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Abstract— Model Predictive Control (MPC)-based trajectory
planning has been widely used in robotics, and incorporating
Control Barrier Function (CBF) constraints into MPC can
greatly improve its obstacle avoidance efficiency. Unfortu-
nately, traditional optimizers are resource-consuming and slow
to solve such non-convex constrained optimization problems
(COPs) while learning-based methods struggle to satisfy the
non-convex constraints. In this paper, we propose SOMTP
algorithm, a self-supervised learning-based optimizer for CBF-
MPC trajectory planning. Specifically, first, SOMTP employs
problem transcription to satisfy most of the constraints. Then
the differentiable SLPG correction is proposed to move the
solution closer to the safe set and is then converted as the guide
policy in the following training process. After that, inspired
by the Augmented Lagrangian Method (ALM), our training
algorithm integrated with guide policy constraints is proposed
to enable the optimizer network to converge to a feasible
solution. Finally, experiments show that the proposed algorithm
has better feasibility than other learning-based methods and can
provide solutions much faster than traditional optimizers with
similar optimality.

I. INTRODUCTION

Constrained optimization problems (COPs) have been
widely used in many areas, such as trajectory planning in
robotics, power systems, scheduling, and logistics. In some
scenarios, COP may impose high demands on solving time.
MPC is a special COP that generates a sequence of optimal
control inputs and states. In recent years, MPC has gained
extensive application in collision avoidance trajectory plan-
ning for autonomous driving and robots [1]–[3]. To achieve
efficient collision avoidance trajectory planning for MPC,
[4] proposes an efficient CBF-MPC planner by incorporating
discrete-time non-convex CBFs as constraints into MPC.
CBF-MPC is then widely used in the robot [3], [5], [6].
CBF could enforce the system to avoid obstacles even when
the reachable set is far away from the obstacles, as well as
ensure forward invariance of the safe set [4]. However, the
addition of CBF also increases the complexity of the COP
and thus lengthens the time required to solve it.

MPC-based trajectory planning problem needs to be
solved within a single time step. And if it is resolved sooner,
the robot can respond faster to external changes and uncer-
tainty. Traditional optimization methods for such non-convex
COPs usually require large computational resources and a
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long solving time. Learning-based methods can significantly
reduce the solving time and have been applied to many
optimization problems with or without simple constraints.
However, in terms of MPC-based trajectory planning, ful-
filling complex non-convex constraints becomes a major
challenge for these methods [4], [7]. What’s more, such
sequential optimization problems may be more challenging
since many robots’ kinematic models, which act as equality
constraints, are nonlinear. All in all, there is a demand for
optimization methods to speed up optimization while strictly
satisfying constraints.

In this paper, we propose SOMTP, a self-supervised
learning-based optimizer, to solve the CBF-MPC-based safe
trajectory planning problem with CBF constraints to avoid
obstacles. SOMTP is highly concerned with constraint satis-
faction and is capable of rapidly and effectively solving the
CBF-MPC while ensuring feasibility. Specifically, first, we
transcribe the original sequential optimization problem into
nonlinear programming with only CBF constraints by em-
ploying the single-shooting method [8]. Then, the following
two algorithms are proposed to satisfy the CBF constraints:
(1) the SLPG correction algorithm; and (2) the ALM-based
training method with guide policy constraints. The SLPG
correction procedure is inspired by DC3 in [7] which
can be incorporated into the training process. Unlike DC3,
SLPG correction is to optimize a non-convex projection-type
problem by performing sequential linearization, quadratic
penalty method, and gradient descent. Compared with tra-
ditional projection-based method, the SLPG correction can
deal with non-convex constraints and is more efficient in
time and resource consuming. Instead of obtaining the true
projection on the safe set, SLPG correction is intended to
move the pre-solution from the optimizer network several
steps closer to the safe set by generating a differentiable
approximate solution within iteration limits. After that, we
propose the ALM-based training method to achieve both
optimality and feasibility by training the optimizer network
and updating Lagrangian multipliers. Furthermore, in the
ALM-based training method, the corrected solution from
SLPG is again utilized as the guide policy to guide the
network training. As a result, the optimizer network is
expected to gradually converge to a solution of the CBF-
MPC while constraints are satisfied.

In summary, our key contributions are as follows:
• SOMTP is a self-supervised learning-based optimization

algorithm for the CBF-MPC-based trajectory planning
problem and holds referential significance for other
COPs and optimal control problems with non-convex
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constraints. Meanwhile, our strategy for CBF constraints
is also meaningful for CBF-based safe RL.

• SLPG performs a differentiable correction, which can
move the solution closer to the non-convex safe set and
speed up the reduction of the violation. It is then treated
as the guide policy in ALM-based training.

• ALM-based training algorithm is proposed to enable the
optimizer network to converge to the feasible solution
of the MPC.

• Guide policy constraints are integrated into the ALM-
based training algorithm to guide the learning process
and accelerate convergence.

• Experiments demonstrate that our SOMTP has better
feasibility than other learning-based approaches. Com-
pared with traditional optimization methods, it can pro-
vide high-quality, feasible solutions much faster while
still maintaining a similar level of optimality.

The paper is organized as follows: Section II presents
the related works. Section III presents the background and
preliminaries. In section IV, SOMTP algorithm is proposed.
Comparisons and experiments are given in V. Finally, con-
clusions are given in Section VI.

II. RELATED WORKS

CBF-MPC trajectory planning belongs to the non-convex
sequential COP and has been widely used in robotics. We
intend to solve the above non-convex COP with learning-
based methods. And our method’s related works fall into the
following three categories.

Traditional optimization methods. Before optimizing
MPC, traditional methods need to transcribe such an opti-
mal control problem into a nonlinear programming problem
(which is also a COP) [9]. The main optimization methods
for such nonlinear COP are the interior point method (IPM)
and sequential quadratic programming (SQP). [10]. To ob-
tain the COP’s solution, these methods often require iterating
multiple times and calculating the Hessian matrix, both
of which can be time-consuming and resource-consuming.
Moreover, the ALM algorithm mentioned above is also a
traditional optimizer for solving COP, which can obtain
solution and its associated Lagrangian multipliers through
iterative methods while avoiding numerical instabilities [11].

Learning-based methods. Learning-based optimization
methods are mainly divided into two types, i.e., supervised
learning methods (SLMs) and self-supervised learning meth-
ods (SSLMs). SLMs concern training models that can map
a problem instance’s representation to the target solutions
from a traditional optimizer [12]. These methods require
the use of a traditional optimizer to generate the target
optimal solutions and pay much attention to the errors (e.g.,
MSE or MAE) between the network’s outputs and the target
solutions [13]–[16]. SSLMs don’t need additional traditional
optimizers. Instead, they can directly train the optimizer
network using the objective function and constraint violations
[17]. One of the SSLMs is to add constraint violations to the
loss function for gradient descent. On top of this, the DC3
algorithm proposed in [7] incorporates a correction process

for inequality constraints during training, the details of which
can be seen in III. And [18] directly employs the DC3 to
solve the MPC problem. DC3 is the most similar work to
ours, with the following three major differences between
our SOMTP and DC3: (1) We propose a differentiable
SLPG correction for non-convex CBF constraints that can
provide better direction for correction and push the pre-
solution closer to the safe set; (2) The ALM-based training
method can update associate Lagrangian multipliers and
quadratic penalty terms during the training procedure; (3)
To enhance the efficiency of ALM-based training, guide
policy constraints are incorporated with SLGP correction
as the guide policy. Besides, [17] proposes PDL that uses
primal-dual learning to alternately train two networks, one
the optimizer network and one the Lagrangian multipliers’
network.

Reinforcement learning (RL). Safe RL expects to han-
dle constraints during training, which has given us some
inspiration. Some directly enforce constraints by projecting
pre-solutions onto a safe set using convex optimization
layers (e.g., [19]) in the case of general convex constraints
[20], [21]. However, these projection-based approaches are
inefficient since they often require a large amount of comput-
ing resources during training. What’s more, the projection-
type problem may be infeasible when the initial value is
very distant from the safe set. Different from projection-
based methods, our SLPG correction focuses on non-convex
constraints and is intended to move the pre-solution several
steps closer to the safe set within iteration limits. What’s
more, in recent years, CBF has gained popularity in MPC and
safe RL methods due to the fact that it ensures the forward
invariance of the safe set [22], [23].

III. BACKGROUND

Trajectory planning aims to plan a trajectory for the robot
from its initial position to its target state while avoiding ob-
stacles and satisfying kinematic constraints. In recent years,
optimization-based trajectory planning for mobile robotics
like autonomous vehicles has been studied in many works.
And the proposed algorithm in this study is intended to solve
the aforementioned optimization-based trajectory planning
problem with a learning-based method. The necessary pre-
liminaries are as follows:

A. CBF-MPC Trajectory Planning

In this study, we consider a 2-D mobile robot with the
following nonlinear kinematic model:

𝒙𝒌+1 = 𝒇 (𝒙𝒌 , 𝒖𝒌 ) (1)

where the states and controls of the robotic system at time-
step k are 𝒙𝒌 ∈ R3 and 𝒖𝒌 ∈ R𝑛𝑢 , respectively. 𝒙𝒌 =[
𝑋 𝑌 𝜙

]
, where 𝑋 and 𝑌 represent the coordinates in the

local frame O’X’Y’ in Fig. 1. 𝜙 represents the yaw angle of
the robot in the same frame.

Assume the robot’s initial state and goal state are 𝒙𝒊𝒏 and
𝒙𝒈𝒐 , respectively. And there are 𝑛𝑜𝑏𝑠 ≥ 0 obstacles in the
local cost map. To avoid the obstacles, we use S as a safe set,
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Fig. 1. Frames of the robotic system.

which is the superlevel set of a continuously differentiable
function 𝐻 : X ⊂ R3:

S = {𝒙 ∈ X,𝑯(𝒙) > 0} (2)

where 𝐻 is the control barrier function (CBF) on S if there
exists 𝛾 ∈ (0, 1] such that for all 𝑥 ∈ S, 𝐻 satisfies

sup
𝒖𝒌

Δ𝐻 (𝒙𝒌 , 𝒖𝒌 ) = 𝐻 (𝒙𝒌+1) − 𝐻 (𝒙𝒌 ) ≥ −𝛾𝐻 (𝒙𝒌 ) (3)

Given a CBF 𝐻, we can define the following set to
guarantees the forward invariance of S and the robots’ safety.

𝐺𝑐𝑏 𝑓 = {𝒖𝒌 ∈ U,−Δ𝐻 (𝒙𝒌 , 𝒖𝒌 ) − 𝛾𝐻 (𝒙𝒌 ) ≤ 0} (4)

After combining the above discrete-time CBF constraints,
the loss function of the CBF-MPC trajectory planner is
obtained which can be seen as follows:

min
𝒖 ( ·) , 𝒙( ·)

𝐽 (·) =
𝑁∑︁
𝑘=0

𝒙𝒌 − 𝒙𝒈𝒐2
𝑸
+

𝑁−1∑︁
𝑘=0
∥𝒖𝒌 ∥2𝑹 (5)

s.t. 𝒙𝒌+1 = 𝒇 (𝒙𝒌 , 𝒖𝒌 ) , (5a)
𝒙0 = 𝒙𝒊𝒏, (5b)
𝒖𝒌 ∈ [𝒖𝑚𝑖𝑛, 𝒖𝑚𝑎𝑥] , (5c)
− Δ𝐻 (𝒙𝒌 , 𝒖𝒌 |𝑶 𝒋) − 𝛾𝐻 (𝒙𝒌 |𝑶 𝒋) ≤ 0 (5d)

where 𝑁 is the prediction horizon, 𝑸 and 𝑹 are defi-
nite weighting coefficient matrix. The number of (5d) is
𝑁 · 𝑛𝑜𝑏𝑠 . To help represent these obstacles, we use 𝑶 𝒋 =[
𝑋𝑜, 𝑗 𝑌𝑜, 𝑗 𝑅𝑜, 𝑗

]
, 𝑗 ∈ [0, 𝑛𝑜𝑏𝑠), to represent the 𝑗-th ob-

stacles, where 𝑋𝑜, 𝑗 and 𝑌𝑜, 𝑗 represent the coordinates of the
obstacle in the local frame O’X’Y’ in Fig. 1. 𝑅𝑜, 𝑗 represents
the radius of the obstacle’s smallest circumscribed circle.
For the CBF function 𝐻 (·) in (5d), we employ the following
function to simplify the obstacle avoidance problem:

𝐻
(
𝒙 |𝑶 𝒋

)
= (𝒙 [0] − 𝑋𝑜, 𝑗 )2 + (𝒙 [1] −𝑌𝑜, 𝑗 )2− (𝑅𝑜, 𝑗 +𝑅+ 𝑙𝑒𝑥)2

(6)
where 𝑅 represents the radius of the robot and 𝑙𝑒𝑥 is the
expansion length of the obstacle. And the discrete-time CBF
in (5d) is generally non-convex according to [4].

The above CBF-MPC belongs to the non-convex optimal
control problem and needs to be solved using some nonlinear
optimization algorithms such as SQP and IPM. However,
these traditional optimization methods often require large
computing resources and a long time to work.
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Fig. 2. The structure of SOMTP algorithm.

B. DC3

DC3 is a learning-based method that intends to solve
COPs by directly integrating two processes, i.e., equality
completion and inequality correction, into the training pro-
cedure [7]. Consider the following optimization problem as
an instance:

min
𝒚

𝑓𝑥 (𝒚), s.t. ℎ𝑥 (𝒚) = 0, 𝑔𝑥 (𝒚) ≤ 0 (7)

where 𝒙 is the problem data and 𝒚 ∈ R𝑛 is the corresponding
solution. Loss function, equality, and inequality constraints
are denoted by 𝑓𝑥 , ℎ𝑥 and 𝑔𝑥 , respectively. Overall, DC3
will employ a neural network to output a partial set of
solution 𝒑 ∈ R𝑚, 𝑚 ≤ 𝑛. 𝒑 will then be completed to a
full set of solution 𝒚 𝒇 =

[
𝒑 𝜙𝑥 ( 𝒑)

]𝑇 ∈ R𝑛, where they
assume access to the function 𝜙𝑥 to satisfy the equality
constraints. Next, the 𝒚 𝒇 will be corrected to �̂� by per-
forming gradient descent on the violations of the inequality
constraints during the correction process. Specifically, the
correction is to modify the 𝒚 𝒇 with the equation �̂� =

𝒚 𝒇 + 𝚫𝒚 =
[
𝒑 − 𝛾𝚫 𝒑 𝜙𝑥 ( 𝒑) − 𝛾𝜕𝜙𝑥 ( 𝒑)/𝜕 𝒑𝚫 𝒑

]𝑇 where
𝚫 𝒑 = ∇𝒑 ∥ReLU(𝑔𝑥 (𝒚 𝒇 ))∥2 and 𝛾 is the constant learning
rate.

After the above procedures, the overall network will be
trained using backpropagation on the following loss function:

𝑙𝑠𝑜 𝑓 𝑡 = 𝑓𝑥 ( �̂�) + 𝜆ℎ∥ℎ𝑥 ( �̂�)∥2 + 𝜆𝑔∥ReLU(𝑔𝑥 ( �̂�))∥2 (8)

where 𝜆ℎ, 𝜆𝑔 > 0 are hand-tuned hyper-parameters.

IV. ALGORITHM

To achieve safe trajectory planning, we employ the MPC
planner with CBF to keep the robot away from obstacles. As
it can be seen, the optimization problem in (5) is a complex,
non-convex, nonlinear, sequential optimal control problem
with nonlinear equality and inequality constraints. To solve
the aforementioned problem, inspired by optimization algo-
rithms, safe RL algorithms, and the learning-with-correction
framework in DC3, we finally propose the learning-based
optimization algorithm SOMTP. The structure of SOMTP
can be seen in Fig. 2.

A. Problem Transcription

Before solving the problem in (5), states and obstacles
need to be transformed to the local coordinate system, with
the current state as the zero point, and thus the initial state
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𝒙0 = 𝒙𝒊𝒏 =
[
0 0 0

]
can be seen as known. According to

(5a) and (5b), the sequential trajectory with respect to the
control inputs 𝒖 can be simplified as:

𝒙𝒌 = 𝑭(𝒖0, . . . , 𝒖𝒌−1), 𝑘 ≥ 1 (9)

After employing the above single-shooting method, the
trajectory optimization problem in (5) can be transcribed as
a non-linear programming problem in (10) [8].

min
𝒖 ( ·)

𝐽 (𝒖, 𝒙𝒈𝒐) (10)

s.t. 𝒖𝒌 ∈ [𝒖𝑚𝑖𝑛, 𝒖𝑚𝑎𝑥] , 𝑘 ∈ [0, 𝑁) (10a)

𝐻
𝑐𝑏 𝑓

𝑘, 𝑗
(𝒖0, . . . , 𝒖𝒌 ,𝑶 𝒋) ≤ 0, 𝑗 ∈ [0, 𝑛𝑜𝑏𝑠) (10b)

where 𝐽 (·) =
∑𝑁

𝑘=1
𝑭(𝒖0:𝒌−1) − 𝒙𝒈𝒐

2
𝑸
+ ∑𝑁−1

𝑘=0 ∥𝒖𝒌 ∥2𝑹,

𝐻
𝑐𝑏 𝑓

𝑘, 𝑗
(·) = −Δ𝐻 (𝑭(𝒖0:𝒌−1), 𝒖𝒌 |𝑶 𝒋) − 𝛾𝐻 (𝑭(𝒖0:𝒌−1) |𝑶 𝒋).

Take a neural network denoted as 𝜃𝑁 to be the solver of the
optimization problem (10), the structure of which is shown
in Fig. 3. The output of the final activation layer tanh will
be bounded within the range of [-1,1]. This output will then
be forwarded to the final layer, which applies box boundary
normalization to the result to rescale it to the range in (10a).
And in this way, the problem in (10) will be transcribed to
the following optimization problem (11)

min
𝒖=𝝅𝜃𝑁

𝐽 (𝒖, 𝒙𝒈𝒐) (11)

s.t. 𝐻
𝑐𝑏 𝑓

𝑘, 𝑗
(𝒖0, . . . , 𝒖𝒌 ,𝑶 𝒋) ≤ 0, 𝑘 ∈ [0, 𝑁), 𝑗 ∈ [0, 𝑛𝑜𝑏𝑠)

(11a)

where 𝝅𝜃𝑁 represents the result of the 𝜃𝑁 .
It is obvious that, following the transcription, the only con-

straints that require consideration in (11) are the CBF con-
straints denoted as (11a). To deal with the CBF constraints,
we implement the following two policies: the SLPG correc-
tion and the policy-guided ALM-based training method.

B. SLPG Correction

𝝅𝜃𝑁 cannot directly guarantee the CBF constraints. In
DC3, they insert an inequality correction procedure that can
hopefully pull the results closer to or within the safe set
by performing gradient descent on the violations of the in-
equality constraints. In terms of the CBF constraints in (11a),
the correction procedure in DC3 is to repeat the following:

�̂�𝒅𝒄3 = 𝒖 − 𝛾𝑑∇𝒖
∑︁
∥ReLU(𝐻𝑐𝑏 𝑓

𝑘, 𝑗
)∥2 (12)

where �̂�𝒅𝒄3 is the corrected results with DC3-correction and
𝛾𝑑 is the associated step-size, which is man-tuned [7].

However, the (11) is a complex non-convex problem with
nonlinear implicit function (9), and the CBF constraints show
highly nonlinear and non-convex features. Therefore, the
gradient descent-based correction method in DC3 may fail
to find a suitable direction for correction. What’s more, the
corrected results �̂�𝒅𝒄3 may conflict with the constraints in
(10a).

Several safe RL methods employ projection algorithms to
project the results to the safe set constraints during training
procedures [20], [21]. Here, we also expect to design a
projection-type correction procedure to deal with the CBF
constraints. Define 𝚫𝒖 as the input’s correction value, and it
can be obtained from the following optimization problem:

min
𝚫𝒖 ( ·)

𝑁−1∑︁
𝑘=0
∥𝚫𝒖𝒌 ∥2𝑹 (13)

s.t. 𝒙𝒄𝒌 = 𝑭(𝒖0:𝒌−1 + 𝚫𝒖0:𝒌−1) (13a)
𝒖𝒌 + 𝚫𝒖𝒌 ∈ [𝒖𝑚𝑖𝑛, 𝒖𝑚𝑎𝑥] , (13b)

𝐻
𝑐𝑏 𝑓

𝑘, 𝑗
(𝒖0:𝒌 + 𝚫𝒖0:𝒌 ,𝑶 𝒋) ≤ 0, 𝑗 ∈ [0, 𝑛𝑜𝑏𝑠) (13c)

Moreover, the projection problem in the current safe RL
algorithm is equivalent to a quadratic programming (QP)
problem with linear or convex constraints. However, the
problem (13) is not a QP problem at all with nonlinear
and non-convex constraints, and solving this optimization
problem will consume much time.

Inspired by SQP and SLQP algorithms that solve complex
non-convex problems by solving a sequential of QP problem,
we perform a first-order Taylor expansion on the constraints
in (13) and optimize several QP sub-problems. The first-order
Taylor expansion is performed at the points (𝒖, 𝒙) which are
the results from 𝝅𝜃𝑁 . Thus, we can obtain a QP-type sub-
problem as follows:

min
𝚫𝒖 ( ·)

𝑁−1∑︁
𝑘=0
∥𝚫𝒖𝒌 ∥2𝑹 (14)

s.t. 𝒙𝒄𝒌 = 𝒙𝒌 + [∇𝒖0:𝒌−1𝑭]𝚫𝒖0:𝒌−1 (14a)
𝒖𝒌 + 𝚫𝒖𝒌 ∈ [𝒖𝑚𝑖𝑛, 𝒖𝑚𝑎𝑥] , (14b)

𝐻
𝑐𝑏 𝑓

𝑘, 𝑗
(𝒖0:𝒌 ,𝑶 𝒋) + [∇𝒖0:𝒌𝐻

𝑐𝑏 𝑓

𝑘, 𝑗
]𝚫𝒖0:𝒌 ≤ 0, 𝑗 ∈ [0, 𝑛𝑜𝑏𝑠)

(14c)

where (14a) can indeed be ignored since it has already been
inserted into (14c) during the transcription.

However, the QP problem in (14) may be infeasible since
the original solution from 𝜃𝑁 is insufficient during training,
sometimes very distant from the safe set, and fails to meet the
CBF constraints. This kind of situation happens frequently
during the beginning stages of training. Since the purpose
of the correction is to find a proper direction to reduce the
vibrations of the CBF constraints, we adopt the Quadratic
Penalty Method [24] to transfer the CBF constraints to the
loss function. Instead of solving (14), we turn to solving the
QP problem in (15) to pull the solution closer to the safe



Algorithm 1: SLPG Correction
Input : Solution from 𝝅𝜃𝑁 : 𝒖. Obstacles: 𝑶. Max

correction steps: 𝑛𝑚. Max QP steps: 𝑖𝑚.
Box constraints: [𝒖𝑚𝑖𝑛, 𝒖𝑚𝑎𝑥]. 𝜆𝑐.

Output: Corrected solution: �̂�. 𝚫𝒖
Init : 𝚫𝒖

1 𝒖0 ← 𝒖;
2 for 𝑛 ∈ [0, 𝑛𝑚) do
3 SequentialLinear(𝒖𝒏),Init(𝚫𝒖0);
4 for 𝑖 ∈ [0, 𝑖𝑚) do
5 𝒅𝒊 ← ∇𝚫𝒖𝒊 𝐽𝑐𝑜𝑟𝑟 ;
6 𝛾𝑐 ← Armijo-BoxLinearSearch with

condition (18);
7 𝚫�̂�𝒊+1 ← 𝚫𝒖𝒊 − 𝛾𝑐𝒅𝒊 ; in (16);
8 𝚫𝒖𝒊+1 = Clamp(𝒖𝒏 +𝚫�̂�𝒊+1, 𝒖𝑚𝑖𝑛, 𝒖𝑚𝑎𝑥) −𝒖
9 end

10 𝒖𝒏+1 ← 𝒖𝒏+𝚫𝒖𝒊𝒎 | 𝚫𝒖, �̂� ← 𝚫𝒖+𝚫𝒖𝒊𝒎 , 𝒖𝒏+1;
11 Break if Max(ReLU(𝐻𝑐𝑏 𝑓

𝑘, 𝑗
(�̂�0:𝒌 ,𝑶 𝒋)) is tiny

12 end

set.

min
𝚫𝒖 ( ·)

𝑁−1∑︁
𝑘=0
∥𝚫𝒖𝒌 ∥2𝑹 + 𝜆𝑐

𝑁−1∑︁
𝑘=0

𝑛𝑜𝑏𝑠−1∑︁
𝑗=0
∥ReLU(H 𝑐𝑏 𝑓

𝑘, 𝑗
(·))∥2

(15)
s.t. 𝒖𝒌 + 𝚫𝒖𝒌 ∈ [𝒖𝑚𝑖𝑛, 𝒖𝑚𝑎𝑥] , (15a)

where H 𝑐𝑏 𝑓

𝑘, 𝑗
is equivalent to (14c), 𝜆𝑐 > 0 denotes the

penalty parameter. Employing 𝐽𝑐𝑜𝑟𝑟 to represent the loss
function in (15).

In terms of the box constraints QP problem in (15), we
perform gradient descent on the 𝐽𝑐𝑜𝑟𝑟 to obtain the suitable
direction. The clamp function is also executed to ensure
compliance with the box constraints. Details are provided
below:

𝚫�̂�𝒊+1 = 𝚫𝒖𝒊 − 𝛾𝑐∇𝚫𝒖𝒊 𝐽𝑐𝑜𝑟𝑟 (16)

where the appropriate step size 𝛾𝑐 is determined by the linear
search method that will be proposed later.

𝚫𝒖𝒊+1 = Clamp(𝒖 + 𝚫�̂�𝒊+1, 𝒖𝑚𝑖𝑛, 𝒖𝑚𝑎𝑥) − 𝒖 (17)

Furthermore, it was suggested by [25] that naive clamping
for box constraints could damage the direction of descent
and convergence. To address this, we modify the Armijo
condition in [26] to propose the Armijo-box condition in
(18) for the box constraints in the linear search method for
𝛾𝑐, ensuring that 𝒖 + 𝚫�̂�𝒊+1 stays as much inside the box
constraints as possible.

(𝐴𝑟𝑚𝑖 𝑗𝑜(·) and 𝒖 + 𝚫�̂�𝒊+1 (𝛾𝑐) ∈ [𝒖𝑚𝑖𝑛, 𝒖𝑚𝑎𝑥])
or iteration counter ≥ maximum iteration (18)

Following the aforementioned procedures, we finally
present the SLPG correction approach, which includes the
key steps, i.e., the Sequential Linearization, the Quadratic
Penalty method and the Gradient Decent with modified

linear search condition. Pseudocode of SLPG can be seen
in Algorithm 1.

C. Augmented Lagrangian-based Training Algorithm with
Guide Policy Constraints

After the SLPG correction, we obtained the corrected input
�̂�. By incorporating SLPG into the training process, the
overall objective of the training can be defined as addressing
a following optimization problem (19) which is equivalent to
(11). (19b) is also employed as the guide policy constraints
that can convert SLPG into a sub-guide policy during the
training.

min
�̂�=SLPG(𝝅𝜃𝑁

)
𝐽 (�̂�, 𝒙𝒈𝒐) (19)

s.t. 𝐻
𝑐𝑏 𝑓

𝑘, 𝑗
(�̂�0:𝑲 ,𝑶 𝒋) ≤ 0, 𝑘 ∈ [0, 𝑁), 𝑗 ∈ [0, 𝑛𝑜𝑏𝑠)

(19a)
𝚫𝒖 = �̂� − 𝝅𝜃𝑁 = 0 (19b)

Thus, we can build the following loss function to train the
policy network, which can be seen as the ALM of the (19),

L(�̂�, 𝝀, 𝝁) =𝐽 (�̂�, 𝒙𝒈𝒐) +
𝑁∑︁
𝑖=0

𝑛𝑜𝑏𝑠∑︁
𝑗=0

𝜆𝑐𝑖, 𝑗H𝑖, 𝑗 +
𝜇𝑐

2

𝑁∑︁
𝑖=0

𝑛𝑜𝑏𝑠∑︁
𝑗=0
H2
𝑖, 𝑗

+𝝀𝒅𝒖 · abs(𝚫𝒖) + 𝜇𝑑𝑢

2
∥ 𝚫𝒖∥2 (20)

where H𝑖, 𝑗 = ReLU(𝐻𝑐𝑏 𝑓

𝑖, 𝑗
(�̂�0:𝒊 ,𝑶 𝒋)), 𝝀 =

[
𝝀𝒄 𝝀𝒅𝒖

]
is

the Lagrange multiplier and belongs to a positive set. 𝝁 =[
𝜇𝑐 𝜇𝑑𝑢

]
represents the corresponding penalty parameter,

with all values being positive. And abs(·) computes the
absolute value of each element. It is important to note that
the presence of the penalty on 𝚫𝒖 is due to an implicit expec-
tation in the original problem. This expectation is to guide
the original policy network 𝜃𝑁 to approach the corrected
policy from SLPG in order to enable 𝜃𝑁 to directly generate
a feasible solution, thus making (19) be equivalent to (11).
What’s more, such policy-guided training can optimize the
training direction and speed up convergence.

A gradient search is then performed on L(�̂�, 𝝀, 𝝁) to
obtain the optimal tuple, which is shown as follows:

𝜃𝑛+1𝑁 = 𝜃𝑛+1𝑁 − 𝜂𝜃∇𝜃𝑛
𝑁
L(�̂�𝒏, 𝝀𝑛, 𝝁) (21)

𝜆
𝑐,𝑛+1
𝑖, 𝑗

= 𝜆
𝑐,𝑛
𝑖, 𝑗
+ 𝜇𝑐,𝑚E𝑏𝑎𝑡𝑐ℎ [H𝑖, 𝑗 ] (22)

𝝀𝒅𝒖,𝒏+1 = 𝝀𝒅𝒖,𝒏 + 𝜇𝑑𝑢,𝑚E𝑏𝑎𝑡𝑐ℎ [abs(𝚫𝒖)] (23)

where 𝑏𝑎𝑡𝑐ℎ denotes the training batch size and 𝜂𝜃 rep-
resents the learning rate. 𝑛 and 𝑚 denote the 𝑛-th training
step and 𝑚-th epoch, respectively. What’s more, the penalty
parameters will be updated at the end of each epoch when
the following condition occurs:

if E𝑒𝑝𝑜𝑐ℎ [∥H∥2] < 𝛽𝑐/𝜖𝑐 : 𝛽𝑐 = E𝑒𝑝𝑜𝑐ℎ [∥H∥2]
𝜇𝑐,𝑚+1 = min(𝜖𝑐 · 𝜇𝑐,𝑚, 𝜇𝑐𝑚𝑎𝑥) (24)

if E𝑒𝑝𝑜𝑐ℎ [∥𝚫𝒖∥2] < 𝛽𝑑𝑢/𝜖𝑑𝑢 : 𝛽𝑑𝑢 = E𝑒𝑝𝑜𝑐ℎ [∥𝚫𝒖∥2]
𝜇𝑑𝑢,𝑚+1 = min(𝜖𝑑𝑢 · 𝜇𝑑𝑢,𝑚, 𝜇𝑑𝑢

𝑚𝑎𝑥) (25)



Algorithm 2: SOMTP (During Training)
Input : Dataset: D; Penalty: 𝝁; Step size: 𝜂𝜃 ;

Penalty updating values: 𝜖𝑐, 𝜖𝑑𝑢; Max
penalty: 𝜇𝑐𝑚𝑎𝑥 , 𝜇𝑑𝑢

𝑚𝑎𝑥

Output: Policy Network: 𝜃𝑁
Init : 𝜃𝑁 , 𝝀, 𝝁, 𝛽𝑐, 𝛽𝑑𝑢

1 for 𝑚 ← 0 to 𝑀 do
2 Shuffle dataset D;
3 for 𝑛← 0 to 𝑁 do
4 From D choose Data 𝑑; 𝒖 ← 𝜃𝑁 (𝑑);
5 �̂�,𝚫𝒖 ← Alg.SLPG(𝒖, 𝑑);
6 Calculate L(�̂�, 𝝀, 𝝁) using (20);
7 Update 𝜃𝑁 using (21);
8 Update 𝝀 using (22) and (23);
9 end

10 If the condition occurs, update 𝝁 and [𝛽𝑐, 𝛽𝑑𝑢]
using (24) and (25)

11 end
12 Return 𝜃𝑁

where 𝜖𝑐, 𝜖𝑑𝑢 > 1 are constants and 𝑒𝑝𝑜𝑐ℎ denotes the
training epoch. As for now, the overall training process has
been presented, which can also be seen in Algorithm 2.

V. EXPERIMENTAL RESULTS

In this section, experiments are carried out to compare the
effectiveness of SOMTP to baselines on CBF-MPC-based
safe trajectory planning problem. The chosen experimental
agent is the autonomous vehicle with the following kinematic
model:

𝒙𝒌+1 = 𝒇 (𝒙𝒌 , 𝒖𝒌 ) =

𝑋 + 𝑣 cos 𝜙d𝑡
𝑌 + 𝑣 sin 𝜙d𝑡
𝜙 + 𝑣 tan 𝑞/𝐿d𝑡


where 𝒖𝒌 =

[
𝑣 𝑞

]𝑇 . Specifically, we compare SOMTP
against the following baselines:

• IPOPT, SQPmethod (Traditional Optimizer): We em-
ploy the IPM-based optimizer IPOPT [27] and the
SQP-based optimizer SQPmethod (with OSQP [28] to
solve the sub-QP problem) in CasADi [29]. In addition,
CasADi is also utilized as an algorithmic differentiation
tool in both optimizers;

• MSE, MAE: trained to minimize the L2 norm error
or the L1 norm error between the optimizer network’s
outputs and the optimal solutions from the traditional
optimizer (IPOPT);

• Penalty: trained to minimize a soft loss in (8);
• DC3: proposed in [7];
• PDL: proposed in [17];
• ALM (ablation study): SOMTP without SLPG correc-

tion at both train and test time;
• SOMTP-w/o𝚫𝒖 (ablation study): SOMTP without

guide policy constraints in (19b) so that the ALM loss
in (20) will not contain the penalty on 𝚫𝒖;

The same neural network is employed across all exper-
iments, with the structure in Fig. 3 and five CO-Layers.
Each CO-Layer has a hidden layer fully connected with 2000
nodes, which is then followed by a dropout layer (rate 0.3).
The optimizer network is trained using PyTorch [30], and
the training process is executed on a system equipped with
a GeForce RTX 3080 GPU and an Intel Xeon 2.9GHz CPU.
To train the neural network, we generate the dataset with a
total of 1 million examples (with train/test/validation ratio
18/1/1). For each example, the goal state 𝒙𝒈𝒐 and obstacles
𝑶 𝒋 are randomly generated within the local cost map (6 m
× 6 m). Each example has three obstacles (𝑛𝑜𝑏𝑠 = 3), each
with a circular shape and a radius 𝑅𝑜 ∈ [0, 0.5] m. The
prediction horizon 𝑁 is 20. 𝑸 and 𝑹 are 𝑑𝑖𝑎𝑔( [2.0, 2.0, 1.0])
and 𝑑𝑖𝑎𝑔( [1.0, 1.5]), respectively. In addition, (𝛾, 𝑅, 𝑙𝑒𝑥) =
(0.5, 0.3, 0.1), which is used in (5) and (6).

A. Results on the Test Dataset

Table. I compare the performance of the SOMTP algo-
rithm with traditional optimizers and other learning-based
methods on the test dataset. For our SLPG correction pro-
cedure, we use (𝑛𝑡𝑟𝑎𝑖𝑛𝑚 , 𝑖𝑡𝑟𝑎𝑖𝑛𝑚 ) = (2, 2) and (𝑛𝑡𝑒𝑠𝑡𝑚 , 𝑖𝑡𝑒𝑠𝑡𝑚 ) =
(10, 2). The following five indicators are selected to compare
the results:

• Obj.: mean object value from the loss function in (5);
• Mean CBF: mean violations of the cumulative CBF non-

convex constraints E𝑡𝑒𝑠𝑡 [
∑𝑁

𝑖=0
∑𝑛𝑜𝑏𝑠

𝑗=0 H𝑖, 𝑗 ];
• Max CBF: maximum violations on CBF constraints;
• Infe. (%): infeasibility rate over the test dataset =

(number of infeasible instances) / (total number of
instances)×100%;

• Time (ms): mean time cost to solve.

According to Table. I, SOMTP has a remarkably low
infeasibility rate that is only surpassed by IPOPT. In addition,
SOMTP is capable of providing the result 79× faster than
IPOPT with similar optimality. The results also indicate
that SSLMs are more feasible than SLMs. According to
the results, the SLPG correction employed at test time
can effectively reduce infeasibility. Nevertheless, the results
of ALM and SOMTP-w/o𝚫𝒖⩽̸ indicate that only applying
SLPG correction to the training procedure without a guide
policy constraint does not significantly contribute to its
feasibility. By incorporating the guide policy constraints with
𝚫𝒖 into the training procedure, the feasibility of SOMTP
(or SOMTP⩽̸) is significantly enhanced. This suggests that
the guide policy constraints in (19b) and (20) can guide the
learning process to a better point and accelerate convergence.
What’s more, though some baselines have very low Obj., they
violate the obstacle constraints, and their strategies are likely
to find the shortest trajectory between the current position
and the target point in the obstacle-free task.

Overall, SOMTP achieves state-of-the-art (SOTA) in
learning-based optimization algorithms for the CBF-MPC-
based trajectory planning problem, with a much lower infea-
sibility rate, fewer violations of CBF constraints, and similar
optimality.



TABLE I
RESULTS ON TEST DATASET (WITH 50000 INSTANCES).1

Algorithm Obj. Mean CBF Max CBF Infe. (%) Time (ms)

IPOPT 165.31 0.0000 0.0000 0.00 83.676
SQPmethod 170.72 0.0000 0.0010 0.35 115.18

SOMTP * 167.93 0.0000 0.0252 0.07 1.057
SOMTP,⩽̸ 167.92 0.0000 0.0555 0.11 0.727
SOMTP-w/o𝚫𝒖 165.57 0.0002 0.1537 0.64 1.841
SOMTP-w/o𝚫𝒖,⩽̸ 165.55 0.0005 0.1537 0.85 0.717
ALM 164.70 0.0003 0.1746 0.87 0.724
DC3 163.23 0.0006 0.2091 1.54 1.037
DC3,⩽̸ 163.23 0.0007 0.2129 1.54 0.741
Penalty 162.88 0.0008 0.1792 1.74 0.728
PDL 160.53 0.0027 0.1807 3.71 0.744
MSE 169.74 0.1007 0.2703 16.56 0.760
MAE 164.89 0.1015 0.2794 17.48 0.739

⩽̸ denotes the absence of correction phase (like SLPG correction) at test time.
1 To address the speed discrepancy in algorithmic differentiation like the calculation of gradi-
ents, traditional optimizers and learning-based algorithms that necessitate correction procedures
utilize CasADi to provide gradients during testing.
* SOMTP can provide the output 79× faster than IPOPT with similar optimality and a very

low infeasibility rate. Furthermore, it is far more feasible than other learning-based algorithms
and shows a lower infeasibility rate compared to the traditional optimizer SQPmethod.

(a)

(b)

SOMTP
IPOPT

Fig. 4. Continues trajectory plan-
ning tasks on robot. Each grid is 1
m in width. The target area is de-
noted by a red circle. Green arrays
represent the initial states, while red
arrays represent the target states.

TABLE II
RESULT ON ROBOT IN TEN

DIFFERENT PLANNING TASKS.

Alg. Suc. Dist.

IPOPT 90% 0.1112
SOMTP 90% 0.2008
PDL 80% 0.2253
DC3 80% 0.2714
MAE 40% 0.0734
MSE 40% 0.0734

(a) (b) (c)

SOMTP
IPOPT

Fig. 5. Apply optimizers to robot‘s trajectory planning tasks with variable quantities of obstacles. Each grid
is 1 m in width. The target area is denoted by a red circle. Green arrays represent the initial states, while
red arrays represent the target states.

B. Results on the Robot’s Navigation

We also apply our algorithm to the robot in 10 different
tasks to compare the performance in continuous trajectory
planning. The robot will repeatedly solve the CBF-MPC
based trajectory planning problem in (5) in each time-step
until it reaches the target area or encounters an obstacle.
Results can be seen in Table. II and Fig. 4. The task is
considered successfully achieved when the robot reaches
the target area. The success rate (the number of successful
instances / the total number of instances) is denoted as [Suc.],
whereas the average final weighted distance to the target in
the success instances is represented as [Dist.]. Experiments
show that during robot navigation, continuous trajectory
planning and control will amplify the impact of infeasibility,
causing frequent collisions with MAE and MSE. Over all
the tasks, SOMTP achieves a high success rate and can
sometimes complete tasks that IPOPT fails. Nevertheless, the
SSLM-based optimizers ultimately achieve larger weighted
distances than IPOPT. This could be attributed to the fact

that SSLM-based methods have a higher tendency to train
for tasks where the target is more away from the current
position, which leads to larger losses.

Ultimately, to confirm the practicality and robustness of
the SOMTP-based optimizer, we tested its performance on
tasks with variable quantities of obstacles and long-distance
planning. The figures in Fig. 5 illustrate the practicality and
robustness of the algorithm.

VI. CONCLUSIONS

We propose SOMTP, a self-supervised learning-based op-
timization algorithm for CBF-MPC-based trajectory planning
problem, which belongs to a complex non-convex COP.
The core components of SOMTP consist of three parts: (1)
the problem transcription can transcribe the problem into
a neural network and satisfy most of the constraints; (2)
the SLPG correction can pull the initial solution closer to
the non-convex safe set and provide a guide policy for the
following training process; and (3) the ALM-based training



process with guide policy constraints integrated ensures that
the network reaches a feasible point with regard to both
feasibility and optimality. Experiments demonstrate that our
SOMTP has significantly greater feasibility compared to
previous learning-based algorithms, as well as being consid-
erably faster than traditional optimizers while maintaining a
similar level of optimality.

What’s more, we believe that the SOMTP algorithm holds
referential significance for other COPs and optimal control
problems with non-convex constraints. And our strategy for
CBF constraints is also meaningful for CBF-based safe RL.
Therefore, in future work, we will try to extend SOMTP to
other COPs as well as explore safe RL strategies based on
the SOMTP algorithm.
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