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Abstract— This paper presents two solutions for performing
decentralised particle filtering in view of non-linear, non-
Gaussian tracking in sensor networks. The issue is that no
known methods exist to deal with correlated estimation errors
due to common past information between two discrete particle
sets.

The first method transforms the particles to a Gaussian
Mixture Model, the second approximates the set by a Parzen
density estimate. Both of these representations accommodate
consistent fusion and maintain accurate summaries of the
particles. Requiring less bandwidth than particle representa-
tions, transformations to GMMs or Parzen representations for
communication provide an added advantage.

The accuracy in which the algorithms summarise the particle
set, fusion methods and bandwidth requirements of each
representation will be compared. Our results show that whilst
less GMM components are required to summarise the sample
statistics, the decentralised fusion solution using Parzen repre-
sentations yields a more accurate result.

I. I NTRODUCTION

Two methodologies for performing decentralised particle
filtering are proposed in view of non-linear, non-Gaussian
tracking applications in sensor networks. Our application
aims to demonstrate decentralised data fusion (DDF) tech-
niques using vision sensors only. Although vision sensors
return rich feature information such as colour, texture and
reflectivity, the observation model is bearing-only and cannot
be modelled as a Gaussian. Hence, non-Gaussian represen-
tations are required, in which particle filters are an ideal
choice. Other representations considered include grid-based
techniques [1], Gaussian Mixture Models (GMMs) [2] and
Parzen representations [3]. Grid based representations are not
compact and do not scale well with dimension compared
to particles. GMMs and Parzen representations require an
approximate observation likelihood transformation from the
sensor space to Cartesian space and result in a multiplicative
increase of parameters at every local update.

The focus of this work is on applications in macro sensor
networks, which are characterized by platform mobility,
heterogeneous teams and long mission duration. The DDF
system under consideration includes mobile autonomous
robots, stationary sensor platforms and human operators. The
characteristics of DDF considered here are that no node is
central to network operation, that no common communica-
tion facility exists and no node has global knowledge of the
network topology. The advantages imposed by these three
constraints include modularity, scalability, survivability and
increased robustness. As nodes in a DDF system operate

independently and communicate locally, an operating failure
in a node would not affect integrity of the operation of
surviving nodes.

In order to perform DDF consistently, new information
has to be recovered from the received estimate by removing
common past information [4]. Figure 1 shows how common
information between two nodesi and j (P (x|Zi

⋂

Zj))
arises wherex is the state of vector andZ is the observation.
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Fig. 1. How common information arises from the network is shown.
Communication of estimates (indicated by arrows) are from Nodei to Node
j at (a) and vice versa at (c). At (c), the estimate communicated contains
past information sent from Nodei at (a). This common information has to
be removed by division so only “new” information is fused at Node i.

In Figure 1, (a) shows that at first instance, Nodei makes
an observationZi, of a feature, updates the local filter
resulting in a posteriorP (x|Zi), and sends its estimate to
Node j, which instantiates the filter for this target. This
communicated estimateP (x|Zi) also becomes the common
informationP (x|Zi

⋂

Zj), between these two nodes.
At (b), New observations are updated at Nodesi and j.
At (c), Node j now sends to Nodei, its estimate

P (x|Zi

⋃

Zj), This is a combination of information from
Node i sent at time (a) and information from local updates
at Node j. To avoid errors arising from correlations, the
common past information has to be removed from this
estimate prior to fusion through a division.

(d) is after the fusion update, where the estimate at both
Nodesi and j are based on information from both nodes.
The common information is now what Nodej communicated
at step (c).



Hence, the fusion between two nodes amounts to a divi-
sion operation to obtain only “new” information from the
communicated estimate and a multiplication of this “new”
information with the local estimate [5], which is:

P
(

x|Zi

⋃

Zj

)

∝

P (x|Zi) P (x|Zj)

P (x|Zi

⋂

Zj)
(1)

The division operation is the main problem encountered in
non-Gaussian DDF. The aim here is to develop a mathemat-
ically consistent and tractable formulation of the division
when using particle filters.

II. PROBLEM STATEMENT

The division operation can be performed analytically with
Gaussian representations for tree-connected networks. How-
ever, if the correlation between the estimates to be fused is
unknown, a covariance intersect filter can be applied [4].

As our selected representation is particle filters, the prob-
lem that occurs is consistently fusing two particle sets
directly. There is only support for an infinitesimally small
interval at the particle. Elsewhere the value of the particle is
zero. Hence, there is no overlap between samples even in the
same space. Unless two samples lie exactly at the same spot,
multiplication between the two sample sets would result in
zero as shown in Figure 2. For example, the multiplication
of the first sample of set 1 with the first sample in set 2 is
δ(x − 0.5)δ(x − 1) = 0.
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Fig. 2. Samples from one particle set do not have the same support on the
space as samples from another set. The particle at 0.5 m from Set 1 will
be multiplied by a value of zero at 0.5 m from Set 2 because thereis no
support at that point at Set 2.

Rosencrantzet al. [6] performed fusion on particle filters
by adding the most informative subset of samples from two
nodes together. This method is mathematically inconsistent
with Equation 1 and common past information is not ac-
counted for as a division operation cannot be performed on
discrete samples for the same reasons as multiplication.

The main contribution of this paper is the development
of two methods for consistent fusion and hence, decentralis-
ing particle filters. Both methods require a transformation
to continuous representations, one being GMMs and the
other Parzen representations. Not only do these continous
representations satisfy conservative fusion update [7], [8],
the transformations also smooth and regularise the sample
set [9], allowing the particles to be distributed more evenly.
The secondary contribution of this paper is the reduction
of bandwidth per communication step by communicating
the transformed GMMs and Parzen representations instead

of particles. Our simulation results show that less GMM
components are required to summarise the sample statistics
compared to Parzen components. Additionally, the accuracy
of the approximation by GMMs is better than Parzen repre-
sentations. However, the fusion algorithm for Parzen density
estimates is more accurate than the algorithm for GMMs
offsetting the benefits of GMMs.

The paper is organised as follows: After presenting some
related work (Section III), a generalised DDF node is de-
scribed in Section IV. Section V introduces the two methods
of performing consistent DDF on particle filters. In Section
VI, simulation results are presented. Section VII concludes
and presents future directions.

III. R ELATED WORK

Since the seminal paper by Gordonet al. [10], particle
filters have been used widely especially in a centralised
fashion [11],[12].

Distributive particle filter algorithms were used by
Coates [13] and Shenget al. [14] to communicate mea-
surements from low-cost sensors in sensor networks. Coates
required that all the nodes maintain particle filters that
are synchronized using the same set of prior distribution.
The data is encoded as partial likelihood functions prior to
propagation throughout the network. The final importance
distribution is then back-propagated to all the sensor nodes
and a new set of particles will be generated at each sensor
using the final distribution. Shenget al., use an Expected
Maxisation (EM) algorithm to train a Gaussian Mixture ap-
proximation to the particle representation and communicated
the Gaussian Mixture to conserve bandwidth. Communica-
tion of observation information when received is not robust
to communication failure. Our application communicates the
state estimates at constant time instead.

Ihler et al. [15] applied a message-passing estimation
technique known as non-parametric belief propagation based
on a generalisation of particle filtering in sensor networks.
These messages are estimates of the location and uncertainty
of the sensor nodes themselves, represented as either samples
or analytical functions. A Gaussian mixture estimate is com-
puted from the outgoing message for communication. Our
application aims not to communicate and represent the sensor
estimates but rather features of interest in the environment.

Challaet al. [16] used Support Vector Machines (SVM) in
distributed data fusion to compress the particle representation
of the state estimate for broadcast to a central fusion centre.
Rosencrantzet al. [6] decentralised a standard particle filter
by fusing the most informative subsets of samples without
producing a functional distribution over the individual rep-
resentations. Although Rosencrantzet al. and Challaet al.
used particle filters in a decentralised sense, the guarantee
for conservative fusion updates is not considered as common
information is not accounted for.

IV. D ECENTRALISEDNODE STRUCTURE

The operations in a decentralised node is illustrated in
Figure 3.
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Fig. 3. Flow chart of the operations performed in DDF is shown.The local
filter is where the observation likelihoods are updated fromlocal sensors
and information received from channel filters is used. The channel filter is
used to maintain a record of common information between two nodes.

In a DDF system, likelihoods are generated from observa-
tions made by the sensor. Data association is then performed
between the likelihood and existing local tracks where either
fusion or track initialisation takes place. A standard cycle
of a local observation update (multiplication of prior and
likelihood) and prediction (convolution of prior with process
model) occurs at the node. At set times, the local particle
sets are then transformed into a representation that requires
less communication bandwidth and communicated to neigh-
bouring nodes in the network via the channel filters [17].

The channel filter also receives information from neigh-
bouring nodes. When this occurs, data association is per-
formed. If associated to a track, the received information
is fused after common past information is removed. The
common information at the channel filter is also updated
with the received information.

V. DECENTRALISEDPARTICLE FUSION ALGORITHMS

Particle filters are a Monte Carlo estimation method based
on importance sampling, adapted to sequential filtering for
dynamic systems [10]. The probability distribution of the
state, is represented by particles at a given moment in time
k, as a set of weighted samples{x(i)

k , w
(i)
k }N

i=1, such that the
density is approximated by an empirical estimate,

P
(

xk|Z
k
)

≈
N

∑

i=1

w
(i)
k δ

(

x
(i)
k

)

(2)

whereδ (·) is the Dirac delta function.
As explained in Section II, the fusion operations (Equation

1) of two particles sets cannot be performed directly. At least
one set of particles has to be transformed to a continuous
distribution to be sampled by the second set to obtain the new
importance weights. The continuous distributions considered
for transformation are Gaussian Mixture Models (GMMs)
and Parzen Density Estimates.

A. The Continuous Distributions

1) Gaussian Mixture Models (GMMs):A Gaussian mix-
ture model for a random variablex is:

P (x) =

n
∑

i=1

γiGi(x;µi,Σi) (3)

where x is in the domain ofx, Gi, is the ith Gaussian
component, andγi are the weights where

∑n
i=1 γi = 1. The

multivariate Gaussian distribution of the statex with mean
µ and covarianceΣ is defined as:

P (x) =
1

(2π)n/2|Σ|1/2
exp−

1

2
[x−µ]T Σ

−1[x−µ] (4)

2) Parzen Density Estimates:For Parzen density esti-
mates, any type of kernel may be used to represent a proba-
bility distribution. However, Gaussian kernels are preferred,
as the operations are closed form and therefore efficient.
The Parzen density estimator is similar to a GMM except
each component has the same covariance. The equation for
a Parzen density estimate with a Gaussian kernel is:

P (x) =

n
∑

i=1

γiG(x;µi,Σ) (5)

whereG(x) is the Gaussian probability density onx andγi

are the weights where
∑n

i=1 γi = 1.

B. Conversion to a Continuous Distribution

The method of converting to a continuous distribution
(shown in Figure 4) is based on Musso [9] where each sample
is converted to a kernelKh(x):

Kh(x) = hDK(x) (6)

whereD is the number of dimensions,K(.) is the rescaled
kernel density andh > 0 is the window or scaling parameter.
The kernel selected is Gaussian with

h = (
4

D + 2
)eN−e (7)

wheree = 1
D+4 , andN is the number of samples.
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each weighted particle(shown by a .



Communicating the continuous distribution in this form
would be slightly worse than communicating the sample
set itself as there is a kernel for each particle. Hence,
approximating this distribution by a more compact one such
as Parzen representations or GMMs is more desirable.

1) Algorithm 1 : Conversion to GMMs:Expectation
Maximisation (EM) algorithm [18] or via West’s joining
algorithm [19] are two methods considered for reducing the
sample set to a more compact GMM.

The EM algorithm finds the maximum likelihood para-
meter estimation in statistical models with variables thatare
not observed, given initial parameters. These parameters are
determined using the X-means algorithm [20]. The computa-
tional complexity for X-means isO(i × N log kmax) where
kmax is the selected maximum number of cluster means,N is
the number of samples andi is the number of iterations. The
computational complexity for the EM algorithm for GMMs
is O(i × ND2) whereD is the dimensionality of the state.
In our experiments, we find that the EM algorithm requires
a large set of at least 2000 particles to perform adequately.
We also find that EM is considerably more computationally
expensive compared to the West’s joining algorithm which
has a complexity ofO(M log M) whereM << N is the
number of components. Hence, we chose to implement the
latter for reducing the Gaussian sum to a distribution of less
components.

The operation of West’s joining algorithm is to merge
pairs of components from the sum of Gaussian kernels
(Equation 5) converted from the particles, successively until
the desired level of reduction has been achieved. The distance
measure utilized to gauge the similarity of componenti and
componentj of the GMM is a Mahalanobis-type distance
measure:

d2
ij =

γiγj

γi + γj
(µi − µj)

T Σ−1(µi − µj) (8)

whereµ is the state vector of the component,Σ is the mixture
covariance matrix andγ is the component weight.

2) Algorithm 2 : Conversion to Parzen density estimates:
A variant of West’s joining algorithm [19] for Parzen es-
timates, can be applied to the sums of Gaussian kernels
that were converted from the particles (Equation 5). Here,
the kernel covariance is adjusted such that the ensemble
covariance is preserved after the number of components have
been reduced.

C. Fusion and Accounting of Common Information

1) Algorithm 1 : Fusion via GMMs:Fusion is performed
by first converting the local particle set to a GMM. A gener-
alised covariance intersect (CI) update [7] is then performed
with the communicated GMM to ensure conservative fusion
of possibly correlated information. Illustrated in Equations
9,10 and 11 are the CI operations whereΣij , µij and γij

are the new covariance, mean, and weight of the component
after fusion between theith component of the local esti-
mate (Pa(x))) and thejth component of the communicated

estimate(Pb(x))).

Σ−1
ij = ωΣ−1

i + (1 − ω)Σ−1
j (9)

µij = Σij(ωΣ−1
i µi + (1 − ω)Σ−1

j µj) (10)

γij =
γω

i γ1−ω
j

∑Na

k=1

∑Nb

l=1 γω
k γ1−ω

l

(11)

A CI weighting parameterω is selected such that the
Chernoff Information of the resultant distribution is equally
distance from both prior distributions. The optimalω hence,
would have the property of

D(Pω(x)||Pa(x)) = D(Pω(x)||Pb(x))
whereD(·||·) is the Kullback-Leibler(KL) divergence [21].
The new particle set is then obtained by sampling from the
fused GMM.

2) Algorithm 2 : Fusion via Parzen density estimates:
A particle set, summarised and communicated as a Parzen
density estimate enables an approximate Bayesian channel
update operation (a division operation) to be performed at
the receiving node to remove common information [8].

In this operation, each Parzen component of the commu-
nicated estimate is divided by a Gaussian with the same
covariance. A division of a Gaussian by a Gaussian is
possible. The covariance is approximated from the previously
communicated estimate. This results in all the quotients
having the same covariance which maintains form. The mean
and weight of the Gaussian divisor is approximated by
evaluating the Gaussian divisor and its gradient at the point
of interest. This point of interest is the mean of the current
Parzen component.

VI. I MPLEMENTATION

The decentralised particle filter algorithms are imple-
mented in a six degree-of-freedom multiple vehicle simu-
lation. In the simulation, two flight vehicles equipped with
vision sensor undergo part of a figure of eight trajectory
approximately 100 m above the ground with average flight
speeds of 144 m/s. The field of view (FOV) angle of the
sensors are±15◦ with bearing uncertainties of0.1601◦ and
elevation uncertainties of0.1206◦. 50 features were scattered
on the ground to be tracked.

In each local filter, the estimation model is updated every
0.025s, and the observation model is updated every 0.2s.
The range-cutoff used when initialising a new filter is 200
m. Every 0.6 seconds, each alternate platform communicates
summaries of each sample set.

The system process model used for prediction was the
Integrated Ornstein-Uhlenbeck process [1] which allows for
bounding of the Brownian velocity over time. This prevents
excessively large velocities that can occur due to wayward
measurements when the feature is not observed for an
extended period.

The observations (zk) are a sequence of bearing (ϕ) and
elevation (ϑ) measurements:

zk = [ϕ ϑ]T =

[

tan−1(yk/xk)

tan−1(zk/
√

x2
k + y2

k

]

+ vk (12)

wherevk is the measurement noise.



(a) A bearing-only probability distri-
bution with 2000 particles

(b) A GMM approximation of the
particle representation via EM com-
promising of 23 components

(c) A GMM approximation of the
particle representation via West’s
joining algorithm compromising of
23 components

(d) A Parzen approximation of the
particle representation via West’s
joining algorithm compromising of
55 components

Fig. 5. The GMM and Parzen approximations (5(b) to 5(d)) of a bearing-only probability distribution 5(a). The range-cutoff for this distribution is at 200
meters, the bearing is zero degrees with a variance of 1.5 degrees

TABLE I

BANDWIDTH REQUIREMENTS

Represent Dimen Components Bandwidth Data
-ation -sion for available Transmitted

comms (1 MTU) No.of Components[No of bytes]parameter
GMM approx 4 97 1460 97[4]means, 97[10]covariance, 97[1]weights
Parzen approx 4 290 1460 290[4]means, 1[10]covariance, 290[1]weights

Particle set 4 365 1460 365[4]means
GMM approx 6 52 1460 52[6]means, 52[21]covariance, 52[1]weights
Parzen approx 6 205 1460 205[6]means, 1[21]covariance, 205[1]weights

Particle set 6 243 1460 243[6]means

A. Accuracy of each particle summary

The accuracy of each representation in summarising the
particle set is shown. The particle set shown in Figure 5(a)
is a set of 2000 particles representing a range-limited bearing
only probability distribution. The range cutoff is set at 200
metres for a bearing at zero degrees and a variance of 1.5
degrees.

The transformations of this sample set to a GMM using
EM and West’s joining are shown in Figures 5(b) and
5(c) and the transformation to a Parzen in 5(d). Note that
the EM result of this transformation is more cone-shaped,
particularly between the ranges of 0 and 50 metres.

To accommodate comparisons among various represen-
tations, a divergence or distance measure is required to
determine the accuracy of each approximation. The selected
measure, the Bhattacharyya Coefficient [22] is defined as

ρ(x) ≡

m
∑

i=1

√

pi(x)qi(x) (13)

whereq is the represented distribution andp is the true dis-
tribution (represented by a fine grid). The minimum number
of components was found by seeking the approximation that
resulted in a coefficient of 0.95 where a value of 1 would
indicate thatp = q.

In this example, for the GMM approximation, a reduction
to 23 components resulted in a Bhattacharyya coefficient of
0.95. To obtain the same coefficient, 55 Parzen components
were required. Hence, less components are required for a
GMM approximation compared to a Parzen window approxi-
mation. 23 Parzen components would result in a less accurate

coefficient of 0.92. However, the approximation to 23 GMMs
via the EM algorithm is more accurate with a coefficient of
0.99 but computationally expensive.

B. Bandwidth requirements

In sensor networks, it is desirable to communicate a
representation as compact as possible. Table I shows the
bandwidth requirements for communicating :

(a) the particle set directly
(b) a Parzen density approximation of the particles and
(c) a GMM approximation of the particles
Two examples are provided, which represents state dimen-

sions of 4 and 6. Only the upper triangle of the symmetric
covariance matrix of the Parzen and GMM representation
need to be communicated. For example, the number of bytes
to store the covariance matrix for a state dimension of 4 is
16 (4× 4). Communicating the upper triangle of this matrix
would require 10 bytes. In our example, the data has to be
communicated in one MTU (Maximum Transmission Unit)
which is 1500 bytes. An MTU is the maximum size of a
packet that can be transmitted in one frame over a network.
As a number of bytes are allocated to the source and desti-
nation IP addresses of the packet, the actual communicated
data size is limited to 1460 bytes.

For a 4-D system, 23 GMM or 55 Parzen components
were required to approximate a particle set of 2000. With a
communication bandwidth of 1460 floats per time interval,
the maximum number of particles is 365 which could prove
insufficient, whereas the GMM and Parzen approximations
would exhibit better performances as 4 GMM feature es-



Fig. 6. Parzen Fusion results from Node 2 - 17 features tracked

Fig. 7. GMM Fusion results for Node 2 - 17 features tracked

timates and 5 Parzen estimates can be communicated. The
Parzen density estimate is the most compact especially for
higher dimensions. For a dimension of 6, the amount of data
that can be communicated reduces to 52 GMM components
which is about 50% while the number of Parzen components
reduces by only 30%.

C. Results

The final results of the simulation is shown from Figures
6 to 9. In this simulation, features on the ground are
observed either by platform 1 alone, platform 2 alone or
by both platform 1 and 2. Observations from both platforms
were communicated to obtain the centralised solution. For
the GMM and Parzen fusion solution, the estimates were
communicated at a lesser frequency. Hence, more tracks
are made even though the feature was not observed by the
platform itself such as Features 4 and 29 for platform 1,
increasing the area of coverage for that platform. Although
the fusion results is not optimal, they matches very closely
to the centralised solution. Features 1, 19, 22 and 44 were
observed by both platforms. The GMM fusion results for
these features are slightly less tightly distributed or less
compact compared to the Parzen fusion results.

The results of each fusion method is compared to the
centralised solution. The measure used is the relative entropy
or Kullback-Leibler(KL) divergence [21] as it measures the
inefficiency of each distribution assuming that the centralised
solution is the most optimal.

Fig. 8. Platform 1 StandAlone Result - 12 features tracked

Fig. 9. Platform 2 StandAlone Result - 9 features tracked

Fig. 10. Centralised Solution - 17 features tracked

Figures 11 and 12 illustrate the KL-Divergence results for
each node performing DDF and the standalone nodes (i.e.
no communication) compared to the centralised solution for
Feature 1. Platform 1 observed the feature at the time of 0-6
s and 166-183 s. Platform 2 observed the feature between the
46-63 s and the 230-240 s. The results show that when one
node is observing the feature, communicating and fusing the
feature estimate to the other node via Parzen representations
is more accurate compared to via GMMs in terms of the
KL-Divergence. These results also indicate that decentralised
nodes exhibit performances better than the sensors operating
alone and that the final solutions for the decentralised nodes
are similar but less compact that the centralised one.
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VII. C ONCLUSION

This paper has introduced two methodologies for per-
forming consistent and efficient decentralised data fusion
with particle filters which transform the particle set to either
GMMs or Parzen estimates for communication and inter-
nodal fusion. This is due to the GMMs and Parzen repre-
sentations which have the capacity to account for common
information between communicated and local distributions.

Summarising the sample set with a GMM requires less
components and is more accurate than approximation by
Parzen representation. However, the Parzen density estimate
is more compact. Better fusion results are obtained using
Parzen representations as the Parzen estimate division is
more accurate than the generalised covariance intersect for
GMMs. However, fusion via the GMM covariance intersect
can be performed for arbitrary connection topologies, where
the division of Parzens cannot.

One of the areas for future work is the development of
different fusion methods for GMMs and particle represen-
tations. Future work will also include a demonstration of
each of these representations using vision sensors on airborne
vehicles, ground vehicles and stationary ground nodes.
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