
100 C O M P U T E R P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y 0 0 1 8 - 9 1 6 2 / 2 3 © 2 0 2 3 I E E E

EDUCATION

Over the last three years, venture capital
companies have invested around US$1.7
billion in generative artificial intelligence
(GAI) solutions, with the most funding for

AI software coding and AI-enabled
drug discovery.1 The application of
AI-based technologies in the daily
tasks of programmers is deliver-
ing on the promise of augmented
programming. Research is increas-
ingly locating tasks where AI works
alongside traditional tools and hu-
man workflow. Popular tools like
ChatGPT and GitHub Copilot can
assist programmers in code gen-
eration, competition, and optimi-
zation. At the same time, specific
tools in the market, like TabNine or
Replit Ghostwriter, help program-
mers in other tasks like refactoring
or documenting. As the generative
pretrained transformer (GPT) tech-

nology and other advanced forms of AI continue to evolve
and reach wider adoption, it becomes crucial to consider
how these innovations will impact the future of the job
market. It is essential to identify and understand the
skills that will be most valuable in programming educa-
tion to prepare ourselves for this new technological era.
These AI-based tools are envisaged to increase the amount

Educating
Augmented
Programmers
Mary Sánchez-Gordón , Østfold University College

Edmundo Tovar and Ricardo Colomo-Palacios ,
Universidad Politécnica de Madrid

Nelson Piedra , Universidad Técnica Particular de Loja

Manuel Castro , Spanish University for Distance Education

There is an artificial intelligence-based

technology that has the potential to augment

the work of human programmers. This article

discusses some capabilities built around

generative artificial intelligence and

large language models that impact

programming education.

Digital Object Identifier 10.1109/MC.2023.3313325
Date of current version: 13 November 2023

https://orcid.org/0000-0002-5102-1122
https://orcid.org/0000-0003-2929-659X
https://orcid.org/0000-0002-1555-9726
https://orcid.org/0000-0003-1067-8707
https://orcid.org/0000-0003-3559-4235

 D E C E M B E R 2 0 2 3 101

EDITORS
GEORGE HURLBURT U.S. Federal Service (Retired), USA;

gfhurlburt@gmail.com
SOREL REISMAN California State University, USA;

sreisman@computer.org

of work performed by programmers,
providing a way to combat the short-
age of IT talent. In this article, the au-
thors review the impacts of AI-based
programming tools on programmers’
professional practice and propose a
way to adapt initial professional edu-
cation to this new scenario in the con-
text of the Computing Curricula 2020
(CC2020), a joint initiative by the ACM
and the IEEE Computer Society.

IS THIS THE END OF
COMPUTER PROGRAMMING?
No, it is not the end of computer pro-
gramming. Computer programming
continues to be a crucial skill and pro-
fession, with increasing demand year
over year. While advancements in AI
and automation may streamline spe-
cific programming tasks and increase
efficiency, they do not replace the need
for human programmers. These AI-
based programming tools function
essentially as specialized assistants:
they can clarify concepts, answer
questions, detect errors, and explain
why a snippet of code is not working.
They can also write explanations for
poorly documented code snippets and
offer code suggestions to carry out
routine tasks, thereby enhancing pro-
ductivity. Regardless of the experience
level of programmers, they need to un-
derstand the code, tasks, and program-
ming concepts.2 They spend over half
of their time on program comprehen-
sion.3 As software systems continue
to evolve and increase in complexity
and magnitude, skilled programmers
will always need to create, maintain,
and improve them. So far, the cogni-
tive load on the human programmer
persists.4 However, upskilling is an ap-
pealing option because the landscape
for programming-related occupations
will change as they appear more sus-
ceptible to being influenced by AI-
based tools.5 Job markets are currently
changing due to mass tech layoffs.

I n shor t , wh i le t here m ay be
changes and advancements in the pro-
gramming field, programming will
be around for a while. If anything,
the ways of working will change, and
programming skills will become even
more valuable and essential as tech-
nology continues to play an increas-
ingly significant role in our lives.

TOOLS TO AUGMENT
PROGRAMMERS’ POTENTIAL
Since the 1970s, fourth-generation lan-
guages have aimed to make program-
ming easier using computer-assisted
software engineering tools. There-
fore, code generation automation has
been a longstanding goal. However,
most of these approaches are semi-
automated, requiring programming
skills and often requiring experts to
be involved. Although there is still
no best tool for programming, pro-
gramming languages and tools have
evolved over the years to address ca-
pabilities like code completion, code
translation among programming
languages, software documentation,
debugging, and testing. The so-called
AI coders are reaching a level of in-
telligence that increasingly enables
them to rival human software devel-
opers. Remarkable progress has been
made in the field of GAI and large
language models (LLMs),5 but lately,
GPTs have taken the spotlight.1 LLMs
are commonly related to GPTs but are
not limited to transformer-based mod-
els. They can be trained using a range
of architectures to go beyond natural
language uses and bring code-generat-
ing abilities.5

Utilizing this cutting-edge tech-
nology, tools such as Copilot, TabNine,
a nd Repl it Ghos t w r iter at tempt
to overcome the shortcomings of
their forerunners. They use natu-
ral language queries and the ability
to program by example, a technique
called few-shot learning in the research

literature. For instance, it allows them
to suggest real-time code completions
based on what programmers type and
the rest of the code. These tools aim
to help programmers improve their
productivity by assisting them with
tasks like the ones mentioned above
and augmenting processes like pro-
gramming rather than becoming the
programmer itself. Programmers can
ask for recommendations on libraries,
convert a program from one language
to another or data from one format to
another, generate filler content for
something like an SQL database, and
receive support for the debugging pro-
cess of a program.

No wonder programmers want to
learn how to use AI-based program-
ming tools to their advantage, but
how future programming education
can address these tools remains to
be seen.

EDUCATING PROGRAMMERS
CC2020 is a global initiative that fo-
cuses on competencies6 and outlines
curricular guidelines for educational
programs in computing. CC2020
emerged as a response to the changing
dynamics of computing and changes
in the workplace. This led to the de-
velopment of a framework that in-
cludes three competency dimensions:
knowledge, skills, and dispositions.
These guidelines can be tailored to ac-
commodate the emergence and preva-
lence of new technologies, such as GAI
and LLMs.

The CC2020 can be vital in prepar-
ing the next generation of program-
mers to work in a world where LLMs
and similar technologies are ubiq-
uitous. By adopting a proactive and
adaptive approach, the curriculum
can ensure that programmers bene-
fit from these tools and understand,
critique, and positively contribute to
their development and application
across various fields.

102 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

EDUCATION

From this perspective, the evolu-
tion of AI-based programming tools
is changing the scenario since they fa-
cilitate access to knowledge and pose a
human-centered partnership model of
programmers and AI working together
to enhance programming, learning,
and writing skills. Figure 1 illustrates
the potential impact of AI-based pro-
gramming tools on the set of computer
programmers’ skills and abilities pro-
posed by the occupational information
network from the United States.7

It seems that by their nature, AI-
based programming tools can have
more influence on hard skills than
soft skills. We envision a low impact
on analytical skills (systems analysis,
operations analysis, and quality con-
trol analysis) and management skills
(coordination, time management, and

monitoring). Although mathematics
and reading comprehension are hard
skills, we believe only the latter is
unaffected by these new tools. In line
with this, mathematical reasoning
and other related abilities (number
facility and information ordering) are
also influenced. The influence these
tools can have on written expression
is also not surprising. However, soft
skills like critical thinking, prob-
lem-solving, and decision-making rise
as necessary to maximize the benefits
of using these tools.

It is vital to understand the limita-
tions of GAI and LLMs and critically
evaluate their outputs. Likewise, five
relevant abilities also seem to come
into play (fluency of ideas, originality,
problem sensitivity, and deductive/
inductive reasoning), whereas the

remaining skills and abilities are
still needed.

In this panorama, raising require-
ments for degrees related to computer
science is a valid mechanism of “nat-
ural selection.” However, we advocate
helping students develop a growth
mindset by adapting initial profes-
sional education beyond fundamen-
tal programming.

One way is to integrate market tools
like Copilot into courses related to pro-
gramming fundamentals. Although it
can improve proficiency with syntaxes
and semantics of programming lan-
guages, students still need to ensure
the code is functional. These AI-based
programming tools can give students
all the pieces they might need, but it
falls on the student to put the pieces
together in a way that fulfills the

FIGURE 1. An overview of the impacts of AI-based programming tools capabilities on professional computer programmers’ skills
and abilities.

Skills Abilities

Systems Analysis

Operations
Analysis

Quality Control
Analysis

Systems
Evaluation

Active Learning

Coordination

Time Management

Monitoring Writing

Reading
Comprehension

Speaking

Active Listening

Social
Perceptiveness

Complex Problem
Solving

Judgment and
Decision Making

Critical Thinking Programming

AI-Based Programming Tools

Code Generation

Code Completion

Code Optimization

Testing Code

Debugging Code

Refactoring Code

Documentation

Code Translation Between
Programming Language

Deductive
Reasoning

Inductive
Reasoning

OriginalityFluency of Ideas

Problem Sensitivity

Near VisionSelective Attention

Speech
Recognition

Flexibility of
Closure

Speech Clarity

Oral
Comprehension

Oral Expression

Number Facility
Information
Ordering

Written Expression

Written
Comprehension

Mathematical
Reasoning

Mathematics

Skills
Needed

Abilities
Needed

Low Impact

High ImpactNo Impact

Legend

 D E C E M B E R 2 0 2 3 103

requirements. In other words, Copilot
generates code that provides some
options that could be the right fit,
but the programmer still must decide
which snippets to use and how to use
them: program comprehension. This
entails devising a plan that calls for
critical thinking, problem-solving, de-
cision-making, and abilities related to
problem sensitivity, fluency of ideas,
and originality. Therefore, course de-
sign should embrace this technology
while cultivating the necessary soft
skills for future professionals.

In this regard, it is essential to em-
phasize the education of programmers
in ethics and responsibility. The GAI and
LLMs raise ethical considerations, rang-
ing from bias removal to privacy concerns
and adapting to the specific challenges
posed by AI. CC2020 can potentially rein-
force these areas, preparing students to
make informed and ethical decisions in
their professional endeavors.

Additionally, although Copilot au-
tomatically suggests the code it de-
cides the programmer might want, the
more specific the code comments are,
the better Copilot can create code that
matches the programmer’s intentions.
Thus, a valuable skill is communicat-
ing effectively by writing comments
in the code. In this way, AI-based pro-
gramming tools, and others, can un-
derstand the pieces of code. Writing
according to the audience’s needs has
always been crucial, but new moti-
vations have emerged. Students can
write a test title in natural language
so that Copilot can use it for unit test-
ing. However, they must ensure proper
functioning using their analytical
skills and knowledge while gaining
expertise in application domains.

The underlying features of these
tools are very appealing, especially to
nonexpert programmers, because they
can overcome barriers related to hard
skills. However, using third-party
tools or libraries also requires consid-
ering the potential impact on aspects
like security risks and control over
the piece of software. For instance, a
piece of code that uses an AI-generated

library or ready-to-use agents from a
free marketplace like Fixie8 is threat-
ened if, subsequently, it appears that
the library or agent has flaws or de-
fects. Thus, students must be knowl-
edgeable about the limitations of AI-
based programming tools.

In practice, AI-based programming
tools also impact the effort required to
perform some programming tasks. In
the best scenario, these tools can in-
crease the amount of work performed,
and therefore, future programmers
should gain expertise using these
tools. However, we also note that pro-
fessional programmers, at all levels of
experience, rarely work alone and code
in a vacuum, so other soft skills not di-
rectly impacted by AI-based program-
ming tools should be cultivated. In this
new scenario, it is also expected that
question and answer sites like Stack
Overflow that connect programmers
to help solve problems also change.

Another way to implement the hu-
man-centered partnership model is to
carefully design in-class activities or
labs that take students through a set of
exercises or tasks guided by an auton-
omous intelligent teaching assistant
(an AI tutor) rather than an instructor
or teacher assistant that improves stu-
dents’ understanding of the material.9
In this case, the focus is on the learning
journey and may empower students
to become self-directed and autono-
mous learners.10 In addition, an AI tu-
tor has the potential to adapt to goals
desired by the students, their speed
of learning, and their level of knowl-
edge to aim to ensure they are getting
the most out of their education.11 This
online teaching can support students,
particularly from minority groups,
and decrease dropout rates.

AI-based programming tools are
gaining popularity and use due to the
promise of a faster, less manual pro-
gramming process. Thus, educating
programmers on the limitations of
these and other tools is needed to let
them decide when to use them. In the
case of AI-based tools, they must learn
when to ask for assistance and when

to make decisions for themselves.
Through a multifaceted approach
encompassing ethics, practical appli-
cation, and interdisciplinary collabo-
ration, CC2020 can be poised to define
the trajectory of computer science ed-
ucation in the age of GAI. The course
design also must adapt to introduce
new tools that boost hard skills like pro-
gramming and develop soft skills like
critical thinking, complex problem-solv-
ing, and decision-making as never be-
fore. Finally, education must be directly
connected to real-world situations and
prepare students for trend technologies
that respond to industry needs.

MARY SÁNCHEZ-GORDÓN is an
associate professor in the Computer
Science Department, Østfold
University College, NO-1757 Halden,
Norway. Contact her at mary.san-
chez-gordon@hiof.no.

EDMUNDO TOVAR is a professor
in the Computer Languages and
Systems and Software Engineering
Department, Universidad Politécnica
de Madrid, 28660 Madrid, Spain. He
is a Senior Member of IEEE. Contact
him at edmundo.tovar@upm.es.

RICARDO COLOMO-PALACIOS is a
professor at Universidad Politécnica
of Madrid, 28660 Madrid, Spain. He
is a Senior Member of IEEE. Contact
him at ricardo.colomo-palacios@
hiof.no.

NELSON PIEDRA is a professor at
Universidad Técnica Particular de
Loja, 110107 Loja, Ecuador. He is
a Member of IEEE. Contact him at
nopiedra@utpl.edu.ec.

MANUEL CASTRO is an electrical
and computer engineering professor
at the Spanish University for Distance
Education, 28040 Madrid, Spain. He
is a Life Fellow of IEEE. Contact him
at mcastro@ieec.uned.es.

http://mary.sanchez-gordon@hiof.no
http://mary.sanchez-gordon@hiof.no
mailto:edmundo.tovar@upm.es
http://ricardo.colomo-palacios@hiof.no
http://ricardo.colomo-palacios@hiof.no
mailto:nopiedra@utpl.edu.ec
mailto:mcastro@ieec.uned.es

104 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

EDUCATION

REFERENCES
1. “Jackie Wiles beyond ChatGPT: The

future of generative AI for enter-
prises.” Gartner. Accessed: Mar. 29,
2023. [Online]. Available: https://
www.gartner.com/en/articles/
beyond-chatgpt-the-future-of
-generative-ai-for-enterprises

2. A. Heinonen, B. Lehtelä, A. Hellas,
and F. Fagerholm, “Synthesizing
research on programmers’ mental
models of programs, tasks and con-
cepts: A systematic literature review,”
Inf. Softw. Technol., vol. 164, Dec.
2022, Art. no. 107300, doi: 10.1016/j.
infsof.2023.107300.

3. X. Xia, L. Bao, D. Lo, Z. Xing, A. E.
Hassan, and S. Li, “Measuring
program comprehension: A large-
scale field study with professionals,”
in Proc. IEEE/ACM 40th Int. Conf.
Softw. Eng. (ICSE), May 2018, p. 584,
doi: 10.1145/3180155.3182538.

4. N. Povarov. “AI for software
developers: A future or a new
reality?” InfoQ. Accessed: Apr.
3, 2023. [Online]. Available:
https://www.infoq.com/articles/
ai-for-software-developers/

5. T. Eloundou, S. Manning,
 P. Mishkin, and D. Rock, “GPTs are
GPTs: An early look at the labor
market impact potential of
large language models,” 2023,
arXiv:2303.10130.

6. CC2020 Task Force, Computing
Curricula 2020: Paradigms for
Global Computing Education.
New York, N Y, USA: ACM,
2020.

7. “15-1251.00 – Computer program-
mers.” O*NET OnLine. Accessed:
Mar. 31, 2023. [Online]. Available:
https://www.onetonline.org/
link/summary/15-1251.00?
redir=15-1131.00

8. “FIXIE.AI — Build on LLMs.” FIXIE.
Accessed: Apr. 2, 2023. [Online].
Available: https://www.fixie.ai/

9. S. Jalil, S. Rafi, T. D. LaToza, K.
Moran, and W. Lam, “ChatGPT and
software testing education: Prom-
ises and perils,” in Proc. IEEE Int.
Conf. Softw. Testing, Verification
Validation Workshops (ICSTW),
2023, pp. 4130–4137, doi: 10.1109/
ICSTW58534.2023.00078.

10. S. Sok and K. Heng. ChatGPT for
Education and Research: A Review
of Benefits and Risks. (Mar. 2023).
SSRN. [Online]. Available: https://
papers.ssrn.com/sol3/papers.
cfm?abstract_id=4378735

11. “AI for programming education.”
Microsoft Research. Accessed:
Sep. 14, 2023. [Online].
Available: https://www.micro-
soft.com/en-us/research/project/
ai-for-programming-education/

From the analytical engine to the supercomputer,
from Pascal to von Neumann, from punched
cards to CD-ROMs—IEEE Annals of the History
of Computing covers the breadth of computer
history. � e quarterly publication
is an active center for the collection and
dissemination of information on historical
projects and organizations, oral history activities,
and international conferences.

www.computer.org/annals

Digital Object Identifier 10.1109/MC.2023.3326622

https://www.gartner.com/en/articles/beyond-chatgpt-the-future-of-generative-ai-for-enterprises
https://www.gartner.com/en/articles/beyond-chatgpt-the-future-of-generative-ai-for-enterprises
https://www.gartner.com/en/articles/beyond-chatgpt-the-future-of-generative-ai-for-enterprises
https://www.gartner.com/en/articles/beyond-chatgpt-the-future-of-generative-ai-for-enterprises
https://www.infoq.com/articles/ai-for-software-developers/
https://www.infoq.com/articles/ai-for-software-developers/
https://www.onetonline.org/link/summary/15-1251.00?redir=15-1131.00
https://www.onetonline.org/link/summary/15-1251.00?redir=15-1131.00
https://www.onetonline.org/link/summary/15-1251.00?redir=15-1131.00
https://www.fixie.ai/
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4378735
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4378735
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4378735
https://www.microsoft.com/en-us/research/project/ai-for-programming-education/
https://www.microsoft.com/en-us/research/project/ai-for-programming-education/
https://www.microsoft.com/en-us/research/project/ai-for-programming-education/

	100_56mc12-education-3313325

