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Abstract—Telecommunication Networks (TNs) have become
the most important infrastructure for data communications
over the last century. Operations and Maintenance (O&M) is
extremely important to ensure the availability, effectiveness, and
efficiency of TN communications. Different from the popular
O&M technique for IT systems (e.g., the cloud), Artificial
Intelligence for IT Operations (AIOps), O&M for TNs meets the
following three fundamental challenges: topological dependence
of network components, highly heterogeneous software, and
restricted failure data. This article presents TelOps, the first
Al-driven O&M framework for TNs, systematically enhanced
with mechanism, data, and empirical knowledge. We provide
a comprehensive comparison between TelOps and AIOps, and
conduct a proof-of-concept case study on a typical O&M task
(failure diagnosis) for a real industrial TN. As the first systematic
Al-driven O&M framework for TNs, TelOps opens a new door
to applying Al techniques to TN automation.

Index Terms—Operations and Maintenance, Telecommunica-
tion Networks, Artificial Intelligence, Autonomous Networks.

I. INTRODUCTION

With the development of the Internet and communication
techniques, Telecommunication Networks (TNs) become the
most important Information and Communication Technology
(ICT) infrastructure for data communications. They have
evolved into complex network systems comprising various
wired (e.g., Metropolitan / Wide Area Networks) and wireless
networks (e.g., 5G access networks). Operations and Mainte-
nance (O&M) for TNs is vital to guarantee the effective and
efficient running of complex, hybrid, and large-scale TNs [[1]].

O&M for TNs has become an increasingly challenging task
for all telecommunication industries [2]]. Traditional O&M
heavily relies on expert experience and human labor, and is
incapable for fast-developing modern TNs [3]. TM Forum, the
leading association of telecommunication industries, recently
depicts future TNs as Autonomous Networks [1]], where tech-
nologies like Artificial Intelligence (Al) need to be introduced
for the automation, self-healing, and self-optimization of TNs.
Al-driven O&M is indispensable to autonomous TNs, but there
still lacks a systematic framework. Different from the popular
O&M technique for IT systems (e.g., the cloud), Artificial
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Intelligence for IT Operations (AIOps) [4f], Al-driven O&M
for TNs meets the following three fundamental challenges:

1) Topological Dependence of Network Components:
TNs are distributed in nature. Its O&M usually covers
all network devices (e.g., routers, switches) and com-
munication links (e.g., optical fibers, wireless links) in
a network system (e.g., a 5G network). Components of
TNs are more dependent on the network topology [5]]
than typical IT systems (e.g., a cloud datacenter).

2) Highly Heterogeneous Software: Hybrid TNs com-
prise heterogeneous devices from different vendors and
installed with vendor-specific software. Additionally,
both the costly-thus-passive unified upgrade and the
continuous addition of new devices in existing TNs
further exacerbate the device software heterogeneity.
These induce multi-source runtime information from
heterogeneous devices across the network [6]. Such a
fact is fundamentally different from typical IT systems.

3) Restricted Failure Data: As vital infrastructures, TNs
are usually immediately restored at any cost to prevent
the re-occurrence of the same type of failures. It is
almost impossible to reproduce all the services and states
at the TN failure time for explicit studies. Such a fact
further reduces the inherently scarce data of each type
of TN failure. For IT systems, differently, failure data
are usually sufficient.

This article presents TelOps, the first systematic O&M
framework for TNs empowered by knowledge-enhanced Al.
Particularly, TelOps classifies essential O&M functions for
TNs into different layers, from the physical layer managing
both the target TN and O&M experts, to the application
layer hosting various preventive and reactive O&M tasks. A
comprehensive comparison between TelOps and AIOps is also
provided. We conduct a proof-of-concept case study on the
failure diagnosis for a real industrial Mobile Access Network
(MAN). Results demonstrate that TelOps achieves significant
performance gains (up to 28.0% higher diagnosis accuracy, and
better generalization capability) by introducing mechanism,
data, and empirical knowledge of TNs into general machine
learning methods. We also discuss important open research
issues of Al-driven O&M for TNs.

II. THE LAYERING ARCHITECTURE OF TELOPS

TelOps adopts a layering architecture comprising the ap-
plication layer hosting various O&M tasks for TNs, and
the machine learning, knowledge, data, and physical layers
providing systematic support to O&M tasks at the application
layer. The architecture of TelOps is shown in Fig[l]
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Fig. 1. The layering architecture of TelOps.

Application Layer: This hosts various O&M tasks for TNs.
Considering whether the system is currently healthy or not,
these tasks have different goals. When the system is healthy,
preventive O&M tasks (from risk discovery to reliability
evaluation) avoid potential system failures. When a failure
occurs, reactive O&M tasks (from fault detection to experience
summary) focus on the elimination of the failure. All under
layers provide systematic support to application layer tasks.

Machine Learning Layer: This focuses on designing
application-specific machine learning methods for various
O&M tasks. The key principle is to subtly integrate proper
O&M knowledge into general machine learning algorithms,
e.g., Convolutional Neural Networks (CNNs), Long Short-
Term Memory (LSTM) and Graph Neural Networks (GNNs),
for better O&M performance, e.g., fault detection accuracy.

Knowledge Layer: This extracts and manages various
knowledge contributing to O&M tasks. Unlike AIOps, em-
pirical knowledge extracted from expert experience is critical
but insufficient to O&M for TNs. Due to the ever-increasing
complexity of TNs, expert experience is usually local and
fragmented. Therefore, mechanism knowledge from TN’s in-
trinsic laws (e.g., topology, communication protocols) and data
knowledge underneath runtime information are indispensable
to the selection and optimization of the upper layer algorithms.

Particularly, such knowledge is further divided into funda-
mental and model knowledge sub-layers. Fundamental knowl-
edge (e.g., failure data features) is usually directly derived
from system runtime data and O&M experts. It can be reused
to construct different task-specific model knowledge (e.g.,
the fault propagation model) as the input of the upper layer
machine learning algorithms.

Data Layer: This organizes TN runtime raw data (e.g.,
device logs, performance traces) collected from key hardware
and software components in different network devices. Both
TN failure and normal samples are extracted for data knowl-
edge mining, or as the input of machine learning algorithms.

Physical Layer: This manages TNs as network systems
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with Human-in-the-Loop. All O&M knowledge for TNs comes
from two kinds of entities, the target TN itself and the
O&M experts. Experts are indispensable since their experience
contributes as essential fundamental knowledge.

III. TELOPS TASKS AT THE APPLICATION LAYER

We classify TelOps tasks into two categories before and
after the occurrence of TN failures: preventive and reactive
tasks. We first define the failure, fault, and risk of TNs.

o Failure is the state that the target TN is not running
as expected. It may lead to system accidents. There are
different failures at different system scales. For exam-
ple, severe interference from neighboring districts causes
failures on cell sites in one particular district. The core
network server offline failure regards the entire network.

o Fault is the state that one single component malfunctions.
For any component, its faults are a subset of all its
abnormal states. For example, an excessive single signal
of Multiple-Input Multiple-Output (MIMO) antennas on
the base station side is an abnormal state, but an excessive
overall signal is a fault.

« Risk indicates the probability of failure occurrence. For
example, a bus topology network without any backup
link has a high risk of network disconnection, since the
failure of any node between the terminal node and the
core network will cause a disconnection failure.

Several representative preventive and reactive O&M tasks

for a typical TN are illustrated in Fig[2]

A. Preventive TelOps Tasks

Preventive TelOps tasks aim at the maintenance of TNs
before failures happen, i.e., dealing with risks. Essential
preventive tasks include risk discovery, risk assessment, risk
prevention, and reliability evaluation.

o Risk Discovery identifies risks in the current system.

Lacking a systematic model for all TN failures, there exist
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Fig. 2. Representative Preventive and Reactive O&M Tasks for a Typical TN.

bare risk discovery solutions currently. The understanding
of networking mechanisms [7] and expert experience
generally helps to identify TN weak points. For the local
area network in Fig[2] according to the graph theory, all
links in the cut of its network topology are weak points.
« Risk Assessment identifies the existence of risks in TN,
providing a risk indicator to help O&M experts determine
whether to intervene [7]]. Currently, academia usually

relies on failure prediction [8], while the industry often .

adopts fault detection from other TNs, which may not
be effective due to the lack of isolation of TN-specific
properties. Transfer learning is promising to empower
experiences of existing fault detection solutions.

« Risk Prevention determines actions to take to prevent
failures. The major challenge is the automation and
optimization of existing human-based actions [1f]. Shared
O&M actions can be taken to prevent different risks,
indicating that latent protocols can be mined to optimize
specific actions on certain TN components (e.g., time
synchronization to avoid timestamp mismatch).

o Reliability Evaluation derives system reliability crite-
ria from component runtime information and configu-
ration [9]. For the 5G SA access network in Figlzl,
evaluating the service reliability of the NR base station
is crucial for supporting emerging killer applications like

autonomous driving and live video streaming. Lacking .

the fundamental understanding of complex TNs, there
exists no systematic solution currently. In fact, such
criteria should be constructed hierarchically, i.e., from
component-wise to TN topology-aware system-wise re-
liability evaluation.

B. Reactive TelOps Tasks

Reactive TelOps tasks aim at repairing system failures. Es-
sential reactive tasks include fault detection, failure diagnosis,
repairing decision, and experience summary.

o Fault Detection is to identify device or service faults

early on to prevent cascading failures. System failure is
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usually caused by the fault of one or more components,
where a certain indicator is often abnormal. The fault
detector needs to determine whether the abnormal compo-
nent is faulty. Popular methods using AIOps are usually
data-intensive (e.g., Auto-Encoder [10]]). For TNs with
restricted failure data, it is essential to use methods that
incorporate operational knowledge and runtime data for
accurate fault detection.

Failure Diagnosis identifies the failure root cause (gen-
erally specific component faults) by analyzing numerous
system representations (e.g., warnings, alerts). For the
5G NSA access network in Fig[2] when there occurs
the LTE/NR switching failure during user handover, the
root cause like ‘timestamp verification failed’ needs to be
rapidly identified according to traces and logs of the base
station. Similarly, in the core network, when a certain
server is offline, the root cause like ‘fan error’ must be lo-
cated based on service logs. Root Cause Analysis (RCA)
is the predominating method aiming at directly finding
the root cause. Its effectiveness, however, is severely
restricted in complex TNs. Two-step methods [11] that
identify the root component first, then the root cause, have
limited effectiveness as they do not consider the inter-
component fault propagation. A more effective solution
is to directly embed empirical knowledge in RCA.
Repairing Decision determines optimal repairing action
sequences to restore the system. Existing industrial so-
lutions are manual and non-optimal, posing challenges
in decision optimization and automation [1]. Action se-
quences are temporally dependent (e.g., counter value
extraction should be conducted before counter reset), and
topology-specific mechanism knowledge could improve
decision optimization by leveraging the directed graph
and network topology correlation.

Experience Summary sums up failure diagnosis and re-
pairing experiences, aiming at compiling key knowledge
to guide future reactive tasks. Industrial solutions rely
on formalized documents, lacking the condensed knowl-



TABLE I
DESIRED MACHINE LEARNING METHODS AND SPECIFIC KNOWLEDGE TO EMBED FOR DIFFERENT O&M TASKS OF TNs

Category Task

Desired Machine Learning Methods

Knowledge to Embed

Risk Discovery

Multi-Layer Perceptron (MLP), Clustering [|12]

Risk Feature, Network Topology

Risk Assessment

LSTM, Gate Recurrent Unit (GRU), SVM

Risk Feature, Network Topology

Preventive Tasks - -
Risk Prevention

Logistic Regression, Reinforcement Learning

System Operational Knowledge, Risk Feature

Reliability Evaluation

MLP, CNN, Random Forest, Decision Tree

System Operational Knowledge, Network Topology

Fault Detection

MLP, CNN, LSTM, GRU, Auto-Encoder [[10]

Component Operational Knowledge, Fault Feature

. Failure diagnosis
Reactive Tasks £

CNN, LSTM, GRU, GNN [13], Random Forest

System Operational Knowledge, Failure Feature

Repairing Decision

Random Forest, Reinforcement Learning

System Operational Knowledge, Network Topology

Experience Summary

MLP, CNN, GNN, Support Vector Machine

System Operational Knowledge, Failure Feature

edge needed for intelligent O&M. The neural network
is a promising knowledge model, which can be used to
efficiently embed different types of knowledge.

IV. SUPPORTING LAYERS OF TELOPS

To fulfill the O&M tasks at the application layer, we propose
four functional layers (from the physical to machine learning
layers) to provide systematic support.

Physical Layer: For the target TN, runtime information
is acquired and digitalized, and the generated raw data are
passed to the data layer. Knowledge of system composition and
running is directly gained via mechanism modeling (e.g., tra-
ditional modeling via experts’ understanding of TNs). Knowl-
edge of O&M experts is summarized as expert experience.

Data Layer: Due to the huge data size generated in real-
time, modern TNs only keep selected information as logs,
traces, time-series data, and raw binary data. Data are stored
distributively since only limited bandwidth is reserved for
O&M. With data-driven methods, knowledge of data corre-
lations, trends, and characteristics is mined directly from this
layer. Extracted failure data features serve different O&M tasks
at the application layer. Runtime data are also used to optimize
tools extracting empirical models from expert experience.

Knowledge Layer: This is the core of TelOps. The fun-
damental knowledge layer contains preliminarily processed
knowledge including failure data features, failure text descrip-
tion features, expert experience, etc. The model knowledge
layer contains three different types of primitive models: the
mechanism, data, and empirical models, selectively organized
as task-oriented representations for the machine learning layer.
Particularly, the mechanism model, e.g., the data rate formula
in Subsection 4.1.2 of 3GPP-TS38.306 [14], represents the
intrinsic laws and patterns of the target TN and its failures,
offering insights for designing the neural network structure
and model update scheme. The data model, e.g., a Directed
Acyclic Graph (DAG) implying device associations, represents
features, trends, and associations directly learned from data,
providing valuable input for refining task-oriented features.
The empirical model, e.g., a fault tree representing organized
expert rules for failure diagnosis, contains all executable
rules observed and abstracted by O&M experts, enhancing
the interpretability of the overall solution through explainable
empirical local models.

Machine Learning Layer: Typical general machine learn-
ing algorithms used by O&M include anomaly detection,
failure prediction, RCA, knowledge distillation, etc. Such

algorithms are enhanced by various knowledge from under
layers to construct task-specified machine learning methods
for O&M of TNs. For instance, [[11] uses the network topology
to enhance a Hopfield neural network in failure diagnosis.
[15] demonstrates that deep neural networks with mechanism
knowledge like beamforming can address failure diagnosis and
repairing decision in 5G networks.

We summarize desired machine learning methods and
knowledge to embed for different TN O&M tasks in Table [l

V. TELOPS vs. AIOPsS

A core difference between TelOps and AIOps is that, unlike
AlOps, different types of knowledge need to be embedded in
TelOps considering TNs’ inherent properties. Here, we provide
a comprehensive comparison between TelOps and AIOps.

A. Comparison of the Physical Layer

O&M experts are indispensable in TelOps since their expe-
rience plays a vital role in practice, but optional for AIOps.
In IT systems (e.g., the cloud), data-driven approaches can
replace expert experience due to abundant training data and
labels. It is not feasible for TNs with restricted failure data.

B. Comparison of the Data Layer

TelOps suffers from poor data quality (e.g., inconsistent
sampling rates) due to system heterogeneity, unlike AIOps that
can leverage abundant public data with established standards.
Restricted data for each type of TN failure also prevents the
direct application of data-intensive methods like generative
adversarial networks for data augmentation.

C. Comparison of the Knowledge Layer

Knowledge is an indispensable part of TelOps, but is not
mandatory in AIOps. O&M tasks for over-complex TNs usu-
ally need guidance from expert experience and TN mechanism
knowledge. AIOps, however, could directly use general ma-
chine learning algorithms. Additionally, since TN knowledge
is usually long-term effective (once deployed, there are few
chances for a TN to be adjusted in the recent several years),
it is rational to treat the individual knowledge layer as the
core of the Al-driven O&M framework for TNs. Knowledge
in AlOps, differently, is updated much more frequently due to
the rapidly evolving system software and hardware.
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TABLE 1T
DIFFERENCES BETWEEN TELOPS AND AIOPS

Layer Aspects TelOps AIOps
Physical . Target TN, Target IT
Layer WAL B O&M Experts | System
Data . .
Layer Data Quality Poor Fair
SO Knowledge Requirement | Mandator:; Optional
Layer g q y P

. . . Knowledge Data based/
Machlpe Algorithm Selection ] N
Learning Knowledge
Layer Method Construction . g Non-guided

guided

D. Comparison of the Machine Learning Layer

Machine learning methods in TelOps are specifically de-
signed with knowledge guidance. TelOps retrofits general
machine learning algorithms with task-specified knowledge.
Differently, AIOps usually adopts general machine learning
methods only based on the data format, or even with no reason.
For failure diagnosis, TelOps selects the GNN considering
the TN fault propagation process. In AIOps, LSTM is often
intuitively selected for text processing.

We summarize the differences between TelOps and AIOps
at different layers in Table

VI. CASE STUDY: FAILURE DIAGNOSIS FOR MOBILE
ACCESS NETWORKS WITH TELOPS

To demonstrate the effectiveness of TelOps, we conduct a
proof-of-concept case study on the failure diagnosis for a real
industrial Mobile Access Network (MAN). Failure diagnosis
is extremely important since inaccurate diagnosis leads to not
only untimely system reparation but also fatal system errors. It
is the most common O&M task for industrial TNs: according
to the statistics from our partner, a leading global provider of
ICT infrastructure and smart devices, more than half of O&M
tasks for TNs are failure diagnosis tasks.

A. The Failure Diagnosis Task for MANs

Modern MANSs comprise numerous system components
collaborating intensely. Once a fault occurred at one device,
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it would quickly trigger alarms at all associated devices,
generating a flood of alarms. Alarm information is mostly
generated and stored as logs. The goal of our failure diagnosis
task is to reason out the root cause according to all alarm
information after the failure occurs.

B. Failure Diagnosis for MANs using TelOps

The fault propagation pattern is core to determining the root
cause of TN failures. It cannot be explicitly modeled due to
the complexity of modern MANSs. Experienced experts in the
industry usually use the result of device association analysis as
an alternative. However, the latent fault propagation features
of MANSs cannot be effectively captured by predominating
association analysis algorithms like Apriori and Max-Min Hill-
Climbing (MMHC). With TelOps, guided by the above expert
experience, we constructed a GNN-based failure diagnosis
method for MANs, whose workflow is illustrated in Fig@

1) Data Layer: We cleaned alarm logs collected from all
components in the target MAN, eliminating entries with
missing key values (e.g., alarm name).

Knowledge Layer: Considering the expertise that fault
propagation in TNs is implicitly correlated with device
associations, we constructed a DAG to extract device
associations, supporting more precise propagation path
capturing at the machine learning layer. To address
heterogeneous logs, we formed a unified fault data space
using W2V and seq2seq models. We also corrected a
part of fault labels using our partner’s empirical expert
analysis tool.

Machine Learning Layer: We created a GNN to
learn the critical latent fault propagation features of
MAN:Ss. The architecture of GNN was derived from the
knowledge layer, where all edges were inherited from
the DAG, and all vertices were represented using the
unified fault data space. Most importantly, considering
the expertise that different associated components have
uneven impacts on a certain component, we integrated an
attention layer into the GNN. The GNN was trained with
all labeled samples enhanced at the knowledge layer.

2)

3)



For inference, given all alarm logs, the GNN outputs
the failure root cause.

C. Experimental Setups

Extensive experiments using alarm logs from a real indus-
trial MAN were conducted to validate our method.

o Implementation: We used Pytorch (v1.3.0), an open-
source machine learning framework, to implement our
method. All evaluations were conducted on a Linux server
(64-bit Ubuntu 18.04, Linux kernel 4.15.0) with an Intel
Xeon Gold 6130 CPU and 512GB RAM.

o Dataset: We used a real-world dataset from our partner
for validation. It contains raw alarm data collected from
the MAN of a South-East Asian country within three
months. There are 5.30 million alarm records in total,
and each record has 193 columns.

o Preprocessing: For each failure root cause, we iden-
tified its corresponding root alarm record with expert
experience. For each identified record, we extracted all
records collected within five minutes before and after the
record. Tuples containing extracted records and the failure
root cause were treated as TelOps’ input. Preprocessing,
including data loading, took 10 hours.

o Comparatives: We compared our approach with two
conventional industrial methods, Random Forest and
CNN, and an AIOps method. Random Forest is currently
used by our partner due to its high interpretability and
adjustable weights in expert experience aggregation. CNN
is the best-performing method using neural networks
investigated by our partner. With no existing method, we
constructed an intuitive AIOps solution following [[13]],
which generated a GNN sharing the same fault feature
vector as TelOps but using a fully connected graph.

D. Results

We conducted extensive performance evaluation under three
TN operating scenarios, i.e., ‘All Day’, ‘Off-Peak [0:00-
18:00]" covering bedtime and office hours, and ‘Peak [18:00-
24:00]’ covering after-work leisure time, containing 5.30, 3.96,
and 1.34 million alarm records, respectively. Model training on
the ‘All Day’ dataset took 37 minutes for TelOps and AIOps,
and 22 minutes for CNN. FigH]illustrates the failure diagnosis
accuracy (i.e., testing accuracy) of all methods.

According to Figl]l TelOps achieves the highest diagnosis
accuracy (92.8%~94.5%) among all comparatives, and main-
tains a prominent performance under all scenarios. Particularly,
at peak time, where accurate failure diagnosis is critical to
guarantee the user experience thus urgently required by tele-
com operators, TelOps demonstrates an indisputable advantage
in diagnosis accuracy (15.8%~28.0% higher). Random Forest
performs well under both ‘All Day’ and ‘Off-Peak’ scenarios,
whose accuracy significantly drops at peak time (at least 24.6%
lower). CNN and AIOps perform similarly under all scenarios,
where the latter achieves slightly higher diagnosis accuracy.

The performance of different comparatives is heavily in-
fluenced by real-world TN failure patterns under different
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Fig. 4. The accuracy of failure root cause identification for the MAN.

scenarios. In the off-peak scenario, most failures are com-
monly encountered and can be well explained by expert
knowledge, where Random Forest performs well with explicit
expert rules. In the peak scenario, failures are usually more
complex and rarer, and the corresponding expert knowledge is
often insufficient and highly fragmented. In this case, Random
Forest cannot effectively extract latent failure patterns, leading
to poor generalization performance. Neural network-based
methods (i.e., CNN and AIOps) with general model structures
perform more steadily due to their relatively better latent pat-
tern extraction. However, their diagnosis accuracy is severely
limited due to the lack of subtle knowledge embedding steps
introduced by TelOps.

VII. OPPORTUNITIES AND CHALLENGES TO AI-DRIVEN
O&M FOR TNs

We have demonstrated the effectiveness of TelOps above.
There are still several important open research issues of Al-
driven O&M for TNs deserving further elaboration.

A. Systematic O&M Knowledge Embedding

O&M knowledge embedding is a critical part of TelOps.
In our case study, a naive solution is applied, i.e., using the
association analysis result to construct the GNN structure. For
enormous O&M knowledge for TNs in practice, there are
various possible forms to embed different knowledge, and
the efficiency of our naive method would be limited. The
major challenge is to construct a systematic methodology
to embed different O&M knowledge and the corresponding
restriction. We believe that the first step is to accurately
classify various O&M knowledge, where knowledge similarity
evaluation considering the form, underlay mechanism, and
expert cognition is the core issue to address.

B. Automatic O&M Knowledge Reusing

Knowledge as a Service (KaaS) is one of the cores to
construct Autonomous Networks [1]]. In particular, automatic
knowledge reusing is essential to autonomous O&M for TNs.
To achieve this, O&M knowledge needs to be represented and
managed in a unified manner that can be flexibly embedded
into different O&M solutions. In our vision, neural networks
are the desired form since they can be easily integrated with
different algorithm components.



C. Resource Provisioning for TNs

The emergence of NFV, SDN, and 5G network slicing tech-
nologies implies the development of TNs to a higher virtual-
ization level. In this case, we believe that resource provisioning
for TN (i.e., seeking a reasonable provisioning scheme for all
available resources) is a significant issue to address, especially
considering the enormous resource waste caused by the current
TN construction strategy. In fact, bandwidth increasing and
redundant line addition are intuitively conducted in current
TNs to ensure network availability. Moreover, since TNs
are fundamental infrastructures, we believe that guaranteeing
operation safety will be the primary consideration for TN
resource provisioning.

VIII. CONCLUSION

This article presents a systematic investigation on Al-driven
O&M for TNs. Focusing on TNs’ inherent properties, we
propose TelOps, the first Al-driven O&M framework for TNs.
According to the layering architecture of TelOps, we study
both essential preventive and reactive O&M tasks at the appli-
cation layer, and provide systematic support from the physical
to machine learning layers. TelOps is comprehensively com-
pared with AIOps, the popular IT system O&M framework.
Results of the case study on the failure diagnosis for a real
industrial MAN clearly demonstrate the performance gain of
TelOps. We further discuss opportunities and challenges in the
future design of knowledge embedding, reusing, and resource
provisioning in O&M for TNs.

Autonomous networks are the blueprint of future TNs.
TelOps opens a new door to applying Al techniques for
automatic O&M for TNs. We expect TelOps to inspire more
insights on Al-driven TN automation.

REFERENCES
[1] “White paper: Autonomous networks: Empowering  digital
transformation,” TM Forum, Tech. Rep., September 2021,

https: / /www.tmforum.org /resources /whitepapers /autonomous-
networks-empowering-transformation /|

[2] “Igl218 autonomous networks business requirements and frame-
work,” TM Forum-Autonomous Networks Project, Tech. Rep.,
January 2022, https://www.tmforum.org/resources /standard/ig1218-
autonomous-networks-business-requirements-and- framework-v2-1-0/,

[3] “Igl193 cross-industry autonomous networks — vision and roadmap,”
TM Forum-Open Digital Architecture Project, Tech. Rep., Octo-
ber 2019, https://www.tmforum.org/resources/how-to-guide /ig1193-
cross-industry-autonomous-networks- vision-and-roadmap-v1-0/.

[4] Y. Dang, Q. Lin, and P. Huang, “Aiops: real-world challenges and
research innovations,” in Proc. of IEEE ICSE-Companion, 2019, pp.
4-5.

[5] V. Fulber-Garcia, E. P. Duarte Jr, A. Huff, and C. R. dos Santos,
“Network service topology: Formalization, taxonomy and the custom
specification model,” Comput. Networks, vol. 178, p. 107337, 2020.

[6] X. Wang, L. T. Yang, L. Kuang, X. Liu, Q. Zhang, and M. J. Deen,
“A tensor-based big-data-driven routing recommendation approach for
heterogeneous networks,” IEEE Network, vol. 33, no. 1, pp. 64—69, 2019.

[71 M. Furdek, C. Natalino, A. Di Giglio, and M. Schiano, “Optical network
security management: requirements, architecture, and efficient machine
learning models for detection of evolving threats,” J. of Opt. Commun.
and Netw., vol. 13, no. 2, pp. A144-A155, 2021.

[8] H. Huang and S. Guo, “Proactive failure recovery for nfv in distributed
edge computing,” IEEE Commun. Mag., vol. 57, no. 5, pp. 131-137,
2019.

[91 M. A. Kafi, J. B. Othman, and N. Badache, “A survey on reliability
protocols in wireless sensor networks,” ACM CSUR, vol. 50, no. 2, pp.
1-47, 2017.

[10] H. Huang, L. Zhao, H. Huang, and S. Guo, “Machine fault detection for
intelligent self-driving networks,” IEEE Commun. Mag., vol. 58, no. 1,
pp. 40-46, 2020.

H. Yang, B. Wang, Q. Yao, A. Yu, and J. Zhang, “Efficient hybrid multi-
faults location based on hopfield neural network in 5g coexisting radio
and optical wireless networks,” IEEE Trans. Cogn. Commun. Netw.,
vol. 5, no. 4, pp. 1218-1228, 2019.

S. Yang, L. Zhang, C. Xu, H. Yu, J. Fan, and Z. Xu, “Massive data
clustering by multi-scale psychological observations,” National Science
Review, vol. 9, no. 2, p. nwab183, 2022.

D. Pujol-Perich, J. Sudrez-Varela, M. Ferriol, S. Xiao, B. Wau,
A. Cabellos-Aparicio, and P. Barlet-Ros, “Ignnition: Bridging the gap
between graph neural networks and networking systems,” IEEE network,
vol. 35, no. 6, pp. 171-177, 2021.

“User Equipment (UE) radio access -capabilities,” 3GPP, Tech.
Rep., July 2023, |ittps://www.3gpp.org/ftp/Specs/archive/38_
series/38.306/38306-h50.zip!

Z. Lv, A. K. Singh, and J. Li, “Deep learning for security problems in
5g heterogeneous networks,” IEEE Network, vol. 35, no. 2, pp. 67-73,
2021.

(1]

[12]

[13]

[14]

[15]

Yugian Yang received his MSc degree in Business Intelligence from Efrei
Paris engineering school of digital technologies, France, in 2014. He is
pursuing his Ph.D. degree in the School of Computer Science and Technology
at Xi’an Jiaotong University. His current research interests include AIOps,
knowledge-embedded data mining, and graph neural networks.

Shusen Yang received his Ph.D. degree in Computing from Imperial College
London in 2014. He is a professor and deputy director of the National Engi-
neering Laboratory for Big Data Analytics, and deputy director of Ministry
of Education Key Lab for Intelligent Networks and Network Security, both
at Xi’an Jiaotong University (XJTU), China. Shusen is a DAMO Academy
Young Fellow, and an honorary research fellow at Imperial College London.
He is a senior member of IEEE. His research focuses on distributed systems
and data sciences, and their applications in industrial scenarios.

Cong Zhao received his Ph.D. degree in Computer Science and Technology
from Xi’an Jiaotong University (XJTU) in 2017. He worked as a research
associate at Imperial College London from 2018 to 2022. He is currently an
associate professor at XJTU. His research interests include scenario-driven
distributed intelligent systems and industrial small-sample learning.

Zongben Xu received his Ph.D. degree in mathematics from Xi’an Jiaotong
University, China, in 1987. He served as the Vice President of Xi’an Jiaotong
University from 2003 to 2014. He is the Chief Scientist of National Basic
Research Program of China (973 Project), and the Director of the Institute
for Information and System Sciences, Xi’an Jiaotong University. His current
research interests include intelligent information processing and applied
mathematics. He delivered a 45 minutes talk on the International Congress
of Mathematicians 2010. He was elected as member of Chinese Academy of
Science in 2011.


https://www.tmforum.org/resources/whitepapers/autonomous-networks-empowering-transformation/
https://www.tmforum.org/resources/whitepapers/autonomous-networks-empowering-transformation/
https://www.tmforum.org/resources/standard/ig1218-autonomous-networks-business-requirements-and-framework-v2-1-0/
https://www.tmforum.org/resources/standard/ig1218-autonomous-networks-business-requirements-and-framework-v2-1-0/
https://www.tmforum.org/resources/how-to-guide/ig1193-cross-industry-autonomous-networks-vision-and-roadmap-v1-0/
https://www.tmforum.org/resources/how-to-guide/ig1193-cross-industry-autonomous-networks-vision-and-roadmap-v1-0/
https://www.3gpp.org/ftp/Specs/archive/38_series/38.306/38306-h50.zip
https://www.3gpp.org/ftp/Specs/archive/38_series/38.306/38306-h50.zip

	Introduction
	The Layering Architecture of TelOps
	TelOps Tasks at the Application Layer
	Preventive TelOps Tasks
	Reactive TelOps Tasks

	Supporting Layers of TelOps
	TelOps vs. AIOps
	Comparison of the Physical Layer
	Comparison of the Data Layer
	Comparison of the Knowledge Layer
	Comparison of the Machine Learning Layer

	Case study: Failure Diagnosis for Mobile Access Networks with TelOps
	The Failure Diagnosis Task for MANs
	Failure Diagnosis for MANs using TelOps
	Experimental Setups
	Results

	Opportunities and Challenges to AI-driven O&M for TNs
	Systematic O&M Knowledge Embedding
	Automatic O&M Knowledge Reusing
	Resource Provisioning for TNs

	Conclusion
	References
	Biographies
	Yuqian Yang
	Shusen Yang
	Cong Zhao
	Zongben Xu


