
This is the submitted version of the article:

de Cea Dominguez, Carlos; Moure, Juan C.; Bartrina Rapesta, Joan; [et al.].
«Complexity scalable bitplane image coding with parallel coefficient process-
ing». IEEE Signal Processing Letters, Vol. 27 (June 2020), p. 840-844. DOI
10.1109/LSP.2020.2990307

This version is available at https://ddd.uab.cat/record/234856

under the terms of the license

https://ddd.uab.cat/record/234856


1

Complexity Scalable Bitplane Image Coding

with Parallel Coefficient Processing
Carlos de Cea-Dominguez, Juan C. Moure, Joan Bartrina-Rapesta, and Francesc Aulı́-Llinàs

Abstract—Very fast image and video codecs are a pursued
goal both in the academia and the industry. This paper presents
a complexity scalable and parallel bitplane coding engine for
wavelet-based image codecs. The proposed method processes
the coefficients in parallel, suiting hardware architectures based
on vector instructions. Our previous work is extended with a
mechanism that provides complexity scalability to the system.
Such a feature allows the coder to regulate the throughput
achieved at the expense of slightly penalizing compression effi-
ciency. Experimental results suggests that, when using the fastest
speed, the method almost doubles the throughput of our previous
engine while penalizing compression efficiency by about 10%.

Index Terms—High-throughput image coding, JPEG2000.

I. INTRODUCTION

THE pursuit of faster image and video coding systems

began shortly after the development of the first codecs

and compression standards. Traditional image coding systems,

such as SPIHT [1] or EBCOT [2], have been revisited many

times introducing modifications that accelerate their coding

process and/or alleviate computational resources [3]–[8]. Also,

many hardware architectures of such systems are optimized to

reduce execution time and meet the real-time requirements

of some environments [9]–[12]. These works focus on the im-

provement, or efficient implementation, of the most demanding

tasks of the codec, without modifying the techniques of the

original system. In general, such techniques code the data via

a single-thread procedure. This strategy together with the soar-

ing of the processor’s clock speed for more than three decades,

enhanced the codecs’ throughput significantly. Since 2005 the

increase in the clock’s speed slowed and processors began

augmenting their processing power via parallel architectures.

The transition from single- to multi-thread algorithms in the

image coding field began with the advent of multi-core Central

Processing Units (CPUs) in the 2000s [13]–[16]. The first

multi-thread codecs partitioned the image in multiple pieces

(referred to as codeblocks onward) that can be processed

independently. In international standards such as JPEG2000

(ISO/IEC 15444) or HEVC (ISO/IEC 23008-2), for instance,

the coding system provides multiple opportunities for such

coarse-grain parallelism. However, the core algorithms do not

allow fine-grain parallelism since they are envisaged from

Carlos de Cea-Dominguez, Joan Bartrina-Rapesta and Francesc Aulı́-Llinàs
are with the Dep. of Information and Communications Engineering and Juan
C. Moure is with the Dep. of Computer Architecture and Operating Systems,
Universitat Autònoma de Barcelona, Spain (phone: +34 935811861; fax:
+34 935813443; e-mail: carlos.decea@uab.cat). This work has been partially
supported by the Spanish Ministry of Economy and Competitiveness and the
European Regional Development Fund under Grants TIN2017-84553-C2-1-
R and RTI2018-095287-B-I00 (MINECO/FEDER, UE), and by the Catalan
Government under Grants 2017SGR-463 and 2017SGR-313. Copyright (c)
2020 IEEE. Personal use of this material is permitted. However, permis-
sion to use this material for any other purposes must be obtained from

the IEEE by sending a request to pubs-permissions@ieee.org.

a single-thread perspective, resulting in a causal relationship

among samples that makes parallel processing difficult.

This drawback was inconsequential while highly parallel

computing was not widely available. This changed in the

last years, when CPUs began including vector instructions to

exploit fine-grain parallelism and, more importantly, when par-

allel architectures and platforms like CUDA were introduced

allowing massive parallelism in commodity Graphics Process-

ing Units (GPUs). Algorithms of other fields that were well

suited to fine-grain parallelism were rapidly adapted in GPUs,

achieving 20× speedups or more [17]. When implemented in

GPUs, image and video coding systems did not achieve such

speedups due to the sequential techniques employed.

Aware of this fact, the Joint Photographics Experts Group

launched a call for proposals in 2017 [18] to introduce a

new part to the JPEG2000 standard that defines a new tier-

2 coding variant that offers high throughput [19]. This part is

called HTJ2K (ISO/IEC 15444-15). It is devised to benefit

from the modern instruction sets like AVX2, NEON, and

BMI2 included in new CPUs, and also from the GPU’s highly

parallel architecture [20]. It is about 10× faster than the

standard when executed in a CPU, though it penalizes coding

performance in approximately 10%. Also, it sacrifices quality

scalability, which is a valued feature of the standard that allows

transmitting the image progressively by quality.

In a similar line, in 2014 we started a research whose goal

is a JPEG2000-like codec that provides opportunities for fine-

grain parallelism in all the stages of the coding process [21]–

[25]. The proposed codec was recently evaluated using a com-

modity GPU. Experimental results suggest that it achieves 10×
speedups compared to an implementation of JPEG2000 that is

executed in a workstation with 4 CPUs [26]. The adaptation

of the bitplane coding engine was the most demanding task

since it requires the modification of the original techniques of

JPEG2000, losing compliance. The proposed bitplane coding

engine with parallel coefficient processing (BPC-PaCo) uses

vector instructions of 32 lanes (or, equivalently, 32 CUDA

threads) to process 32 coefficients within a codeblock in

parallel. BPC-PaCo sacrifices coding efficiency as compared

to JPEG2000 by about 2% but maintains all its features.

This paper introduces a mechanism that provides a new

feature to BPC-PaCo: complexity scalability. The proposed

mechanism allows trading computational complexity for com-

pression efficiency. The underlying motivation is that some

environments may be willing to sacrifice coding performance

in exchange of throughput. Complexity scalable BPC-PaCo

(CS BPC-PaCo) allows tuning the codec to accelerate more or

less the coding process. Evidently, the higher the throughput

achieved, the more affected are the compression efficiency and

quality scalability of the system. Experimental results indicates



2

that speedups of almost 2× are achieved compared to BPC-

PaCo while penalizing performance by about 10%.

The rest of the paper is structured as follows. Section II

reviews BPC-PaCo and Section III describes the proposed

complexity scalable mechanism. Experimental results are pre-

sented in Section IV. The last section summarizes this work.

II. REVIEW OF BPC-PACO

BPC-PaCo utilizes a traditional bitplane coding strategy

that codes the wavelet coefficients from the most significant

bitplane M −1 to the least, with M being a sufficient number

of bits to represent all coefficients within a codeblock. A

bitplane is the collection of bits bj from all coefficients,

with [bM−1, bM−2, ..., b1, b0], bi ∈ {0, 1} denoting the binary

representation of an integer υ that represents the magnitude of

the index obtained by quantizing wavelet coefficient ω. The

first non-zero bit of the binary representation of υ is denoted

by bs and is referred to as the significant bit. The sign of the

coefficient is denoted by d ∈ {+,−} and is coded immediately

after bs, so that the decoder can begin approximating ω as

soon as possible. The bits br, r < s are referred to as

refinement bits. Although two or three coding passes may be

employed [24], [25], the two coding pass version is employed

herein as baseline since it achieves higher throughput. The

first is called significance coding. It processes the bits of non-

significant coefficients, i.e., those coefficients whose s ≤ j

or, more precisely, whose significance state Φ(υ, j) = 0. The

second pass is called refinement coding and processes the bits

of the remaining coefficients (i.e., those whose Φ(υ, j) = 1).

The main difference between BPC-PaCo and other bitplane

coding engines is that BPC-PaCo codes multiple coefficients

in parallel. The scanning order is organized in stripes of two

columns. The stripes are processed by threads that advance

their execution synchronously, all coding the coefficient in

the same position of their corresponding stripe. This is the

key to achieve fine-grain parallelism, since a single vector

instruction is executed to code T coefficients of the codeblock

at the same clock cycle. In general, the codeblock contains

64×64 coefficients, so T = 32. Evidently, this strategy must

be accompanied with parallel techniques for context formation,

probability estimation, and entropy coding.

For significance coding, the context of υ at bitplane j is

determined considering its eight adjacent neighbors, denoted

by υk, via φsig(υ, j) =
∑

k Φ(υ
k, j). The context for sign

coding, denoted by φsign(ω, j), employs a similar strategy,

whereas the refinement pass employs a single context since

little gain is achieved with more complex models [27], so

φref (υ, j) = 0. Through the context, the probability estimate

of the encoded bit is extracted from a lookup table (LUT)

known by encoder and decoder [21]. The LUT for significance

coding is accessed as Pu[j][φsig(·)], with u denoting the

wavelet subband. This LUT contains the probability that bj
is 0, which is determined according to

Psig(bj = 0 | φsig(υ, j)) =

2
j
−1

∑

υ=0

Fu(υ | φsig(υ, j))

2
j+1

−1
∑

υ=0

Fu(υ | φsig(υ, j))

, (1)

where Fu(v | φsig(υ, j)) is the probability mass function (pmf)

of the quantization indices at bitplane j given their context.

Its support is [0, ..., 2j+1 − 1] since it contains quantization

indices that were not significant in bitplanes greater than

j. Probabilities for sign and refinement coding are derived

similarly. Their respective LUTs are denoted by P ′

u and P ′′

u .

Entropy coding is carried out through multiple arithmetic

coders that produce fixed-length codewords [22] as data are

coded. Each thread employs one such a coder. The dispatching

of the codewords in the quality embedded bitstream generated

for the codeblock requires cooperation among threads. It is

optimally constructed so that the bitstream can be truncated

at the end of coding passes yielding minimum distortion (see

Section III.C and III.D in [24]).

III. COMPLEXITY SCALABLE BPC-PACO

A distinct feature of bitplane coding engines, including

BPC-PaCo, is that they code the coefficients in multiple passes

per bitplane. This strategy is aimed to code first those data

that mostly decrease the image distortion. At the decoder, the

wavelet coefficients are progressively reconstructed, allowing

a fine refinement of the estimates of the incoming data. These

estimates are key to achieve compression. They are commonly

embodied in the context formation and probability model.

Another advantage of using multiple passes per bitplane is

that the bitstream contains multiple truncation points, one at

the end of each coding pass. They are key to achieve quality

scalability since they are employed by the rate-distortion opti-

mization method to minimize the distortion at a target rate(s).

Unfortunately, more coding passes entail more computational

complexity. Each pass scans all coefficients of the codeblock

despite coding the bits for only some of them. This is repeated

in each coding pass, so a coefficient is accessed as many times

as coding passes are executed.

The main idea behind Complexity Scalable BPC-PaCo

(CS BPC-PaCo) is to reduce the computational complexity of

the coding engine by reducing the number of times that each

coefficient is visited. To do so while minimizing the impact

on compression efficiency and quality scalability, bitplanes

[M −1, N ] are coded as defined in BPC-PaCo. From bitplane

N − 1 to the lowest, each coefficient is coded with a fast

mode that uses a single pass. Differently from conventional

bitplane coding strategies, this single pass carries out inter-

bitplane coding since it transmits the information of multiple

bitplanes at once. Through N , the granularity of the quality

scalability, the compression efficiency, and the computational

complexity of the algorithm are controlled. When N is low,

more bitplanes are coded with two coding passes, producing

many truncation points that can be employed by rate-distortion

optimization procedures. Also, coefficients are reconstructed

progressively, allowing fine estimates. Evidently, low Ns do

not reduce computational complexity significantly. When N

is high, more bitplanes are coded in fast mode, reducing

computational complexity though producing fewer truncation

points and penalizing compression efficiency due to rougher

estimates. This mechanism provides complexity scalability to

the codec, since it can be employed to favor the application’s

throughput or the compression efficiency/quality scalability.



3

The same coding techniques of [24], with the modifications

described below, are valid in the fast mode to remove the data

dependency when coding coefficients in parallel.

Algorithm 1 describes the proposed coding engine from a

thread (or a single lane of a vector instruction) perspective.

From line 1 to 14, it employs the same procedure as that of

BPC-PaCo (see Section III.D in [24]). The only difference is

that the loop in line 1 codes bitplanes [M − 1, N ] instead of

[M−1, 0]. The position of the coefficient within the codeblock

is denoted by y and x for the row and column, respectively.

The fast mode is embodied in lines 15 to 29. It encodes bits

[N−1, 0] at once for each coefficient. The significance context

is computed in line 17 before start coding and it is employed

until bs is found. This context does not change from bitplane

N−1 to 0 since no more information of the adjacent neighbors

is available once the fast mode begins. This also needs to be

considered in the probability model, so the LUT employed

in the fast mode for significance coding in bitplanes j′ =
[N − 1, 0] is populated according to

Psig(bj′ = 0 | φsig(υ,N−1)) =

2
j′
−1

∑

υ=0

Fu(υ | φsig(υ,N − 1))

2
j′+1

−1
∑

υ=0

Fu(υ | φsig(υ,N − 1))

.

(2)

Probabilities for sign coding are determined accordingly. The

LUT for refinement is unchanged due to the use of a single

context.

The selection of N is key to control the computational

complexity of the engine. A straightforward approach is to

apply the same N to all codeblocks. Our experience indicates

that this may penalize quality scalability significantly because

at the lowest N bitplanes there is only one truncation point

available for each codeblock. When the bitstreams segments

of higher bitplanes are already selected, the rate-distortion

optimization method can only include the whole segment of

some codeblocks, completely discarding some others. At low

rates, this may cause that none information is transmitted for

some areas of the image, producing an image with blank

areas or with no color information. The quality scalability

of the system is less affected when N is chosen depending

on the codeblock’s data and the wavelet subband. Let us

explain further. As indicated in [28], the highest bitplanes of

a codeblock contain the information that mostly decreases the

distortion. In terms of rate-distortion optimization, this means

that is more valuable the data coded in bitplane j = 4 for

a codeblock with M = 5 than for another with M = 6, for

example. Therefore, our strategy selects N depending on M .

The wavelet subband is also considered. The first decompo-

sition levels (i.e., the largest wavelet subbands) contain most

codeblocks, whereas the latest contain much fewer, so the use

of the fast mode in the codeblocks of the smallest resolution

subbands barely affects the throughput achieved. However,

these codeblocks contain the rougher details of the image,

important for its reconstruction. Our strategy selects N in each

codeblock according to

Algorithm 1 Complexity Scalable BPC-PaCo (encoder)

Parameters: u subband, t stripe, M bitplanes to code, N

bitplanes in fast mode

1: for j ∈ [M − 1, N ] do
2: for y ∈ [0, numRows− 1] do
3: for x ∈ [t · 2, t · 2 + 1] do
4: if Φ(υy,x, j + 1) = 0 then
5: ACencode(bj , Pu[j][φsig(υy,x, j)], t)
6: if bj = 1 then
7: ACencode(d, P ′

u[j][φsign(ωy,x, j)], t)
8: end if
9: else

10: ACencode(bj , P ′′

u [j][0], t)
11: end if
12: end for
13: end for
14: end for
15: for y ∈ [0, numRows− 1] do
16: for x ∈ [t · 2, t · 2 + 1] do
17: c← φsig(υy,x, N − 1)
18: for j ∈ [N − 1, 0] do
19: if Φ(υy,x, j + 1) = 0 then
20: ACencode(bj , Pu[j][c], t)
21: if bj = 1 then
22: ACencode(d, P ′

u[j][φsign(ωy,x, N − 1)], t)
23: end if
24: else
25: ACencode(bj , P ′′

u [j][0], t)
26: end if
27: end for
28: end for
29: end for

N = min

(

M,

⌊

M ·
K

Lu

⌋)

. (3)

K is the input parameter of our implementation that controls

the computational complexity of the codec. Larger Ks achieve

larger Ns, so more bitplanes are coded in fast mode, rising the

codec’s throughput. Lu is the L2norm of the synthesis basis

vectors of the subband’s filter-bank (it is assumed equal energy

gain factor in all subbands). The higher the decomposition

level, the more decreases the K, resulting in lower Ns in

the smallest resolution levels. Through this strategy, the fast

mode is applied at different bitplanes depending on the data

and subband of the codeblock, providing more variability to

the rate-distortion optimization method.

IV. EXPERIMENTAL RESULTS

The ISO 12640-1 corpus is employed (8 color images,

2560×2048, and 8 bits per sample (bps)). The results report

the performance achieved by JPEG2000, BPC-PaCo, and the

proposed CS BPC-PaCo. The same Java framework BOI [29]

is used for all codecs, using the same rate-distortion optimiza-

tion method. Results for throughput are computed when the

coding engine is executed with a single thread. This gives

an approximation of the computational complexity of the al-

gorithm. 5 levels of wavelet decomposition and codeblocks of

64×64 are employed. These coding parameters are selected as

the most commonly used. A smaller codeblock size alleviates

the penalization in coding efficiency of the proposed method,



4

TABLE I: Evaluation of the proposed method for lossless and lossy compression. All results are reported in bps except for

the speedup, which is the percentage of CS BPC-PaCo with respect to BPC-PaCo (on average for the encoder and decoder).

LOSSLESS COMPRESSION LOSSY COMPRESSION
BPC- CS BPC-PaCo BPC- CS BPC-PaCo

JP2 PaCo K = 0.5 K = 1.5 K = ∞ JP2 PaCo K = 1 K = 2 K = ∞

Portrait 3.80 +0.21 +0.22 7% +0.39 56% +0.43 76% 2.60 +0.10 +0.16 21% +0.27 51% +0.31 68%

Cafe. 4.68 +0.13 +0.16 10% +0.47 59% +0.52 74% 3.61 +0.08 +0.23 40% +0.43 63% +0.50 81%

Fruit 3.96 +0.20 +0.22 5% +0.40 52% +0.43 70% 2.73 +0.11 +0.18 24% +0.28 48% +0.32 62%

Wine 3.94 +0.20 +0.21 8% +0.37 55% +0.41 72% 2.71 +0.08 +0.14 27% +0.22 50% +0.27 70%

Bicycle 3.90 +0.20 +0.22 7% +0.41 54% +0.46 69% 2.67 +0.11 +0.20 29% +0.32 55% +0.36 70%

Orchid 3.44 +0.26 +0.27 7% +0.39 48% +0.43 71% 2.15 +0.12 +0.17 20% +0.25 46% +0.28 62%

Music. 5.34 +0.20 +0.29 8% +0.78 56% +0.84 68% 4.40 +0.11 +0.36 42% +0.61 67% +0.66 79%

Candle 4.74 +0.15 +0.20 11% +0.53 56% +0.60 73% 3.69 +0.08 +0.26 40% +0.47 66% +0.52 76%

average 4.22 +0.20 +0.22 8% +0.47 54% +0.51 72% 3.07 +0.09 +0.21 30% +0.36 56% +0.40 71%

−5

−4

−3

−2

−1

0

1

0 0.5 1 1.5 2

37
.9

39
.4

40
.5

41
.3
3

42
.9
7

44
.5

45
.6
3

46
.8
5

48
.1
9

P
S
N

R
 d

if
fe

re
n
c
e
 (
in

 d
B
)

rate (in bps)

BPC−PaCo
K=0.5

K=0.75

K=1
K=1.5

K=2

(a)

0

10

20

30

40

50

60

encoder

decoder

0.5 0.75 1 1.5 2

th
ro

u
g
h
p
u
t 
in

c
re

a
s
e
 (
in

 %
)

K

(b)

Fig. 1: Evaluation of (a) lossy coding performance and (b) throughput achieved for the “Orchid” image when using different

Ks. In (a), the horizontal straight plot depicts the performance achieved by JPEG2000, whereas the other plots depict the

performance achieved by the proposed method with different Ks, or by BPC-PaCo.

whereas fewer wavelet levels degrades coding performance

significantly at low rates.

Table I (left) reports the results for lossless compression.

They use K = {0.5, 1.5,∞}. K = ∞ achieves the fastest

speed since all bitplanes are coded with the fast mode. The

results of this table suggest that CS BPC-PaCo can accelerate

the coding process of the original engine by 72% whereas

the penalization in coding performance is, with the fastest

speed, 13% and 10% as compared to JPEG2000 and BPC-

PaCo, respectively.

Table I (right) reports lossy compression results when

K = {1, 2,∞}. This test evaluates the rate and throughput

increase achieved when all bitplanes are coded, achieving a

quality above 50 dB. The results suggest that when K = 1 the

engine’s throughput is increased by 30% whereas the rate by

4% with respect to BPC-PaCo. For K = 2 (K = ∞), through-

put and rate are respectively increased by 56% (71%) and 9%

(10%). Note that, in terms of percentage, the throughput is

more increased than the decrease in compression efficiency.

Fig. 1(a) evaluates the quality scalability achieved by the

proposed method, for the “Orchid” image. Results hold for

the others. The figure reports the coding performance achieved

at 200 rates equivalently distributed between 0.01 and 2 bps,

in terms of Peak Signal to Noise Ratio (PSNR) difference

between JPEG2000 and BPC-PaCo or CS BPC-PaCo when

using different Ks. The results are obtained when all bitplanes

are coded and then the rate-distortion optimization method

constructs the final file, or quality layers, at the target rates.

For K ∈ (0, 1) the losses in coding performance are below 2

dB for the whole rate range. Larger Ks result in higher losses,

especially for low rates. This penalization in compression effi-

ciency is caused by both the lack of enough truncation points

and the poorer efficiency of the arithmetic coder due to rougher

estimates of the coefficients. Fig. 1(b) reports the throughput’s

increase when using the same Ks as before. When K = 1
the throughput is increased in 20% while slightly affecting

the coding efficiency (see Fig. 1(a)). Although larger Ks

penalize more the image quality, the throughput’s enhancement

is significant, achieving more than 40% when K = 2.

V. CONCLUSIONS

Many efforts have been done to increase the throughput

of image and video codecs. Common approaches are to

implement them in hardware or to simplify their algorithms,

which sometimes sacrifices some features. This paper presents

a fast bitplane coding engine that, in addition to the features

of the JPEG2000 standard, provides complexity scalability. To

do so, it uses a coding engine that processes the coefficients in

parallel and, when indicated, changes the conventional coding

of bitplanes to a fast mode that codes all bits of the coeffi-

cients at once. Experimental results indicate that the proposed

method can effectively regulate the codec’s throughput. When

using the minimum complexity, the throughput and rate are

increased by about 70% and 13%, respectively, whereas the

maximum complexity increases throughput and rate by about

10% and 2%, respectively, on average for the employed corpus

and for lossy and lossless compression.



5

REFERENCES

[1] A. Said and W. A. Pearlman, “A new, fast, and efficient image codec
based on set partitioning in hierarchical trees,” IEEE Trans. Circuits

Syst. Video Technol., vol. 6, no. 3, pp. 243–250, Jun. 1996.
[2] D. Taubman, “High performance scalable image compression with

EBCOT,” IEEE Trans. Image Process., vol. 9, no. 7, pp. 1158–1170,
Jul. 2000.

[3] W. A. Pearlman, A. Islam, N. Nagaraj, and A. Said, “Efficient, low-
complexity image coding with a set-partitioning embedded block coder,”
IEEE Trans. Circuits Syst. Video Technol., vol. 14, no. 11, pp. 1219–
1235, Nov. 2004.

[4] G. Xie and H. Shen, “Highly scalable, low-complexity image coding
using zeroblocks of wavelet coefficients,” IEEE Trans. Image Process.,
vol. 15, no. 6, pp. 762–770, Jun. 2005.

[5] M. Dyer, D. Taubman, S. Nooshabadi, and A. K. Gupta, “Concurrency
techniques for arithmetic coding in JPEG2000,” IEEE Trans. Circuits

Syst. I, vol. 53, no. 6, pp. 1203–1212, Jun. 2006.
[6] M. Rhu and I.-C. Park, “Optimization of arithmetic coding for

JPEG2000,” IEEE Trans. Circuits Syst. Video Technol., vol. 20, no. 3,
pp. 446–451, Mar. 2010.

[7] F. Auli-Llinas and M. W. Marcellin, “Scanning order strategies for
bitplane image coding,” IEEE Trans. Image Process., vol. 21, no. 4,
pp. 1920–1933, Apr. 2012.

[8] X. Song, Q. Huang, S. Chang, J. He, and H. Wang, “Three-dimensional
separate descendant-based SPIHT algorithm for fast compression of
high-resolution medical image sequences,” vol. 11, no. 1, pp. 80–87,
Jan. 2017.

[9] A. K. Gupta, S. Nooshabadi, D. Taubman, and M. Dyer, “Realizing
low-cost high-throughput general-purpose block encoder for JPEG2000,”
IEEE Trans. Circuits Syst. Video Technol., vol. 16, no. 7, pp. 843–858,
Jul. 2006.

[10] K. Mei, N. Zheng, C. Huang, Y. Liu, and Q. Zeng, “VLSI design of a
high-speed and area-efficient JPEG2000 encoder,” IEEE Trans. Circuits

Syst. Video Technol., vol. 17, no. 8, pp. 1065–1078, Aug. 2007.
[11] M. Dyer, S. Nooshabadi, and D. Taubman, “Design and analysis of

system on a chip encoder for JPEG2000,” IEEE Trans. Circuits Syst.

Video Technol., vol. 19, no. 2, pp. 215–225, Feb. 2009.
[12] S. Kim, D. Lee, J.-S. Kim, , and H.-J. Lee, “A high-throughput

hardware design of a one-dimensional SPIHT algorithm,” IEEE Trans.

Multimedia, vol. 18, no. 3, pp. 392–404, Mar. 2016.
[13] H.-C. Fang, Y.-W. Chang, T.-C. Wang, C.-J. Lian, and L.-G. Chen,

“Parallel embedded block coding architecture for JPEG 2000,” IEEE

Trans. Circuits Syst. Video Technol., vol. 15, no. 9, pp. 1086–1097, Sep.
2005.

[14] Y. Li and M. Bayoumi, “A three-level parallel high-speed low-power
architecture for EBCOT of JPEG 2000,” IEEE Trans. Circuits Syst. Video

Technol., vol. 16, no. 9, pp. 1153–1163, Sep. 2006.

[15] K. Sarawadekar and S. Banerjee, “An efficient pass-parallel architecture
for embedded block coder in JPEG 2000,” IEEE Trans. Circuits Syst.

Video Technol., vol. 21, no. 6, pp. 825–836, Jun. 2011.

[16] Y. Jin and H.-J. Lee, “A block-based pass-parallel SPIHT algorithm,”
vol. 22, no. 7, pp. 1064–1075, Jul. 2012.

[17] M. S. Nobile, P. Cazzaniga, A. Tangherloni, and D. Besozzi, “Graphics
processing units in bioinformatics, computational biology and systems
biology,” Briefings in Bioinformatics, vol. 18, no. 5, pp. 870–885, Sep.
2017.

[18] High Throughput JPEG 2000 (HTJ2K): Call for Proposals, ISO/IEC
Std., 2017, document ISO/IEC JTC 1/SC29/WG1 N76037.

[19] D. Taubman, A. Naman, and R. Mathew, “High throughput block
coding in the HTJ2K compression standard,” in Proc. IEEE International

Conference on Image Processing, Sep. 2019, pp. 1079–1083.

[20] A. Naman and D. Taubman, “Decoding high-throughput JPEG2000
(HTJ2K) on a GPU,” in Proc. IEEE International Conference on Image

Processing, Sep. 2019, pp. 1084–1088.

[21] F. Auli-Llinas and M. W. Marcellin, “Stationary probability model for
microscopic parallelism in JPEG2000,” IEEE Trans. Multimedia, vol. 16,
no. 4, pp. 960–970, Jun. 2014.

[22] F. Auli-Llinas, “Context-adaptive binary arithmetic coding with fixed-
length codewords,” IEEE Trans. Multimedia, vol. 17, no. 8, pp. 1385–
1390, Aug. 2015.

[23] P. Enfedaque, F. Auli-Llinas, and J. C. Moure, “Implementation of the
DWT in a GPU through a register-based strategy,” IEEE Trans. Parallel

Distrib. Syst., vol. 26, no. 12, pp. 3394–3406, Dec. 2015.

[24] F. Auli-Llinas, P. Enfedaque, J. C. Moure, and V. Sanchez, “Bitplane
image coding with parallel coefficient processing,” IEEE Trans. Image

Process., vol. 25, no. 1, pp. 209–219, Jan. 2016.
[25] P. Enfedaque, F. Auli-Llinas, and J. C. Moure, “GPU implementation of

bitplane coding with parallel coefficient processing for high performance
image compression,” IEEE Trans. Parallel Distrib. Syst., vol. 28, no. 8,
pp. 2272–2284, Aug. 2017.

[26] C. de Cea-Dominguez, J. C. Moure, J. Bartrina-Rapesta, and F. Auli-
Llinas, “GPU architecture for wavelet-based video coding acceleration,”
in Parallel Computing: Technology Trends, vol. 36, Apr. 2020, pp. 83–
92, IOSPress Series in Advances in Parallel Computing.

[27] F. Auli-Llinas, “Stationary probability model for bitplane image coding
through local average of wavelet coefficients,” IEEE Trans. Image

Process., vol. 20, no. 8, pp. 2153–2165, Aug. 2011.

[28] F. Auli-Llinas and J. Serra-Sagrista, “JPEG2000 quality scalability
without quality layers,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 18, no. 7, pp. 923–936, Jul. 2008.

[29] F. Auli-Llinas. (2019, Nov.) BOI codec. [Online]. Available: http:
//www.deic.uab.cat/∼francesc/software/boi


