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Abstract— Achieving advancements in automatic 

recognition of emotions that music can induce require 

considering multiplicity and simultaneity of emotions. 

Comparison of different machine learning algorithms 

performing multilabel and multiclass classification is the core of 

our work. The study analyzes the implementation of the Geneva 

Emotional Music Scale 9 in the Emotify music dataset and 

investigate its adoption from a machine-learning perspective. 

We approach the scenario of emotions expression/induction 

through music as a multilabel and multiclass problem, where 

multiple emotion labels can be adopted for the same music track 

by each annotator (multilabel), and each emotion can be 

identified or not in the music (multiclass). The aim is the 

automatic recognition of induced emotions through music. 

Keywords— music information retrieval, emotion recognition, 

multilabel, multiclass, machine learning 

I. INTRODUCTION 

Music has the power of inducing emotions, and human 
beings exploit such a phenomenon in order to empower a 
variety of mental states and activities, both positively and 
negatively. The study of emotions and music has a long and 
still vibrant tradition. More recent is the field investigating 
music emotion recognition through computational means. 
Music emotion recognition (MER) is an emerging and cross-
disciplinary field spanning information retrieval (audio, 
symbolic and metadata) and machine learning, on a strong 
backing of music cognition (semiology of music and 
psychology) and music theory. Musical stimuli can be 
categorized according to the emotions that they can induce. As 
computational means have progressively increased efficiency 
and provided more accurate results, the contribution of MER 
to the general field of emotion research has become central in 
the study of the emotional expressiveness of music. The 
automatic recognition of the emotions that music can induce 
through listening is an important part of automated music 
information retrieval (MIR). Computational approaches for 
MER through automated retrieval of musical information 
have shown accuracy that is comparable or surpasses human 
performance [1]. Emotion induction through music is the 
process of emotionally affecting a subject through musical 
stimuli. However, the complexity of human emotions is still 
neither fully understood from a theoretical perspective, nor 
fully captured and represented using computational means. 
Approaches narrowing down the complexity of the 
phenomenon from specific perspectives are known for the 
biological, the cognitive and the cultural [2-8]. However, such 

implications also suggest that perception is multimodal and 
music stimuli can channel one single emotion or multiple 
emotions simultaneously. Studies approaching MER and MIR 
multimodally as well as emotions in their multiplicity are rare. 
Research in the Musical-Moods project encompasses a cross-
modal approach to machine learning for validating a MER 
computational model. This project investigates music from a 
multimodal perspective that involve motor, kinesthetic, visual 
and language besides auditory components, and evaluating 
results through creative practice with the aim to understand 
how we feel and attribute meaning when interacting with 
music technology. The Musical-Moods [9] dataset targets 
emotions and mental states indexed by language modelling of 
the participants and comprises audio excerpts, vector-based 
3D animations and dance video recordings from automatic 
music generation through an interactive and music system 
[10] and professional dancers. In the present paper, we want 
to identify the best methods to categorize and recognize 
simultaneous music-induced emotions, in order to know what 
to expect in the Musical-Moods project before the dataset is 
produced and use these best methods in the definition of the 
MIR component of its computational model. 

There are multiple ways to categorize emotions and music 
in terms of emotions. A first and simple approach is to have a 
listener indicate what is the emotion expressed by a set of 
music stimuli. Difficulties in emotion representation can be 
encountered in terms of annotator’s subjectivity and language 
constraints. Moreover, different subjects can have a different 
opinion about the same emotional content. The need for a 
universal model able to represents real-world scenarios is 
paramount. An important first approach is to consider multiple 
annotation to describe the same music for each music piece of 
a dataset as different annotators can annotate a subset of the 
dataset through predefined tags. This known as multiclass 
annotation [11,14]. A more nuanced approach capable of 
better modelling emotion induction is to use continuous values 
representing different dimensions of the perceived emotions 
which are attributed to a specific piece [15,16], typically 
adopting the valence-arousal Cartesian expressive space [1]. 
These dimensions are independent, with valence indicating 
how a person feels depending on positive or negative 
evaluations of people, things or events, and arousal indicating 
the degree of a person’s activation and his/her inclination to 
perform actions. It is possible to extend the valence-arousal 
space by a third dimension as discussed in MIR-based 
psychology [4]. A more sophisticated approach is to build a 
dictionary of discernible patterns appearing in sample data on 



a short timescale and then expressing the contents of a music 
file using contents of the dictionary. We will focus our study 
on the latest implementation of this latter approach. 

II. MATERIALS AND METHODS 

A. Emotify database and GEMS 

For testing our system, we use the Emotify music dataset 
[17]. It includes 400 tracks (44100 Hz, 128 kbps, one minute 
each) and incorporates four music genres (classical, rock, pop, 
electronic music), 100 tracks per genre and 8407 annotations 
total. 

Annotations in the dataset are collected using the Genevan 
Emotional Music Scales (GEMS) [11], that consists of 45 
terms for annotation of musically induced/expressed 
emotions. Shorter versions of 25 and 9 terms exist [12]. This 
can be considered as an emotional cluster model [19], 
investigating array of terms for music related emotions that 
describes the emotional and psychological response of music 
annotators. Each annotator could select maximally three items 
from the scale in order to describe the emotions which they 
felt most prominent when listening to a music track from the 
dataset. In the dataset, 515 terms are noted for the verbal 
description of the emotions induced in the listening. The 
different arrays of terms are then grouped on the results of a 
set of experiments with different annotators, as reported 
below. 

Experiment 1 and 2 (Total Participants: 354): a list of 
terms related to emotions that are relevant to the music is 
made. Attention is also paid to perceived and induced 
emotions through 5 groups of listeners with distinct musical 
preferences. Experiment 3 (Total participants: 801): the 
structure of emotions for music induced by Cronbach's alpha 
factor is examined. You get a model with 9 emotions factors 
for induced music. Experiment 4 (Total Participants: 238): the 
model in Experiment 3 is replicated and it is found that it better 
represents the emotions needed to describe the psychology of 
listening to music. 

In the present study, we investigate the adoption of GEMS 
from a machine-learning perspective. The aim is the automatic 
classification of induced emotions through music using a 
multilabel approach. We introduce a new method for feature 
extraction, that integrates different frameworks and best 
methods for automatic feature selection and grid search for the 
optimization of the classification parameters. 

The annotations in Emotify dataset uses a version of the 
scale representing nine emotions: GEMS-9. The annotations, 
herein referred to as labels, verify the inducement of an 
emotion among the following: amazement, solemnity, 
tenderness, nostalgia, calmness, power, joyful activation, 
tension, sadness. The label identifies the class a track belongs 
to, through statistical evaluation. 

B. Threshold in the annotation 

At a first glance, it is evident that the amount of total 

annotations differs for each of the 400 tracks in the corpus. 

The simplest statistical criterion that we can use to describe 

the distribution of the annotations is to compute the mean 

positive response of the total annotations. This method 

provides information regarding the inducement of a specific 

emotion in the annotators through the music tracks. Because 

the dataset adopts a multiclass approach, the probability of 

data sparseness is high when considering the expected mean 

annotation of a single emotion per each track (2.335), 

meaning that track can have labels produced by few 

annotations. We consider a label to be valid if the mean 

positive response of annotations exceeds a specific threshold, 

herein defined as consensus threshold. The method produces 

a score value for each label which represents that emotion in 

the track. This score is also computed in [11], as capable of 

preserving information regarding the emotional 

expressiveness and emotion induction in listening for each 

track. 

𝑠𝑐𝑜𝑟𝑒𝑖𝑗= 
1

𝑛𝑗
∑ 𝑎𝑘

𝑖𝑗

𝑛𝑗

𝑘=1

      (1) 

where: 

- i is the i-th emotion 

- j is the j-th track 

- 𝑛𝑗 is the total number of annotations for the j-th track 

- 𝑎𝑘
𝑖𝑗

 is the presence or absence (1 or 0) of the i-th 

emotion in the j-th track, expressed according to a 

specific annotator k. 

The method computes the score without weighing the 

number of listening sessions for each annotator. 

Advancements in MER can be achieved by 

generalizations capable of surpassing the intrinsic difficulties 

existing in producing a universal model of emotion induction. 

We analyze further the Emotify music corpus and the 

implementation of the GEMS-based multiclass annotation 

approach by adopting the consensus threshold technique as 

the criteria for considering an emotion to be relevant for a 

certain track. The emotion score is computed as defined in 

(1), in order to consider a label as valid if exceeding a defined 

threshold. In this way, a score represents a consistent 

emotional expressiveness for emotion induction in listening 

among the annotators regarding a single emotion. 
We estimate the percentage consensus threshold through a 

posteriori observation of the average trend of the emotions per 
track in the dataset. The percentage value represents the 
proportion of annotators who identify specific emotions as 
part of the average trend. This average function is 
monotonically decreasing, and its standard deviation has a 
decreasing trend that is stable to the unit value. Notably, we 
identify a plateau zone at 30%. The corresponding estimated 
thresholds have an average of 2.5 ± 1 annotated mood per 
track 

C. Feature Extraction 

We extract audio features from the audio files of the 

Emotify dataset by using different computational frameworks 

such as MIRToolbox and Marsyas for deriving statistical 

functions, and Psysound for extracting psychoacoustical 

features. The extracted features can be grouped into four 

classes: 

1) Acoustic Features 

a) related to intensity, such as RMS, RMS standard 

deviation, Less-than-average RMS 

b) related to rhythm, such as Rhytmic Fluctuation, 

Tempo, Strength of Strongest Beat, Beat Sum 

c) related to timbre, such as Attack Time, Attack 

Slope, Zero Crossing Rate, Zero Cross Derivative, 

Spectral Roll Off, High Frequency Energy, 



Spectral Flux, Mel-Frequency Cepstral 

Coefficients, Roughness, Irregularity 

2) Psychoacoustic Features 

Loudness, Sharpness, Timbral Width, Volume, 

Virtual Pitch, Pure Tonalness, Multiplicity 

3) Melodic Features 

Pitch Salience and Duration, Pitch Mean, Pitch std, 

Salience Total, Salience Mean, Salience std, Contour 

Length, Pitch range, Salience Range, Tremolo, 

Vibrato 

4) Statistic Features 

features calculated from most of the previously 

defined features. 

D. Feature Discretization 

When classifying continuous data, a variable amount of 

discretization error is always present. Reducing this amount 

to a level that can be considered as negligible in relation to 

the music emotion modelling, before the classification 

occurs, is important. To discretize the values of features, we 

use Kononenko’s discretization [20], a process that provides 

optimal results for audio-based tasks. It is a recursive 

algorithm, whose stopping criterion is based on the Minimum 

Description Length principle (MDL), that considers 

regularities in a given set of data to compress the data and 

describe it through fewer symbols than in their original 

representation. 

E. Feature Selection 

While the extraction of audio features is a major step in 

audio classification tasks, operating a reasoned selection of 

features can strongly improve the results of the classification. 

An excessively large number of features could lead to various 

disadvantages, such as increased processing time, reduced 

classification accuracy and information redundancy. In the 

training phase of the classification task, the use of too many 

features may expose to the risk of data overfitting. In order to 

select the most relevant features from a large feature set, the 

automatic selection is highly advisable and various 

algorithms exist for the automatic selection of most-relevant 

features. In the present article, we use the CFS (Correlation-

based Feature Selection) algorithm [21], that automatically 

selects features with a strong correlation to the primary class 

and a weak correlation to the other features. This way, 

selected features have high relevance and low redundancy 

[22,23]. 

F. Classification 

Extracted features are part of the raw data that is used to 

classify tracks into nine distinct emotions (or classes). As 

mentioned, emotion multiplicity as approached through 

GEMS and Emotify (GEMS-9) leads to a multi-labelling 

problem. From a classification perspective, we represent 

efficiently the nine emotions as a computational problem that 

is both multilabel and multiclass. The nine emotion labels are 

not exclusive (multilabel) and each can either be present or 

absent for a music track (multiclass). In such a classification, 

each music track in the dataset is assigned to multiple 

emotion labels, creating multiple classification patterns that 

are valid at the same time. In the present study, we approach 

the problem by adopting three different types of classifiers: 

Support Vector Machine (SVM) [24,25], Bayesian Classifier 

[26] and Artificial Neural Networks (ANN) [27,28]. 

Configuration parameters include a linear Kernel Sequential 

Minimal Optimization (SMO) for SVM, a simple estimator 

(search algorithm k2) for the Bayesian classifier, and 50 

neurons in a single hidden layer with 0.3 learning rate, 0.2 

momentum and supervised backpropagation techniques for 

training for the ANN. All classifiers were trained through 

Weka software (Waikato Environment for Knowledge 

Analysis, University of Waikato, New Zealand) [29], using 

10-folds cross-validation. A similar approach was 

successfully implemented in other studies of emotion 

recognition [30-33]. 

III. EXPERIMENTS AND RESULTS 

An initial consideration must be made regarding the audio 
format that is used for the audio files of the Emotify dataset. 
This is the popular MPEG-2 Audio Layer III (mp3) format, 
which is a lossy format based on the concept of auditory 
masking and sound data compression occurring without major 
distinguishable difference in the listening when comparing to 
the uncompressed sound data. In a classification task of 
induced emotions through music, the sound data that is lost in 
the compression could be relevant for the features in two 
ways. Features mostly related to perception will be affected 
by the loss of sound data, although only minorly, because of 
the auditory masking phenomenon on which the compression 
is based. In this case, compression operates similarly to a 
feature selection, as information that is not relevant in the 
listening is discarded before the actual feature selection 
process occurs. Differently, every feature that is not related to 
perception will potentially be affected by the compression, as 
of the discarded sound data. As the Emotify datasets does not 
provide information regarding the uncompressed sound data, 
no comparison is possible to that. However, we should take 
these considerations into account when drawing our 
conclusions. 

Extracting features using MIRToolbox accepts audio files 
using the wave format (wav). While lost sound data cannot be 
recovered by converting the files from mp3 to wave, we still 
need to convert them in order to carry out the feature 
extraction task. As audio files in the dataset are not perfectly 
equal in length although all close to 30 s, we consider the 
shortest audio file in the dataset as the minimum file length 
from which to extract a vector for each feature at a frame level. 
Average, standard deviation, asymmetry and kurtosis are 
calculated for each feature. We classify the dataset using a 
SMO-based SVM, an ANN with backpropagation, and a 
Naïve Bayesian classifier. The classification infrastructure is 
deployed by implementing our proprietary programming code 
for automated classification tasks. For each classification, the 
code recalls four cross validation folds and 20 different 
parameters initializations using various methods. First, we 
consider all extracted features; then we using only selected 
features through CFS; finally, we carry out a feature 
discretization before the feature selection. Extracted raw 
features are statistically synthesized determining a total of 476 
features. Discretization and feature selection improve the 
analysis. Table 1 shows results of classification. These results 
are reported in terms of accuracy, defined as correctly 
classified instances, per emotion and threshold of 30. As 
mentioned, these thresholds represent the mean of annotators 
who identify the presence of an emotion and allows us to 
understand which emotions are better categorized by GEMS-
9 in the Emotify dataset.  



TABLE I.  LIKELIHOOD VALUES FOR KNOWN SPEAKERS OBTAINED BY MEANS OF GMM METHOD 

 

 

TABLE II.  COMPARISON BETWEEN RMSE AND THE PROPOSED CLASSIFICATION METHODS FOR THE EMOTIFY DATASET 

 MIRToolbox + 
PsySound 

OpenSmile MP + Harm Musicological Bayes SMO ANN 

 RMSE RMSE RMSE RMSE RMSE RMSE RMSE 

Amazement .99 ± .16 .95 ± .13 1.05 ± .11 .85 ± .24 .17 ± .10  .15 ± .11 .12 ± .12 

Calmness .83 ± .09 .89 ± .07 .78 ± .09 .70 ± .16 .36 ± .07 .52 ± .07 .45 ± .14 

Joyful .77 ± .11 .80 ± .08 .75 ± .11 .58 ± .15 .31 ± .09 .47 ± .08 .35 ± .16 

Nostalgia .82 ± .12 .89 ± .07 .88 ± .10 .69 ± .16 .39 ± .07 .49 ± .08 .42 ± .14 

Power .82 ± .13 .84 ± .09 .80 ± .16 .78 ± .26 .19 ± .09 .27 ± .09 .19 ± .14 

Sadness .87 ± .11 .96 ± .18 .88 ± .12 .93 ± .20 .28 ± .07 .37 ± .07 .29 ± .14 

Solemnity .80 ± .09 .95 ± .13 .89 ± .15 .84 ± .22 .36 ± .07 .46 ± .08 .42 ± .14 

Tenderness .84 ± .10 .95 ± .07 .85 ± .18 .50 ± .19 .26 ± .08 .34 ± .07 .22 ± .13 

Tension .87 ± .20 .94 ± .19 .85 ± .13 .71 ± .36 .30 ± .07 .39 ± .08 .32 ± .14 

 

As expected, MLP using a single hidden layer provides the 
most accurate classification when considering all features, 
although with an accuracy (77.61%) that is only slightly 
superior to the results obtained on the same feature set using 
SVM (77.44%). For all the classifiers, we achieve an 
improvement using CFS and running a discretization task 
before the feature selection. Using discretization, the highest 
accuracy is obtained with the Bayesian classifier and is 
attested at 88%. Notably, the difference in accuracy regarding 
the recognition of the specific emotions is consistent to 
previous research on the Emotify dataset. In that, all the 
feature sets demonstrate the same pattern of success and 
failure; we take that consistent classification results are 
reported across the different feature sets. This leads the 
authors to the conclusion that amazement and joyful activation 
must be emotional categories, which are very different in their 
subjectiveness. Our results, however, do not avail these 
conclusions, as we report high accuracy values at around 90% 
for both emotions. On the contrary, we obtain the lowest 
accuracy for the classification of the solemnity label. These 
effects are mainly due to the personality and culture of the 
individual annotator. In fact, there are some annotators who 
are very inclined to admit the presence of several moods in a 
music piece, and others who present a higher emotional 

threshold of acceptance. The first ones contribute to the 
presence of moods with low recognition, while the second 
ones contribute to increasing the recognition of the most 
perceived moods. 

Notably, a direct comparison is possible by considering the 
Root Mean Square Error (RMSE) and its standard deviation 
across the multiple cross validation rounds. Table II compares 
the RMSE and its standard deviation with the accuracy of the 
proposed classification method, for each classifier and the 
combined of discretization and CFS. The comparison shows 
that all our features set outperform considerably those adopted 
by the authors’, in all classification cases and for all mood 
labels. 

IV. CONCLUSIONS 

Music emotion induction is a phenomenon whose 

complexity is simplified in most approaches to the automatic 

recognition of emotion in music: a listener can perceive 

multiple emotions simultaneously and subjective and cultural 

differences can constitute a bias in annotations tasks. In the 

present paper, we investigate classification of multiple and 

simultaneous emotions that can be induced/expressed 

through individual music tracks, with the aim of identifying 

 All features Selected features (CFS) Discretization + CFS 

Emotion SMO Bayes ANN SMO Bayes ANN SMO Bayes ANN 

Amazement 91.60 90.05 89.50 92.45 92.05 96.25 96.65 95.45 97.00 

Calmness 76.75 76.55 76.00 80.05 81.95 74.90 72.25 83.70 74.80 

Joyful 84.35 79.95 83.00 87.65 87.70 87.20 76.85 87.75 83.45 

Nostalgia 72.10 74.30 72.00 74.85 80.35 71.45 75.10 81.80 77.95 

Power 86.20 87.55 88.50 91.20 91.45 89.95 91.85 95.35 92.40 

Sadness 79.20 74.45 80.50 81.70 80.25 83.35 85.60 89.15 86.70 

Solemnity 65.25 65.15 67.00 69.05 70.60 65.40 78.10 80.75 77.55 

Tenderness 74.50 71.75 74.50 75.40 75.60 72.65 87.90 89.65 90.50 

Tension 67.05 65.95 67.50 77.05 74.90 76.70 84.55 88.40 84.80 

Classification mean 77.44 76.19 77.61 81.04 81.65 79.76 83.21 88.00 85.02 

Classification 

standard deviation 
8.32 8.09 7.86 7.52 7.06 9.44 7.73 4.98 7.02 



best methods for information retrieval and computational 

learning models of emotions in music. We test a variety of 

approaches on the Emotify dataset, which adopts the GEMS-

9 model for the categorization of nine different labels of 

emotion that can be expressed/induced simultaneously in 

music by a same annotator. The analysis of Emotify and 

GEMS-9 will provide us the opportunity to design better a 

new multimodal dataset for MER, MIR and computational 

creativity. 

We approach the scenario of emotions 

expression/induction through music as a multilabel and 

multiclass problem, where multiple emotion labels can be 

adopted for the same music track by each annotator 

(multilabel), and each emotion can be identified or not in the 

music (multiclass). We consider this approach as better 

approximation to real-world scenarios in comparison to the 

use of exclusive labels for the description of emotions in 

music. We consider different distributions of annotations and 

emotion labels in a corpus by considering emotion labels as 

valid for a track when the mean positive response of 

annotations per label surpasses a specific consensus 

threshold. Thresholds at 30% is considered. Furthermore, we 

compare the efficiency of different approaches for 

discretization, feature selection and classification. 
Best performance of classification tasks is achieved by 

using a Naïve Bayesian classifier at 88% mean accuracy. 
Results from the different classification algorithms confirm 
that pre-processing techniques, discretization and selection of 
features, improve performance in terms of accuracy. 
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