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Abstract— This paper presents two solutions for performing  independently and communicate locally, an operating ffailu

decentralised particle filtering in view of non-linear, non- in a node would not affect integrity of the operation of
Gaussian tracking in sensor networks. The issue is that no surviving nodes.

known methods exist to deal with correlated estimation errors In order to perform DDE consistently. new information
due to common past information between two discrete particle p : Yy, NEW I :

sets. has to be recovered from the received estimate by removing
The first method transforms the particles to a Gaussian common past information [4]. Figure 1 shows how common
Mixture Model, the second approximates the set by a Parzen information between two nodes and j (P x1Z;NZ;))

density estimate. Both of these representations accommodate yyises where is the state of vector and is the observation.
consistent fusion and maintain accurate summaries of the

particles. Requiring less bandwidth than particle representa-
tions, transformations to GMMs or Parzen representations for

communication provide an added advantage. 7 PIX|Z,NZ) -

The accuracy in which the algorithms summarise the particle (@™ ro
set, fusion methods and bandwidth requirements of each P(N|Z) PN Z)
representation will be compared. Our results show that whilst ,
less GMM components are required to summarise the sample Z\Ac PX|ZN Z) oA/Z,
statistics, the decentralised fusion solution using Parzen repre- (b)
sentations yields a more accurate result. PIN|Z) P(x|ZU Z)

|. INTRODUCTION Acfjmzu AY/E Zimzj)o/zj

Two methodologies for performing decentralised particle © )
filtering are proposed in view of non-linear, non-Gaussian
tracking applications in sensor networks. Our application PIX| 2,1 Z)
aims to demonstrate decentralised data fusion (DDF) tech- @ o o
nigues using vision sensors only. Although vision sensors
return rich feature information such as colour, texture and ) ) ) .

. . . . Fig. 1.  How common information arises from the network is shown.
reflectivity, the observation model is bearing-only andrzzn Communication of estimates (indicated by arrows) are from NdadeNode
be modelled as a Gaussian. Hence, non-Gaussian represes-(a) and vice versa at (c). At (c), the estimate communicatetaoes
tations are required, in which particle filters are an ideg}ast information sent from Nodeat (a). This common information has to

. . . . . e removed by division so only “new” information is fused at Mad
choice. Other representations considered include grigdba
techniques [1], Gaussian Mixture Models (GMMs) [2] and
Parzen representations [3]. Grid based representatienofir  In Figure 1, (a) shows that at first instance, Nadaakes
compact and do not scale well with dimension comparedn observationZ;, of a feature, updates the local filter
to particles. GMMs and Parzen representations require agsulting in a posteriof (x|Z;), and sends its estimate to
approximate observation likelihood transformation frdme t Node j, which instantiates the filter for this target. This
sensor space to Cartesian space and result in a multipécatcommunicated estimatg (x|Z;) also becomes the common
increase of parameters at every local update. information P (x|Z; (1 Z;), between these two nodes.

The focus of this work is on applications in macro sensor At (b), New observations are updated at Nodesd ;.
networks, which are characterized by platform mobility, At (c), Node ; now sends to Nodei, its estimate
heterogeneous teams and long mission duration. The DOF(x|Z;|JZ;), This is a combination of information from
system under consideration includes mobile autonomoidode: sent at time (a) and information from local updates
robots, stationary sensor platforms and human operatbes. Tat Node j. To avoid errors arising from correlations, the
characteristics of DDF considered here are that no node ég@mmon past information has to be removed from this
central to network operation, that no common communicastimate prior to fusion through a division.
tion facility exists and no node has global knowledge of the (d) is after the fusion update, where the estimate at both
network topology. The advantages imposed by these thrélwdesi and j are based on information from both nodes.
constraints include modularity, scalability, survivatyiland The common information is now what Nogeeommunicated
increased robustness. As nodes in a DDF system operatestep (c).

PIN|Z U Z) P(X|ZU Z)

P(X|Z U Z) PX|Z U Z)



Hence, the fusion between two nodes amounts to a divof particles. Our simulation results show that less GMM
sion operation to obtain only “new” information from the components are required to summarise the sample statistics
communicated estimate and a multiplication of this “new'tompared to Parzen components. Additionally, the accuracy

information with the local estimate [5], which is: of the approximation by GMMs is better than Parzen repre-
P (X|Z;) P (X|Z;) sentations. However, the fusion algorithm for Parzen dgnsi
P (X|ZiUZj) x P(x|Z»ﬂz<)J (1) estimates is more accurate than the algorithm for GMMs
? J

offsetting the benefits of GMMs.

The division operation is the main problem encountered in The paper is organised as follows: After presenting some

non-Gaussian DDF. The aim here is to develop a mathemafsiated work (Section 111), a generalised DDF node is de-

ically consistent and tractable formulation of the divisio gcribed in Section IV. Section V introduces the two methods

when using particle filters. of performing consistent DDF on particle filters. In Section
Il. PROBLEM STATEMENT VI, simulation results are presented. Section VII conctude

. . . .. and presents future directions.
The division operation can be performed analytically with P

Gaussian representations for tree-connected networks: Ho 1. RELATED WORK

ever, if the correlation between the estimates to be fused iSSince the seminal paper by Gordet al. [10], particle

unknown, a covariance Intersect f!lter can be_ applied [4]. filters have been used widely especially in a centralised
As our selected representation is particle filters, the pml?ashion [11],[12]

lem that occurs is consistently fusing two particle sets Distributiv,e particle filter algorithms were used by

directly. There is only support for an infinitesimally Sma"Coates [13] and Shengt al. [14] to communicate mea-

mtervi: at thetrr]JartI(_:Ie. Elsewlheretz) t?e value of tlhe pa?tlsl_ tj(ilrements from low-cost sensors in sensor networks. Coates
Z€r10. Mence, there IS no overiap between samples even in %uired that all the nodes maintain particle filters that

sar?g lgpage. Lénless twohsamples lie (Iaxactly at thﬁjsamel S.%% synchronized using the same set of prior distribution.
;neurot'%gcztr']%r\;m ?;WE%Ttheeztvl\é(c))rsggrr)ni)lzatsht\alvcr)rl:ul ti;r)(laii:ttié%he data_ is encoded as partial likelihood fu.nctio_ns prior to
of the first sample of set l. with the first ,sample in set 2 i%rop'aga.tlon. throughout the network. The final importance
istribution is then back-propagated to all the sensor siode
§(z —0.5)5(z —1) =0. and a new set of particles will be generated at each sensor
using the final distribution. Shenet al, use an Expected
Sanpl e Resul t ant Maxisation (EM) algorithm to train a Gaussian Mixture ap-
set 2 % samie proximation to the particle representation and commuaitat
the Gaussian Mixture to conserve bandwidth. Communica-
tion of observation information when received is not robust
o to communication failure. Our application communicates th
o state estimates at constant time instead.
X(m X X(m Ihler et al. [15] applied a message-passing estimation
Fig. 2. Samples from one particle set do not have the same dupptine technique k”‘?""”_ as non-palramegtric.beli_ef propagationcdase
space as samples from another set. The particle at 0.5 m frorh 8l ~ ON & generalisation of particle filtering in sensor networks
be multiplied by a value of zero at 0.5 m from Set 2 because tiser®  These messages are estimates of the location and uncertaint
support at that point at Set 2. of the sensor nodes themselves, represented as eitheresampl
or analytical functions. A Gaussian mixture estimate is-€om
Rosencrantzt al. [6] performed fusion on particle filters puted from the outgoing message for communication. Our
by adding the most informative subset of samples from twapplication aims not to communicate and represent the senso
nodes together. This method is mathematically incondisteastimates but rather features of interest in the envirohmen
with Equation 1 and common past information is not ac- Challaet al.[16] used Support Vector Machines (SVM) in
counted for as a division operation cannot be performed datistributed data fusion to compress the particle represent
discrete samples for the same reasons as multiplication. of the state estimate for broadcast to a central fusion eentr
The main contribution of this paper is the developmenRosencrantzt al. [6] decentralised a standard particle filter
of two methods for consistent fusion and hence, decentralisy fusing the most informative subsets of samples without
ing particle filters. Both methods require a transformatioproducing a functional distribution over the individuajpre
to continuous representations, one being GMMs and thresentations. Although Rosencramtzal. and Challaet al.
other Parzen representations. Not only do these continoused particle filters in a decentralised sense, the guarante
representations satisfy conservative fusion update [B], [ for conservative fusion updates is not considered as common
the transformations also smooth and regularise the sampgormation is not accounted for.
set [9], allowing the particles to be distributed more eyenl
The secondary contribution of this paper is the reduction
of bandwidth per communication step by communicating The operations in a decentralised node is illustrated in
the transformed GMMs and Parzen representations insteBjure 3.
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IV. DECENTRALISEDNODE STRUCTURE
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2) Parzen Density Estimatestor Parzen density esti-
Lo e mates, any type of kernel may be used to represent a proba-
Fig. 3. Flow chart of the operations performed in DDF is shoWme local blllty dlstrlbut|qn. However, Gaussian kernels are pr&fe!r_
filter is where the observation likelihoods are updated flosal sensors as the operations are closed form and therefore efficient.
and information received from channel filters is used. Thenokkfilter is  The Parzen density estimator is similar to a GMM except
used to maintain a record of common information between two nodes each component has the same covariance. The equation for
a Parzen density estimate with a Gaussian kernel is:

. In a DDF system, likelihoods are ge.ne.ratejd from observa- P(z) = Z%G(x? 1,%) (5)
tions made by the sensor. Data association is then performed =
between the likelihood and existing local tracks whereegith . ) . )
fusion or track initialisation takes place. A standard eyclWhereG(z) is the Gaussian probability density anand-;
of a local observation update (multiplication of prior and®re the weights wherg_ ;" , v; = 1.
likelihood) and prediction (convolutior_1 of prior with PreSS B Conversion to a Continuous Distribution
model) occurs at the node. At set times, the local particle . . o
sets are then transformed into a representation that equir 1h€ method of converting to a continuous  distribution
less communication bandwidth and communicated to neighsnown in Figure 4) is based on Musso [9] where each sample
bouring nodes in the network via the channel filters [17]. IS converted to a kernek, (x):

Th_e channel filter also_ receives information from n_eigh- Kn(x) = hPK(x) (6)
bouring nodes. When this occurs, data association is per-
formed. If associated to a track, the received informatiowhere D is the number of dimensiongs (.) is the rescaled
is fused after common past information is removed. Thkernel density and > 0 is the window or scaling parameter.
common information at the channel filter is also updatedhe kernel selected is Gaussian with
with the received information. 4

)NTE (7)

h=(=——
V. DECENTRALISEDPARTICLE FUSION ALGORITHMS D+2

Particle filters are a Monte Carlo estimation method basedheree = 5, and NV is the number of samples.
on importance sampling, adapted to sequential filtering for
dynamic systems [10]. The probability distribution of the 0.06 Gonversion of particles to a continuous distribution
state, is represented by particles at a given moment in time
k, as a set of weighted samplés.”, w(" }V |, such that the 005
density is approximated by an empirical estimate,

P (Xk\Zk> ~ iw,(j)(s (x,@) (2)
i=1

whered (-) is the Dirac delta function. e AN o
As explained in Section Il, the fusion operations (Equation 0.01f e - ER
1) of two patrticles sets cannot be performed directly. Astea ) B \
one set of particles has to be transformed to a continuous oT Tl a0 Tao a0 w0
distribution to be sampled by the second set to obtain the new
importance weights. The continuous distributions conside Fig'. 4. Conversio'n of particl_es to a continuous distribmt{shown as the
for transformation are Gaussian Mixture Models (GMMS)ZZ'(':‘:] l/l\?e?)ghtgdp:)aacrlt?ge?silf\;\?rllagykzr.nels (shown as the dditezt) over
and Parzen Density Estimates.
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Communicating the continuous distribution in this formestimatef,(z))).

would be slightly worse than communicating the sample -1 1 1
set itself asgtheyre is a kernel for each pa?rticle. Henpce, B = wns (- w) ©)
approximating this distribution by a more compact one such piy = TS+ (1-w)s ) (10)
as Parzen representations or GMMs is more desirable. e g
1) Algorithm 1 : Conversion to GMMs:Expectation Vg = Noe —No o 1l-w (1)
D kst 2 YEN

Maximisation (EM) algorithm [18] or via West's joining o )
algorithm [19] are two methods considered for reducing th& C! weighting parameterv is selected such that the
sample set to a more compact GMM. Chernoff Information of the resultant distribution is etiya

The EM algorithm finds the maximum likelihood para_distance from both prior distributions. The optimahence,

meter estimation in statistical models with variables trat would have the property of

not observed, given initial parameters. These parameters a D(P,(2)]|Fa(2)) = D(B,(2)||Py(2))

determined using the X-means algorithm [20]. The computd/here D([|-) is the Kullback-Leibler(KL) divergence [21].
tional complexity for X-means i€(i x N log kmas) Where The new particle set is then obtained by sampling from the
kmas 1S the selected maximum number of cluster meanhss fused GMM' ] . . . . )
the number of samples ands the number of iterations. The 2) Algorithm 2 : Fusion via Parzen densily esfimates:

computational complexity for the EM algorithm for GMMs’;\ parttlcle ts_et, tsummzlrlsed and commu:ucgted as a Fr']arzenl
is O(i x ND?) where D is the dimensionality of the state. ensity estimate enables an approximate bayesian channe

In our experiments, we find that the EM algorithm requireédeate qperation (a division operation)'to be performed at
a large set of at least 2000 particles to perform adequatew.?nrfﬁi'\gngerg?gﬁ tg{;;:ng\;f g(r)]n;?r%n g:‘:’r:{n?'%ne [ggﬁmm )
We also find that EM is considerably more computa\tional%.CatedI esr;'mat:a s divided tz) a Gapss'an ih the sarr:Je
expensive compared to the West’s joining algorithm whic cate ! s dvi y aussian wi o

has a complexity of0(M log M) where M << N is the covariance. A division of a Gaussian by a Gaussian is

number of components. Hence, we chose to implement tﬁ)é)SSlb|e. The covariance is approximated from the prelfous

latter for reducing the Gaussian sum to a distribution of Ieﬁiommunlcated est|ma_te. This _result; n all the quotients
components. aving the same covariance which maintains form. The mean

. e : . and weight of the Gaussian divisor is approximated by

The operation of West's joining algorithm is to merge : . L . ; .

, . valuating the Gaussian divisor and its gradient at thetpoin
pairs of components from the sum of Gaussian kerne

(Equation 5) converted from the particles, successiveti ungalrzteer:e:;hﬂ;iepnc:mt of interest is the mean of the current
the desired level of reduction has been achieved. The distan P ’

measure utilized to gauge the similarity of componeand VI. | MPLEMENTATION

componentj of the GMM is a Mahalanobis-type distance The decentralised particle filter algorithms are imple-

measure: mented in a six degree-of-freedom multiple vehicle simu-
N o (s — 1) TS s — 1) ® Ia_1t|_0n. In the simulation, two flight _vehlcles e_qupe(_j with
ij — 7%_ Py i — Hi — [y vision sensor undergo part of a figure of eight trajectory

approximately 100 m above the ground with average flight
wherey is the state vector of the componehtis the mixture speeds of 144 m/s. The field of view (FOV) angle of the
covariance matrix and is the component weight. sensors are-15° with bearing uncertainties df.1601° and

2) Algorithm 2 : Conversion to Parzen density estimateselevation uncertainties @1206°. 50 features were scattered

A variant of West's joining algorithm [19] for Parzen es-on the ground to be tracked.
timates, can be applied to the sums of Gaussian kernelsin each local filter, the estimation model is updated every
that were converted from the particles (Equation 5). Herd).025s, and the observation model is updated every 0.2s.
the kernel covariance is adjusted such that the ensemdlbe range-cutoff used when initialising a new filter is 200
covariance is preserved after the number of components have Every 0.6 seconds, each alternate platform communicates

been reduced. summaries of each sample set.
The system process model used for prediction was the
C. Fusion and Accounting of Common Information Integrated Ornstein-Uhlenbeck process [1] which allows fo

) ) ) o bounding of the Brownian velocity over time. This prevents
1) Algorithm 1 : Fusion via GMMs:Fusion is performed gy cessively large velocities that can occur due to wayward
by first converting the local particle set to a GMM. A generieasurements when the feature is not observed for an
alised covariance intersect (Cl) update [7] is then pertafm o ianded period

with the communicated GMM to ensure conservative fusion 1he observationsz{) are a sequence of bearing)(and
of possibly correlated information. lllustrated in EqO&8  gjoyation ¢) measurements:
9,10 and 11 are the CI operations wheig, p;; and ;;

1 .
are the new covariance, mean, and weight of the component z, — [, 97 = t_aln (y’“/“gk) N )
after fusion between théth component of the local esti- tan™" (zx/ /23, + yj,

mate ,(x))) and thejth component of the communicatedwherev,, is the measurement noise.
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(a) A bearing-only probability distri{b) A GMM approximation of the(c) A GMM approximation of the(d) A Parzen approximation of the

bution with 2000 particles particle representation via EM conparticle representation via Westzrticle representation via West's
promising of 23 components joining algorithm compromising ojoining algorithm compromising of
23 components 55 components

Fig. 5. The GMM and Parzen approximations (5(b) to 5(d)) of arimg-only probability distribution 5(a). The range-cfiitior this distribution is at 200
meters, the bearing is zero degrees with a variance of 1.%eegegr

TABLE |
BANDWIDTH REQUIREMENTS

Represent | Dimen | Components| Bandwidth Data
-ation -sion for available Transmitted
comms (1 MTU) No.of Components[No of bytes]paramete
GMM approx 4 97 1460 97[4]means, 97[10]covariance, 97[1]weights
Parzen approx 4 290 1460 290[4]means, 1[10]covariance, 290[1]weights
Particle set 4 365 1460 365[4]means
GMM approx 6 52 1460 52[6]means, 52[21]covariance, 52[1]weights
Parzen approx 6 205 1460 205[6]means, 1[21]covariance, 205[1]weights
Particle set 6 243 1460 243[6]means
A. Accuracy of each particle summary coefficient of 0.92. However, the approximation to 23 GMMs

The accuracy of each representation in summarising tiyéa the EM algorithm is more accurate with a coefficient of
particle set is shown. The particle set shown in Figure 5(#-99 but computationally expensive.
is a set of 2000 particles representing a range-limitedithgar
only probability distribution. The range cutoff is set at020
metres for a bearing at zero degrees and a variance of 1.59n sensor networks, it is desirable to communicate a
degrees. representation as compact as possible. Table | shows the

The transformations of this sample set to a GMM usindpandwidth requirements for communicating :

EM and West's joining are shown in Figures 5(b) and (a) the particle set directly

5(c) and the transformation to a Parzen in 5(d). Note that (b) a Parzen density approximation of the particles and
the EM result of this transformation is more cone-shaped, (c) a GMM approximation of the particles

particularly between the ranges of 0 and 50 metres. Two examples are provided, which represents state dimen-

To accommodate comparisons among various represesions of 4 and 6. Only the upper triangle of the symmetric
tations, a divergence or distance measure is required ¢ovariance matrix of the Parzen and GMM representation
determine the accuracy of each approximation. The selectaded to be communicated. For example, the number of bytes
measure, the Bhattacharyya Coefficient [22] is defined asto store the covariance matrix for a state dimension of 4 is

m 16 (4 x 4). Communicating the upper triangle of this matrix
p(z) = Z vV pi(x)gi(x) (13) would require 10 bytes. In our example, the data has to be
i=1 communicated in one MTU (Maximum Transmission Unit)
whereq is the represented distribution apds the true dis- which is 1500 bytes. An MTU is the maximum size of a
tribution (represented by a fine grid). The minimum numbepacket that can be transmitted in one frame over a network.
of components was found by seeking the approximation th&s a number of bytes are allocated to the source and desti-
resulted in a coefficient of 0.95 where a value of 1 wouldhation IP addresses of the packet, the actual communicated
indicate thatp = q. data size is limited to 1460 bytes.

In this example, for the GMM approximation, a reduction For a 4-D system, 23 GMM or 55 Parzen components
to 23 components resulted in a Bhattacharyya coefficient @fere required to approximate a particle set of 2000. With a
0.95. To obtain the same coefficient, 55 Parzen componer@smmunication bandwidth of 1460 floats per time interval,
were required. Hence, less components are required forttee maximum number of particles is 365 which could prove
GMM approximation compared to a Parzen window approxinsufficient, whereas the GMM and Parzen approximations
mation. 23 Parzen components would result in a less accurateuld exhibit better performances as 4 GMM feature es-

B. Bandwidth requirements
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Fig. 7. GMM Fusion results for Node 2 - 17 features tracked Fig. 9. Platform 2 StandAlone Result - 9 features tracked
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timates and 5 Parzen estimates can be communicated. The - p3 : e
Parzen density estimate is the most compact especially for ’
. ) ) . . 5
higher dimensions. For a dimension of 6, the amount of data s
that can be communicated reduces to 52 GMM components >§_~ or
which is about 50% while the number of Parzen components )
reduces by only 30%. ek e T2
g 9
C. Results » « &
The final results of the simulation is shown from Figures 40000 200 X(b : 200 400 800
m

6 to 9. In this simulation, features on the ground are
observed either by platform 1 alone, platform 2 alone or
by both platform 1 and 2. Observations from both platforms
were communicated to obtain the centralised solution. For
the GMM and Parzen fusion solution, the estimates were
communicated at a lesser frequency. Hence, more tracks
are made even though the feature was not observed by therigures 11 and 12 illustrate the KL-Divergence results for
platform itself such as Features 4 and 29 for platform leach node performing DDF and the standalone nodes (i.e.
increasing the area of coverage for that platform. Althougho communication) compared to the centralised solution for
the fusion results is not optimal, they matches very closellyeature 1. Platform 1 observed the feature at the time of 0-6
to the centralised solution. Features 1, 19, 22 and 44 weseand 166-183 s. Platform 2 observed the feature between the
observed by both platforms. The GMM fusion results for6-63 s and the 230-240 s. The results show that when one
these features are slightly less tightly distributed orslesnode is observing the feature, communicating and fusing the
compact compared to the Parzen fusion results. feature estimate to the other node via Parzen represergatio
The results of each fusion method is compared to the more accurate compared to via GMMs in terms of the
centralised solution. The measure used is the relativegntr KL-Divergence. These results also indicate that decaséel
or Kullback-Leibler(KL) divergence [21] as it measures thenodes exhibit performances better than the sensors apgrati
inefficiency of each distribution assuming that the ceiteal alone and that the final solutions for the decentralised siode
solution is the most optimal. are similar but less compact that the centralised one.

Fig. 10. Centralised Solution - 17 features tracked
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[12]
VIl. CONCLUSION

This paper has introduced two methodologies for per-
forming consistent and efficient decentralised data fusidn®l
with particle filters which transform the particle set tcheit
GMMs or Parzen estimates for communication and inteff14]
nodal fusion. This is due to the GMMs and Parzen repre-
sentations which have the capacity to account for common
information between communicated and local distributions

Summarising the sample set with a GMM requires lesd®
components and is more accurate than approximation by
Parzen representation. However, the Parzen density e¢stima
is more compact. Better fusion results are obtained usir{bﬂ
Parzen representations as the Parzen estimate division is
more accurate than the generalised covariance intersect fo
GMMs. However, fusion via the GMM covariance intersect’]
can be performed for arbitrary connection topologies, wherg)
the division of Parzens cannot.

One of the areas for future work is the development o[f19
different fusion methods for GMMs and patrticle represen-
tations. Future work will also include a demonstration of20]
each of these representations using vision sensors orrraérbo

vehicles, ground vehicles and stationary ground nodes. [21]

ACKNOWLEDGMENTS [22]

This work is supported by the ARC Centre of Excellence
programme, funded by the Australian Research Council
(ARC) and the New South Wales State Government and is
supported by BAE Systems, ATC, UK.

REFERENCES

L. Stone, C. Barlow, and T. CorwirBayesian Multiple Target Track-
ing. Artech House, 1999.

D. Alspach and H. Sorenson, “Nonlinear Bayesian estiomatising
Gaussian sum approximationslEEE Transactions on Automatic
Control, vol. 17(4), pp. 439-448, August 1972.

E. Parzen, “On estimation of a probability density funatand mode,”
The Annals of Mathematical Statisticgol. 33(3), pp. 1065-1076,
September, 1962.

S. Julier and J. Uhlmann, “A nondivergent estimation alfon in the
presence of unknown correlationdti Proceedings of The American
Control Conferencevol. 4, pp. 2369-2373, July, 1997.

Y. E. Bar-ShalomMultitarget-multisensor tracking: advanced apppli-
cations Artech House, 1990.

M. Rosencrantz, G. Gordon, and S. Thrun, “Decentralidath fusion
with distributed particle filters,” irProceedings of the Conference on
Uncertainty in Al (UAI) Acapulco, Mexico, 2003.

S. Julier, “An empirical study into the use of Chernoff énfnation
for robust, distributed fusion of Gaussian mixture modeis,9th In-
ternational Conference on Information Fusion (Fusion’OBJorence,
Italy, 2006.

M. Ridley, B. Upcroft, L. Ong, S. Kumar, and S. Sukkarie@é&cen-
tralised data fusion with Parzen density estimates,Int@ernational
Conference on Intelligent Sensors, Sensor Networks amdnhation
Processing 2004 (ISSNIP '04Melbourne, Australia, 2004.

C. Musso, N. Oudjane, and F. Le Gland, “Improving regued
particle filters,” in Sequential Monte Carlo Methods in Practice
A. Doucet, N. de Freitas, and N. Gordon, Eds.  Springer-derla
2001, pp. 247-272.

N. J. Gordon, D. Salmond, and A. Smith, “Novel approach to
nonlinear/non-Gaussian Bayesian state estimati®@E’ Proceedings-
F,, vol. 140(2), pp. 107-113, 1993.

M. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “Adxial on
particle filters for online nonlinear/non-Gaussian Bagasiracking,”
IEEE Transactions on Signal Processingl. 50, no. 2, pp. 174-188,
2002.

A. Doucet, N. de Freitas, and N. Gordon, “An introductim sequen-
tial Monte Carlo methods,” irSequential Monte Carlo Methods in
Practice A. Doucet, N. de Freitas, and N. Gordon, Eds. Springer-
Verlag, 2001, pp. 3-14.

M. Coates, “Distributed particle filters for sensorwetks,” in Infor-
mation Processing in Sensor Networks (ISPN 2008pringer, 2004,
pp. 99-107.

X. Sheng, Y. Hu, and P. Ramanathan, “Distributed pagtfdter with
GMM approximation for multiple targets localization and kg
in wireless sensor network,” iffourth International Symposium on
Information Processing in Sensor Networks, (IPSR)O5, pp. 181—
188.

] A. Ihler, E. Sudderth, W. Freeman, and A. Willsky, “Efcit multi-

scale sampling from products of Gaussian mixtures,Pinceedings
of the Twentieth Conference on Uncertainty in Artificialeltigence
2004.

S. Challa, M. Palaniswami, and A. Shilton, “Distributedta fusion
using support vector machines,” Proceedings of the Fifth Interna-
tional Conference on Information Fusion, (FUSIQNDI. 2, 2002, pp.
881-885.

S. Grime, “Communication in decentralised sensing aechitres,”
Ph.D. dissertation, The University of Oxford, 1992.

A. Dempster, N. Laird, and D. Rubin, “Maximum likelihoodom
incomplete data via the EM algorithmJdurnal of the Royal Statistical
Society Bvol. 39.

M. West, “Approximating posterior distributions by mixes,” Journal
of Royal Statistical Society, Series ®l. 55(2), pp. 409-442, 1993.
D. Pelleg and A. Moore, “X-means: Extending k-means wificient
estimation of the number of clusterdii Proceedings of the 17th
International Conference on Machine Learnjng 277, 2000.

T. Cover and J. Thomag&lements of Information Theagrger. Wiley
Series in Telecommunications. New York: Wiley, 1991.

D. Comaniciu, V. Ramesh, and P. Meer, “Kernel-based ahjeck-
ing,” IEEE Transactions on Pattern Analysis and Machine Intelice
vol. 25(5), pp. 564-575, 2003.



