trajectory sampling depend in part
on the underlying pose-estimation technique. For example,
one may use ancestral sampling to sample a trajectory when
the pose-estimation is obtained by integrating inertial mea-
surements over time. If poses are estimated independently
using absolute measurements (e.g., GPS), we just need to
independently sample poses from the corresponding posteriors
to obtain a trajectory sample. More complex pose-estimation
systems such as SLAM typically provide a Gaussian approx-
imation of pose marginals from which one can sample poses
independently to obtain an approximate trajectory sample.
Alternatively, one can avoid the error caused by breaking
the correlated trajectory posterior into pose marginals by
transporting samples generated from the standard normal
distribution using the inverse Cholesky factor of the sparse
information matrix provided by SLAM systems.

C. Obstruction score estimation

We use our 3D UA-occupancy map and the estimated
ground height to assign a simple obstruction risk score to
each ground-level 2D cell. This score is computed for each
vertical column of n 3D voxels starting from the ground
cell as illustrated in Fig. 3. Formally, the score function
b : Z×Z → [0, 1] assigns a value between zero and one to each
2D cell (i.e., the grid XY coordinates of the corresponding
column in the world frame). A larger value of b(s) for a cell
s ≜ (x, y) indicates a higher risk of obstruction at that cell.
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The number n of column voxels is chosen according to the
clearance height (h in Fig. 3) required by the robot to pass
through a column. Hence, taller robots require a larger n.

A cell s might be considered as obstructed if at least one
of the voxels in the corresponding column is occupied. This
choice leads to b(s) = 1 −

∏
i∈Is

p(mi = 0 | Z). However,
because of the complexity of forest environments and the
sparsity of aerial lidar rays reaching the ground level, the
resulting score function will likely fail to correctly capture
traversable cells where only the first voxel above ground is
occupied by grass or an overhanging foliage is occupying
the top voxel in the stack. An effective heuristic estimate
is to instead use the weighted average of voxel occupancy
probabilities within a column as the corresponding obstruction
score, where the (fixed) weights reflect the significance of
voxel occupancy. The resulting score function b is given by

b(s) ≜
∑
i∈Is

wi∑
i∈Is

wi
p(mi = 1 | Z), (3)

where Is denotes the set of indices of the n voxels that
are part of the vertical stack at cell s, and p(mi = 1 | Z)
is the UA-occupancy probability of voxel i given the aerial
measurements. Specifically, in our work n = 4 which allows
for a robot height of 1m using a 0.25m voxel size, and the
voxels weights wi from bottom to top are set to (1, 2, 2, 2).
The rationale behind these values is to assign a smaller weight
to the first voxel above ground level since the tracked mobile
robot used in our experiments can better navigate obstacles
immediately above the ground (e.g., small rocks, grass).

Finally, note that the obstruction score b(s) is computed
for the corresponding voxel-sized 2D cell s which is typically
much smaller than the robot’s footprint. Therefore, in the defi-
nition of path costs in Sec. V, we use the (worst-case) footprint
obstruction score bmax(s) ≜ maxsi∈F(s) b(si) among cells in
the robot footprint F(s) when the robot’s center is inside cell
s. For convenience, we use a circular footprint, avoiding the
need to consider different heading angles of the robot.

V. GLOBAL PATH PLANNING

Our path planning module plans a 2D path (over the ground
cells) for the ground robot given a pair of start and goal
locations. A path P is a sequence of adjacent ground cells
P = (s0, s1, . . . , sℓ) starting from the current cell s0 and
ending at the goal cell sℓ = sgoal. The cost of transitioning
from cell s to one of its adjacent cells s′ (hereafter, the
edge cost) is denoted by c(s, s′) ∈ R+. We use D* Lite [3]
to find a minimum-cost path where the path cost is given
by the sum of its edge costs J(P) ≜

∑ℓ−1
i=0 c(si, si+1). D*

Lite allows us to efficiently replan an optimal path from the
current cell to the goal based on the latest edge costs upon
encountering a blockage. In the following, we introduce two
choices used in our simulations and experiments for the edge
costs c(s, s′) that incorporate both the footprint obstruction
score bmax(s) (reflecting the risk of choosing a blocked path)
and the travelled distance.

1) Expected Cost: This edge cost function is inspired by
the expected traversal cost proposed in [25, Eq. 8]. Formally,

the edge cost between two adjacent cells si and si+1 in a
given path is defined as follows,

c(si, si+1) = bmax(si+1)Cobst + (1− bmax(si+1)) ||si+1 − si||
(4)

where Cobst ∈ R+ is a penalty parameter aimed at discourag-
ing the robot from entering cells that have a high obstruction
score. Higher values of Cobst result in a higher penalty for
overlapping with potentially obstructed cells. Intuitively, if
we interpret bmax(s) ∈ [0, 1] as the obstruction probability
when the robot’s center is inside cell s, the above expression
becomes the expected value of the following function:

(si, si+1) 7→

{
Cobst if si+1 is blocked,
∥si+1 − si∥ if si+1 is free.

(5)

In this way, the cost function represents an expectation of
the transition cost where Cobst is the additional detour cost
incurred when overlapping an obstructed cell, and bmax(s) is
the likelihood. D* Lite also requires a heuristic cost function
h(s0, si) that must be non-negative and backward consistent,
i.e., it obeys h(s0, s0) = 0 and h(s0, si) ≤ h(s0, si−1) +
c(si−1, si). In our method, the heuristic cost is defined as

h(s0, si) = (1− bmin)d(s0, si), (6)

where d(s, s′) is the octile1 distance between s and s′ consid-
ering also diagonal movements in a grid, and bmin ≜ mins b(s)
is the minimum obstruction score found in our map.

2) Log-Reachability cost: This path cost is based on the
reachability metric proposed in [26]. Informally speaking,
reachability of a path reflects the likelihood of reaching the
goal cell without hitting any blocked cells. We approximate
the product integral derived in [26, Eq. 14] for computing the
reachability of the goal path P by the following expression,

R(P) ≈
ℓ−1∏
i=0

(1− bmax(si+1))
||si+1−si|| . (7)

We find the optimal path by minimising the negative log-
reachability, yielding the following edge cost,

c(si, si+1) = − log (1− bmax(si+1)) ||si+1 − si||. (8)

The heuristic cost function used for the reachability cost is

h(s0, si) = − log(1− bmin) d(s0, si) (9)

where, as before, d(s, s′) is the octile distance between s and
s′, and bmin is the minimum obstruction score in the map.

VI. SIMULATIONS

We validated our proposed approach using the Gazebo sim-
ulator2. We created synthetic forests using vegetation models
of the NEGS-UGV Dataset [27], and acquired simulated aerial
lidar scans of these forest worlds. In the following, we first
evaluate the accuracy of our proposed UA-occupancy map-
ping, and then analyse the performance of our full navigation
system.

1Octile distance: d(s, s′) ≜ max(∆x,∆y) + (
√
2− 1)min(∆x,∆y),

where ∆x = |s′[0]− s[0]| and ∆y = |s′[1]− s[1]|.
2https://gazebosim.org/

https://gazebosim.org/


LIMA et al.: UNDER-CANOPY NAVIGATION USING AERIAL LIDAR MAPS 5

(a) (b) (c) (d)

Fig. 4: (a): Example of synthetic forest created in Gazebo where
we simulated lidar scans captured above the canopy. (b) to (d):
Ground-truth trajectories (A, B and C) of the airborne sensor and
the corresponding registered scans for the datasets acquired in the
synthetic environments Forest I, II and III, respectively. After adding
perturbations to sensor poses, a perturbed point cloud of each dataset
was produced to be processed by our approach.

A. Ablation Study: UA-Occupancy Mapping

First, we evaluate the accuracy of our UA-occupancy map
(with pose uncertainty) and compare it with the standard occu-
pancy map for different levels of error in the sensor trajectory.
We created three random forest worlds: Forest I, II and III, and
simulated three different aerial trajectories (one per scenario),
as shown in Fig. 4, of a VLP-16 lidar sensor flying above the
canopy and scanning the forests. We also simulated trajectory
A in Forest II and III. We constructed ground-truth occupancy
maps for each scenario by simulating an ideal sensor (no
noise in range measurements or trajectory) and processing
the ground-truth point clouds and trajectories using OHM.
Then, we perturbed each sensor pose along the trajectories
with independent, additive Gaussian noise ∼ N

(
0, σ2

)
on

each component [x, y, z, roll, pitch, yaw] to simulate a GPS-
like estimate of the sensor trajectory. Therefore, perturbations
are not accumulated along the trajectory. For each perturbation
level, specified by standard deviation values, we generated
10 perturbed trajectories and point clouds for subsequent
comparisons. We added Gaussian noise with a fixed stan-
dard deviation (σr = 0.01m) to range measurements to
simulate sensor uncertainty. For our UA-occupancy mapping
(Sec. IV-B) we chose N = 20. With full knowledge of ground-
truth occupancy probabilities from the ideal sensor, and the
perturbed datasets, we can further evaluate map accuracy using
the Kullback-Leibler Divergence (KLD) of voxel occupancy
values between our UA and standard occupancy maps with
respect to the ground-truth.

In Forest I, we analysed the isolated effect of transla-
tion and orientation perturbations. Since the percentage of
occupied voxels (about 10%) in the ground-truth map is
considerably lower than the free counterparts (about 80%),
we also computed the average KLD of our UA and standard
occupancy maps per voxel class (free, occupied and uncertain)
in this first scenario. Ground-truth probability (pgt) thresholds
are used to classify voxels as free (pgt < 0.45), uncertain
(0.45 ≤ pgt ≤ 0.55) or occupied (pgt > 0.55).

Results illustrated in Fig. 5 (a) and (b) show that for both
perturbations (position and orientation), the maps generated
using our UA-occupancy presented lower average KLD for
all perturbation levels, and that this behaviour was consistent
among all voxel classes, confirming that our method improves

(a) (b)

(c) (d)

Fig. 5: Comparison of our UA-occupancy against the standard occu-
pancy map for different perturbation values added to sensor poses.
(a) and (b) show the average KLD values in Forest I (trajectory A)
for perturbations in position only and orientation only, respectively.
KLD values are depicted per voxel class on the ground-truth dataset.
(c) and (d) illustrate the KLD values for all voxel classes in
Forest II (2 trajectories) and Forest III (2 trajectories), respectively,
for combined perturbation levels (position and orientation) where
σ = (0.015m, 0.015m, 0.015m, 0.11◦, 0.11◦, 0.11◦). In the figures,
noise refers to perturbations added to sensor poses and error bars
show ± std. deviation.

the quality of maps on occupied, free and uncertain regions.
We also assessed the effect of combined perturbations (posi-
tion and orientation jointly) on map quality in Forest II and
III (Fig. 5 (c) and (d), respectively). As observed, the average
KLD (all voxels) on the UA-occupancy also outperforms the
standard occupancy with combined perturbation values.

Finally, we computed the Area Under Curve (AUC) of
the Receiver Operating Characteristic (ROC) curves for the
standard occupancy and UA-occupancy approaches, providing
an overview of each method’s performance as predictors of
free or occupied states in datasets Forest II and III. Results
are summarised in Table I, where AUC values closer to one
indicate better prediction rates. For increasing levels of pertur-
bation, both approaches experience reduction of AUC, which
is anticipated since higher errors on sensor poses negatively
affect the quality of occupancy values in both methods. How-
ever, in both datasets, the UA-occupancy method displayed
higher AUC than the standard occupancy, showing the benefits
of fusing pose uncertainty in the occupancy calculation.

B. Full system evaluation

To assess whether our navigation approach (mapping and
planning), produces more efficient paths in comparison with
a naı̈ve baseline planner without prior maps, we first created
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TABLE I: Comparison of the AUC values (± std. deviation) be-
tween the standard occupancy (standard) and UA-occupancy (ours)
approaches for increasing perturbation levels in sensor poses, where
σ = (0.015m, 0.015m, 0.015m, 0.11◦, 0.11◦, 0.11◦). Higher AUC
values indicate better map predictions.

Perturbation Forest II - Trajectory B Forest III - Trajectory C
level standard ours standard ours
σ 0.982 ± 9e−5 0.989 ± 4e−5 0.984 ± 11e−5 0.991 ± 6e−5
5σ 0.954 ± 48e−5 0.966 ± 17e−5 0.965 ± 35e−5 0.978 ± 9e−5

10σ 0.924 ± 52e−5 0.944 ± 18e−5 0.943 ± 30e−5 0.962 ± 11e−5
15σ 0.897 ± 59e−5 0.924 ± 15e−5 0.920 ± 70e−5 0.946 ± 29e−5
20σ 0.870 ± 87e−5 0.906 ± 45e−5 0.897 ± 67e−5 0.932 ± 35e−5

a simulated forest with ground obstacles. Then, we simulated
two types of aerial sensor trajectory-estimation with perturbed
poses, a GPS-only trajectory similar to Sec. VI-A using
σGPS = (0.05m, 0.05m, 0.05m, 0.1◦, 0.1◦, 0.1◦), and a SLAM-
like trajectory where perturbations (added to relative pose
transformations) are accumulated along the trajectory to simu-
late odometry drift. Absolute corrections (e.g., perturbed GPS
observations) are also added at each 120 sec to limit drift. The
Gaussian noise added to relative transformations is defined by
σdrift = (0.009m, 0.009m, 0.002m, 0.0057◦, 0.0057◦, 0.0057◦)
and the absolute observation noise defined by σabs =
(0.05m, 0.05m, 0.05m, 0.1◦, 0.1◦, 0.1◦). We then processed
the lidar scans using our mapping method (Sec. IV) to create
the obstruction map used by the D* Lite planner. For the
MC integration (Sec. IV-B), we sample poses independently
from the GPS-like trajectory, whereas pose-sampling from the
SLAM-like trajectory uses ancestral sampling (odometry ob-
servations) and independent sampling (absolute observations).

We defined 40 random start and end goal pairs in the
synthetic forest to be executed by our navigation method and
the naı̈ve planner. The naı̈ve planner does not use prior maps,
and is equivalent to assuming a direct path from the start to the
goal as the global prior path. All 40 runs were repeated with
three configurations of cost function: log-reachability (LOG-
REACH), and two versions of expected cost (EXP. COST)
(4) with values Cobst = 5 and 20, respectively. During online
execution of the planners, we defined a 5 meter radius around
the robot pose to update the maps with local information from
the ground-truth environment, hence map cells in this region
are changed to near 1 or 0, in case obstacles or free areas
are detected, respectively, from the ground-truth map. In both
methods we use D* Lite to replan in case obstacles block the
robot’s planned path. While our method replans on a combined
map (prior map with local updates), the naı̈ve method replans
only on the map built online with local information.

The metric used for evaluation is the ratio between the
executed path length of our navigation method and the naı̈ve
baseline. We also compare the executed path length ratio
between our planning using UA-occupancy map against plan-
ning using standard occupancy, to assess the benefits of our
uncertainty incorporation during navigation. Fig. 6 shows the
planning results in the two simulated scenarios with maps
generated from GPS and SLAM-like aerial trajectories. From
Fig. 6 (a), LOG-REACH cost, using UA and standard, both
resulted in a significantly higher number of shorter paths than
the naı̈ve approach, demonstrating the advantage of using a
prior aerial map for global planning and online execution. The
EXP. COST, however, showed lower performance with path

(a) (b)

(c) (d)

Fig. 6: (a) and (b) show the planning results for the scenario with
the aerial map created using a GPS-like aerial trajectory. (c) and
(d) show the same comparisons for the scenario with map obtained
from a simulated aerial SLAM trajectory. In all plots, path ratios
below 1 (horizontal line) indicate better results. Suffixes UA and
standard in the legends refer to prior maps, UA-occupancy and
standard occupancy respectively, used by the navigation method.
EXP. COST (5) and EXP. COST (20) refer to expected cost with
parameters Cobst = 5 and 20 respectively. Red markers show mean
values including outliers.

costs closer to the naı̈ve baseline. This performance reduction
is due to some paths planned with expected cost crossing a
small number of cells with high obstruction scores instead
of planning longer detours, resulting in expensive replans
during online execution if the planned path was blocked.
Further, although the naı̈ve approach has no prior, in cases
with fewer obstructions the naı̈ve assumption (straight-line)
may actually be globally optimal or near-optimal, requiring
little or no replanning. Because the log-reachability cost is
more risk averse by design, it may prefer to detour even
small potentially obstructed areas, yielding better results (see
Fig. 6 (a)). Simulating GPS-like noise (Fig. 6 (b)) did not
show significant performance differences between planning
with an uncertainty-aware map versus standard, confirming the
intuitive fact that with an accurate aerial trajectory estimate the
difference between planning with UA and standard maps is not
significant. Planning behaviour differences become more evi-
dent as uncertainty increases, as illustrated by simulations with
aerial trajectories with higher noise and drift (SLAM-like).
In this new scenario (SLAM-like aerial trajectory) (Fig. 6
(d)), the LOG-REACH using UA maps clearly outperformed
the standard counterpart, confirming that in scenarios with
higher uncertainty in aerial trajectories, our mapping with
pose-uncertainty can improve the planned paths. An addi-
tional consequence of the increased noise is that all methods
showed reduced performance with respect to naı̈ve (see Fig. 6
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Fig. 7: The satellite image (a) and the aggregated aerial lidar scans (b) of the forest area used in our experiments. The resulting obstruction
map generated using our proposed approach is shown in (c) along with a magnified section for better visualisation in (d).

(c)). This is expected, because as shown in Table I, higher
perturbations in the aerial trajectory result in more degraded
maps. However, even in this higher noise scenario, using our
uncertainty-aware prior aerial map with LOG-REACH is still
a better choice than naı̈ve on average (see mean values shown
with red markers in Fig. 6). We expect that in more complex
terrains, the ground-view sensor’s limited look-ahead (due to
significant occlusions, which our current simulation setup does
not capture) degrades the performance of naı̈ve even more,
ultimately risking the mission completion.

VII. REAL-WORLD EXPERIMENTS

We also evaluated our offline mapping and planning frame-
work using real aerial view lidar datasets and a ground mobile
robot. The airborne lidar scans were collected using a DJI
M-300 quadcopter equipped with a velodyne VLP-16 lidar
sensor. For ground deployment, we used a Dynamic Tracked
Robot (DTR) (shown in Fig.1) equipped with our in-house
lidar perception pack [22] for local sensing and obstacle
avoidance. The tests were performed in the western forest
area at the Queensland Centre for Advanced Technologies
(QCAT) in Brisbane, Australia. The testing area has dense
canopy cover and varied obstacles over the terrain, e.g., high
vegetation, logs, trees and narrow gaps, which makes the
global navigation and local traversability highly complex.

Since it is not trivial to define ground-truth for obstructed
areas in forest environments given their complexity, e.g.,
cells that are visually “obstructed” by vegetation are often
traversable, we qualitatively analysed our mapping output
from real data. As observed in Fig. 7 (a)-(d), even with
partial canopy occlusion, our mapping using above-canopy
lidar scans is capable of detecting regions at ground level with
high obstruction scores (yellow to red) indicating the presence
of obstacles, and free regions (green) with higher chances of
traversing. Uncertain areas (blue) are also captured, providing
meaningful information for planning and decision-making.

To test our full system, we defined two start and end goal
pairs in the forest named Test 1 and 2. For each test location
we performed two runs, one with the naı̈ve approach where
the robot used only the local perception and its embedded
navigation system to reach the target without any prior infor-
mation, and another run using our proposed navigation method

(prior aerial mapping and global planning) with the log-
reachability cost as it demonstrated superior performance in
simulation. Unlike the navigation pipeline used in simulations,
here our method was used only offline to create the obstruction
map and plan a global trajectory from start to goal using
D* Lite. For online operation, the planned trajectory was
provided to the robot as a set of waypoints (transformed from
the aerial map’s reference frame to the robot’s local frame).
During online execution, the robot uses the local navigation
system [21] with the Hybrid A* planner [28], and onboard
perception to track the waypoints while also navigating around
locally-detected obstacles. For fair comparison, the same local
navigation system was used for both runs, naı̈ve and our
method; in this manner, we can assess the benefits of providing
information prior to operation through a global trajectory.

During Test 1 (Fig. 8 (a)), while our approach preferred a
less cluttered path on the left side of the large obstacle, the
naı̈ve approach took the right side, following a much denser
path that also crossed a narrow passage among high bushes.
Our method travelled a path length of 69.6 m in comparison
to 79.9 m of the naı̈ve trajectory, which demonstrates that our
proposed navigation not only increases path efficiency, but it is
also more risk averse preferring safer areas with less likelihood

(a) (b)

Fig. 8: Real world experiments Test 1 (a) and Test 2 (b) showing the
executed paths of our approach and the naı̈ve method. The start and
goal are represented by a black circle and star, respectively. In both
experiments our approach guided the robot to shorter, less cluttered
paths, whereas the naı̈ve method resulted in a longer trajectory in
(a) due to crossing a more cluttered area, and ultimate failure of the
planner in (b) by facing a dead-end of high undergrowth.
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of having obstacles. In Test 2 (Fig. 8 (b)) the limited look-
ahead of the naı̈ve approach directed the robot to a dead-end
composed of cluttered high vegetation. The local navigation
was unable to detour the blocked area, and failed to reach the
goal. Unlike the naı̈ve counterpart, our method leveraged the
prior information, avoiding the dead-end and taking a clear
path on the right of the vegetated area to reach the goal.

Although we acknowledge that the practical experiments
are not statistically representative results, the outcomes val-
idate the beneficial behaviours of our method observed in
simulation. The field trials showed that planning using our
obstruction maps in tandem with the proposed log-reachability
cost leads to shorter and safer paths by avoiding cluttered
areas, which ultimately increases the mission success rate.

Our mapping module runtime on an Intel Core i7 with
62.4GB RAM (4 CPUs) is approximately 37 min for 28
million lidar points, sufficient for offline mapping prior to
ground robot deployment. For realtime applications, GPU
processing could be used to reduce the mapping runtime.

VIII. CONCLUSION & FUTURE WORK

We presented a navigation system for mapping using prior
overhead lidar data and planning in complex forest envi-
ronments. Our proposed mapping estimates the obstructed
areas on ground level using a scoring function of occupancy
values obtained from airborne lidar scans and the sensor
trajectory. A Monte Carlo sampling approach to incorporate
sensor pose uncertainty in occupancy maps is also presented
and extensively tested in simulation, showing more accurate
maps than the standard occupancy mapping. We proposed two
path cost functions that take into account both obstruction
uncertainty and path length. Lastly, D* Lite leverages the
cost functions to plan optimal paths for ground-navigation,
also allowing efficient replanning. Simulations and real exper-
iments demonstrated that our navigation approach using prior
information leads to shorter paths than the naı̈ve baseline (no
prior) and increases the chances of reaching the goal even in
challenging forests scenarios. In future work we intend to learn
the obstruction score map in a self-supervised fashion online
and investigate more accurate trajectory sampling techniques
from the posterior of modern SLAM systems (see Sec. IV-B).
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