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ABSTRACT

This paper describes an application of Gaussian process regression
(GPR) to parametric speech synthesis. GPR enables us to pre-
dict synthetic speech parameters by utilizing exemplars of training
speech data directly without converting the acoustic features of
training data into too small number of model parameters thanks
to nonparametric Bayesian regression. However, GPR inherently
requires high computational cost and resources. In this paper, to
alleviate this problem, we incorporate local and global sparse Gaus-
sian process approximation into the statistical speech synthesis
framework, and investigate trade-off between computational cost
and speech synthesis performance through experiments. Moreover,
we examine the way of choosing pseudo data set used for the sparse
GP approximation.

Index Terms— parametric speech synthesis, Gaussian process
regression, partially independent conditional (PIC) approximation

1. INTRODUCTION

Recently, Gaussian processes (GPs) have drawn researchers’ atten-
tion because of their effectiveness and flexibility in non-parametric
regression modeling of complex systems. Indeed Gaussian process
regression (GPR) has been applied to various speech processing ar-
eas so far [1–4]. We have also proposed a framework of GPR-based
spectral feature modeling for statistical parametric speech synthe-
sis [5, 6].

Speech synthesis is considered to be a regression problem in
which acoustic features for waveform generation are estimated from
a given set of acoustic features of training data. In our proposed
framework, we formulated this problem as a frame-level regression
of acoustic features by defining the covariance function of frame-
level contextual features. Since GPR inherently requires high com-
putational costs and resources, it is essential to use some approxima-
tions that lead to GPR with a feasible computational cost on large
data sets [7–9]. For this purpose, we employed a partially indepen-
dent conditional (PIC) approximation [5]. PIC approximation [8]
uses clusters to perform local GPR and pseudo data set to perform
global information approximation. This results in proper modeling
of not only local acoustic feature variation within a phone but also
smoothly changing features among adjoining phones.

In our previous study [5, 6], we showed that the GPR-based
approach outperformed the conventional hidden Markov model
(HMM)-based speech synthesis. However, the evaluation was done

A part of this work was supported by JSPS Grant-in-Aid for Scientific
Research 24300071, 25540065, and 25·8776.

for only one speaker, and the size and choice of pseudo data set were
not investigated substantially. In this study, therefore, we evaluate
the performance and computational cost of the proposed technique
using four speakers’ speech data and various sizes of pseudo data
sets. Furthermore, we examine the way of choosing pseudo data set.
Specifically, we incorporate k-medoids [10] clustering in order to
make a well-balanced pseudo data set and compare the performance
with a random choice approach.

The remainder of this paper is organized as follows. Section 2
describes a framework of GPR-based speech synthesis using the PIC
approximation for speech synthesis systems and discuss the compu-
tational complexity for training and synthesis processes. Section 3
discusses the methods of choosing the pseudo data set. Section 4
shows experimental results including actual computation time and
model footprint. Finally, we give our conclusions and future work in
Section 5.

2. GAUSSIAN PROCESS REGRESSION FOR SPEECH
SYNTHESIS

Statistical parametric speech synthesis is a technique of generat-
ing speech parameters from contextual information using statistical
model. The speech parameters consist of spectral and pitch fea-
tures of a short segment called a frame. Context is the phonetic and
prosodic information such as how phonemes appear in an utterance
and which syllables are stressed. The most successful and widely
studied approach is the statistical speech synthesis based on hid-
den Markov models (HMMs) [11, 12], which models acoustic fea-
tures corresponding to phone-level contexts by HMMs and generate
speech parameters from the trained context-dependent HMMs.

In contrast, a framework we proposed in [5,6] is based on Gaus-
sian process regression (GPR) [13] where speech parameters are
predicted from frame-level contextual features. Here let xn and
y
(d)
n denote a frame-level contextual information of n-th frame and

corresponding zero-mean-normalized d-th dimension’s feature of an
acoustic feature vector, respectively. We define a latent function
f (d)(x) ∼ GP(0, k(xm,xn; θ(d))) where k(xm,xn; θ(d)) is a ker-
nel (covariance) function and θ(d) represents its parameter set. Us-
ing a Gaussian noise ε(d) ∼ N (0, (σd

ν)2), the acoustic feature is
represented by y

(d)
n = f (d)(xn) + ε(d). Suppose that a training data

set is given by

D = {(xn, y(1)
n , . . . , y(D)

n )|n = 1, . . . , N} (1)

where D is a dimension of the acoustic feature vector. Similarly, a



test (synthetic) data set is given by

DT = {(xt, y
(1)
t , . . . , y

(D)
t )|t = 1, . . . , T}. (2)

Let XN = [x1, . . . ,xN ]>, y
(d)
N = [y

(d)
1 , . . . , y

(d)
N ]>, and YN =

[y
(1)
N , . . . ,y

(D)
N ] be matrix forms of all input and output variables

of training data, and f
(d)
N = [f (d)(x1), . . . , f

(d)(xN )]> and FN =

[f
(1)
N , . . . , f

(D)
N ] be the latent function values of the training data.

Moreover, XT , yT , YT , fT , and FT denote matrix forms for test
data in the same way as the training data. Here we assume that each
dimension is independent and kernel function parameters θ(d) and
noise variances (σ

(d)
ν )2 are the same among all dimensions. Then let

θ and σ2
ν be the common hyperparameter vector and noise variance,

respectively. Under these notations and assumptions, the predictive
distribution of synthetic speech parameters is given by a matrix vari-
ate normal distribution [14] as follows:

p(YT |YN , θ) =

D
Y

d=1

N (y
(d)
T ; µ

(d)

yT |yN
,Σ

(d)

yT |yN
)

= MN T,D(YT ;MyT |yN
,ΣyT |yN

, ID) (3)

where MyT |yN
= [µ

(1)

yT |yN
, . . . , µ

(D)

yT |yN
] and a matrix variate nor-

mal distribution is defined by

MNN,D(Y;M,Σ,V)
def
=

1

(2π)ND/2|V|D/2|Σ|N/2

· exp

„

−1

2
Tr
h

V−1(Y − M)>Σ−1(Y − M)
i

«

(4)

when Y, M, Σ, and V are N × D, N × D, N × N , and D ×
D matrices, respectively. MyT |yN

and ΣyT |yN
correspond to the

predictive mean and covariance matrices and are obtained by

MyT |yN
= KTN [KN + σ2

νIN ]−1YN (5)

ΣyT |yN
= KT − KTN [KN + σ2

νIN ]−1KNT (6)

where KN , KT , and KNT = K>
TN are kernel matrices given by

KN = K(XN ,XN ), KT = K(XT ,XT )
KNT = K(XN ,XT ).

(7)

K(X1,X2) denotes a matrix whose (i, j)-th element is evaluated
by a kernel function k(xi,xj), where xi and xj are the i-th and j-th
row vectors in X1 and X2, respectively.

2.1. Kernel definition

The choice of kernel function is crucial for obtaining better perfor-
mance in speech synthesis. Generally, it has been shown that the
kernel function that expresses similarity works well. Here we con-
sider following principles concerning frames:

• Nearby frames have high correlation.

• Similar phonemes have high correlation.

On the basis of these principles, we define a kernel function as fol-
lows [5]:

k(xm,xn; θ) =
X

i∈{−1,0,+1}

X

j∈{−1,0,+1}

w(i)
m w(i)

n kp(p(i)
m ,p(j)

n )kc(c
(i)
m , c(j)

n )

+ δmnθ2
floor (8)

where the last term δmnθ2
floor is a flooring value to keep kernel ma-

trices positive definite. Two kernel functions kp(·) and kc(·), which
correspond to the position kernel and the phone context kernel, re-
spectively, are introduced in order to satisfy the principles. Specifi-
cally, the position kernel represents the position similarity in phones
and the phone context kernel expresses that of phonetic features such
as articulation manner and place. In this study, we use the sum of
squared exponential (SE) kernel for the position kernel and linear
kernel for the phone context kernel. The sum operation in (8) is
employed to keep value changes smooth.

The input feature of kernel function is defined as a set of position
and phone contexts of adjacent phones:

xn = (wn,Pn,Cn) (9)

where w, p, and C are sets of weights, position contexts, and phone
contexts expressed as

wn = {w(−1)
n , w(0)

n , w(+1)
n } (10)

Pn = {p(−1)
n ,p(0)

n ,p(+1)
n } (11)

Cn = {c(−1)
n , c(0)

n , c(+1)
n }. (12)

The superscripts −1, 0, and +1 of the variables correspond to the
preceding, current, and succeeding phones of the current frame.
p

(j)
n is a position context that includes the relative positions such

as phone-normalized position and positions from the beginning and
end of the phone. c

(j)
n is a binary-valued distinctive phonetic fea-

ture (DPF) [15] vector including preceding, current, and succeeding
phonemes. A weight parameter w

(i)
n is used to emphasize the effect

of closer phones to the n-th frame.

2.2. Sparse GP approximation for feasible computation

One of the issues of applying GPR to a practical system is com-
putational feasibility. For example, matrix inversion in (5) and (6)
requires O(N3) computations and O(N2) memory footprint if the
number of frames in the training data is N . Furthermore, when syn-
thesizing speech, we need to pick up all frames in the training data to
compute the kernel matrix KTN . This is intractable and unrealistic
as a practical speech synthesis system.

Sparse approximation is an effective way of reducing compu-
tational cost, which assumes the sparsity of kernel function and re-
duces computational cost by calculating sub-matrices of the kernel
matrix. One approach to the sparse approximation is the use of lo-
cal GPs [8] by dividing all data into multiple blocks and compute
kernel matrices only inside of the blocks. However, this approach
fails to discontinuity at the boundaries of local blocks. Therefore
our approach chooses a partially independent conditional (PIC) ap-
proximation [8], which is also called local and global sparse GPs. In
the PIC approximation, the kernel function value between training
data point and the point of pseudo data set, called inducing input, is
calculated and the pseudo data set works as a smoother at the block
boundaries.

We need to specify the pseudo data set and blocks to use PIC
approximation. The choice of pseudo data set will be explained
in Sect. 3. As for the blocks, we utilize decision-tree-based con-
text clustering [16] that has been effectively used in the HMM-based
speech synthesis. The decision tree is constructed by splitting nodes
using a question about phone-level context and resultant leaf nodes
have similar acoustic features. We stop splitting nodes if the node
has less than a prescribed value of B, and we use the leaf nodes as
the blocks.
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Fig. 1. Graphical representation of partially independent conditional
(PIC) approximation.

Figure 1 shows a graphical representation of the PIC approxi-
mation. Let FM be a latent variable of pseudo data inputs and the
distribution of FM be given by following matrix variate normal dis-
tribution:

p(FM |θ) = MNM,D(FM ;OMD,KM , ID) (13)

where KM is a covariance (Gram) matrix of pseudo input features.
{YBs(s = 1, . . . , S)} represents the divided output variables of
training data. In PIC approximation, the joint probability of all train-
ing data YN is defined by

p(YN |θ) =

Z

p(Y|FM , θ)p(FM |θ)dFM

=

Z S
Y

s=1

p(YBs |FM , θ)p(FM |θ)dFM (14)

where

p(YBs |FM , θ) = MNBs,D(YBs ;KBsMK−1
M FM ,ΛBs , ID)

(15)

ΛBs = KBs − QBs + σ2
νIBs (16)

QBs = KBsMK−1
M KMBs . (17)

By marginalizing out the latent variable FM in (14), we obtain the
following matrix variate normal distribution.

p(YN |θ) = MNN,D(YN ;OND,KPIC
N + σ2

νIN , ID) (18)

KPIC
N = QN + blkdiag(KN − QN )

=

2

6

6

6

4

KB1 QB1B2 · · · QB1BS

QB2B1 KB2 QB2BS

...
. . .

...
QBSB1 QBSB2 · · · KBS

3

7

7

7

5

(19)

where QBiBj = KBiMK−1
M KMBj .

The predictive distribution for synthetic speech parameters is
given by

p(YT |YN , θ) = MN T,D(YT ;MYT |YN
,ΣYT |YN

, ID) (20)

MYT |YN
=
h

M>
YT1 |YN

. . . M>
YTS

|Y

i>
(21)

ΣYT |YN
=

2

6

4

ΣYT1T1 |YN
· · · ΣYT1TS

|YN

...
. . .

...
ΣYTST1 |YN

· · · ΣYTSTS
|YN

3

7

5

. (22)

The sub-matrices MYTs |YN
and ΣYTiTj

|YN
are given by

MYTs |YN
= KPIC

TsN

h

KPIC
N + σ2

νIN

i−1

YN (23)

ΣYTiTj
|YN

= QTiTj + δTiTj (KTi − QTi + σ2
νITi)

+ KPIC
NTi

h

KPIC
N + σ2

νIN

i−1

KPIC
NTj

(24)

where KPIC
NTs

is an approximation of KNTs given by

KPIC
NTs

=
ˆ

QB1Ts · · · QBs−1Ts KBsTs

QBs+1Ts · · · QBSTs

˜

. (25)

Since KPIC
N +σ2

νIN is given by the sum of the low rank matrix QN

and the block diagonal matrix, we can calculate the mean and co-
variance effectively using the Woodbury, Sherman & Morrison for-
mula [17]. Practically, first we calculate following GPR parameters

B = KM +

S
X

s=1

KMBsΛ
−1
Bs

KBsM (26)

Z = B−1
S
X

s=1

KMBsΛ
−1
Bs

YBs . (27)

Then, the parameters of predictive distribution are calculated as fol-
lows:

MYTs |YN
= (KTsBs − QTsBs)Λ−1

Bs
YBs + ΩTsMZ (28)

ΣYTiTj
|YN

= δTiTj

"

KTi − QTi + σ2
νITi

− (KTiBi − QTiBi)Λ
−1
Bi

(KBiTi − QBiTi)

#

+ ΩTiMB−1Ω>
TjM (29)

where

ΩTsM = KTsM − (KTsBs − QTsBs)Λ−1
Bs

KBsM . (30)

Training of GPR with PIC approximation implies comput-
ing B and Z, which is independent from test data, in advance.
When the block size is B, the training data size N corresponds to
SB and the computational cost for training results in O(N(B +
M)(B + M + D)), whereas GP without any approximations
requires O(N3) computations. In order to achieve efficient com-
putation of the predictive distribution, we store a set of matrices
`

{KBsM} ,KM ,
˘

Λ−1
Bs

¯

,
˘

Λ−1
Bs

YBs

¯

,B−1,Z
´

as GPR param-
eters, which requires O(N(B + M + D)) memory footprint. In
this case, the computational cost for the inference of predictive
distribution becomes O(T (B + M)(B + M + D)).

2.3. Optimization of kernel hyperparameters

To estimate an appropriate hyperparameter set θ automatically for
PIC approximation, we employ an empirical Bayesian approach,
which maximizes the marginal likelihood p(YN |θ) based on gen-
eralized EM algorithm. We use the latent variable FM for that of
EM algorithm. Q-function is defined by

Q(θ, θ̃) =

Z

p(FM |YN , θ) log
“

p(YN |FM , θ̃)p(FM |θ̃)
”

dFM

(31)



where θ̃ is a new hyperparameter set. Using the assumption of PIC
approximation, the Q-function is decomposed into two Q-functions
Qs and QM as follows:

Q(θ, θ̃) =
S
X

s=1

Qs(θ, θ̃) + QM (θ, θ̃) (32)

Qs(θ, θ̃) =

Z

p(FM |YN , θ) log p(YBs |FM , θ̃)dFM (33)

QM (θ, θ̃) =

Z

p(FM |YN , θ) log p(FM |θ̃)dFM . (34)

In the E-step, we calculate the statistics of pseudo-data variables
by

E[FM |YN , θ] = KMZ (35)

E[FMF>
M |YN , θ] = KM (DB−1 + ZZ>)KM . (36)

We require O(N(B + M)(B + M + D)) computations for the
E-step in the same way as the training of GPR. In the M-step, we
employ generalized EM algorithm because it is difficult to find the
exact hyperparameter θ̃∗ that maximizes Q-function. Specifically,
we increase the value of Q-function using a gradient-based method.
Furthermore, we use stochastic gradient descent (SGD) algorithm
because the Q-function is represented by the sum of Q-functions as

Q(θ, θ̃) =

S
X

s=1

„

Qs(θ, θ̃) +
Bs

N
QM (θ, θ̃)

«

. (37)

In each step of SGD, we randomly choose a block and update hyper-
parameters. The i-th hyperparameter at the k-th iteration is updated
as

θ̃
(k+1)
i = θ̃

(k)
i + η

(k)
i

 

∂Qs(θ, θ̃(k))

∂θ̃
(k)
i

+
Bs

N
· ∂QM (θ, θ̃(k))

∂θ̃
(k)
i

!

= θ̃
(k)
i + η

(k)
i

 

Tr

"

CBs

∂KBs

∂θ̃
(k)
i

#

+ Tr

"

C>
BsM

∂KBsM

∂θ̃
(k)
i

#

+ Tr

"

CM
∂KM

∂θ̃
(k)
i

#

Tr

"

CBs

∂σ2
ν

∂θ̃
(k)
i

#!

(38)

where η
(k)
i represents a step size of i at time k. CBs , CBsM , and

CM are matrices independent from the hyperparameter index i and
given by

CBs =
1

2

„

−DΛ̃−1
Bs

+ Λ̃−1
Bs

YBsY
>
Bs

Λ̃−1
Bs

+ Λ̃−1
Bs

K̃BsMK̃−1
M E[FMF>

M |YN , θ]K̃−1
M K̃MBsΛ̃

−1
Bs

− Λ̃−1
Bs

K̃BsMK̃−1
M E[FM |YN , θ]Y>

Bs
Λ̃−1

Bs

−
h

Λ̃−1
Bs

K̃BsMK̃−1
M E[FM |YN , θ]Y>

Bs
Λ̃−1

Bs

i>
«

(39)

CBsM = Λ̃−1
Bs

D − 2CBsK̃BsMK̃−1
M (40)

CM = K̃−1
M K̃MBsCBsK̃BsMK̃−1

M − K̃−1
M K̃MBsΛ̃

−1
Bs

D

+
Bs

N

“

K̃−1
M E[FMF>

M |YN , θ]K̃−1
M − DK̃−1

M

”

(41)

D = YBsE[FM |YN , θ]>K̃−1
M

− K̃BsMK̃−1
M E[FMF>

M |YN , θ]K̃−1
M . (42)

Table 1. Amounts of training and test data [sec].
FSM FKS MHT MMY Avg.

Training 2498 2316 2511 2177 2376 (39.6 min)
Test 218 199 211 178 202 (3.36 min)

Consequently, in each step of SGD, we require O((B + M)2(B +
M +D)) computations for the matrices CBs , CBsM , and CM , and
O(K(B + M)2) for updating the hyperparameter vector where K
is the number of hyperparameters.

3. PSEUDO DATA SELECTION

As described in Sect. 2.2, pseudo data set is utilized for avoiding the
discontinuity of speech parameters at block boundaries because the
correlation of the frames of different blocks is represented indirectly
using the pseudo inputs. Hence, it is crucial to choose an appropriate
pseudo data set in order to generate natural-sounding speech. Since
pseudo inputs are hyperparameters of GPR as well as the parameters
of kernel function, they can be optimized by an empirical Bayesian
framework. However, when an input feature is a high dimensional
vector and the pseudo data size is large, it is intractable to optimize
all hyperparameters.

Therefore we consider to take simple ways of making pseudo
data set. One of the ways is to choose samples randomly from train-
ing data. Although this method is simple, there is a possibility to
pick up bad samples and fail to represent the frame correlation ap-
propriately. Another way is to use a clustering algorithm to make
pseudo inputs well-balanced. We employ k-medoids algorithm [10],
which is available for structured data, as a clustering algorithm. In
the k-medoids algorithm, a medoid of cluster c, denoted by mc, is
chosen so that it has the smallest sum of distances to all other sam-
ples in the cluster c:

mc = argmin
xi:zi=c

X

xj :zj=c

d(xi,xj) (43)

where zj is the cluster index of the sample xj , and d is the distance
given by

d(xi,xj) = k(xi,xi) + k(xj ,xj) − 2k(xi,xj). (44)

Using the medoids, the cluster index zi is updated by choosing a
nearest medoid:

zi = argmin
c

d(xi,mc). (45)

Then, we use the resultant medoids as the pseudo data. In addi-
tion, as can be seen in (44), the distance depends on kernel function.
Hence, we update the pseudo data set in every EM-step. Further-
more, as initial clusters, we use those obtained by state-level context
clustering.

In general, a large number of pseudo data inputs leads to a better
results, but accompanies increase of computational cost and foot-
print. Hence it becomes trade-off between them. We will experi-
mentally examine such a trade-off in the next section.

4. EXPERIMENTS

4.1. Experimental conditions

We used two female (FSM, FKS) and two male (MHT, MMY)
speakers’ speech data. 503 phonetically balanced sentences uttered



Table 2. Mel-cepstral distances between original and generated
speech as a function of pseudo data size [dB]

Pseudo data size FSM FKS MHT MMY Avg.

128 5.15 4.68 4.45 5.23 4.88
256 5.16 4.59 4.42 5.25 4.86
512 5.30 4.57 4.37 5.20 4.86

1024 5.05 4.50 4.34 5.07 4.74
2048 5.03 4.46 4.23 5.06 4.70

HMM 5.41 4.80 4.41 5.36 5.00

Table 3. Mel-cepstral distances between original and generated
speech with random pseudo data set [dB]

Method FSM FKS MHT MMY Avg.

Worst 5.14 4.73 4.44 5.27 4.90
Random Average 5.10 4.61 4.34 5.18 4.81

Best 5.09 4.54 4.28 5.11 4.76

K-medoids 5.16 4.59 4.42 5.25 4.86

in a reading style taken from ATR Japanese speech database set
B [18] were used. All speakers were professional narrators. We
chose 450 sentences for training and used remaining 53 sentences as
test data. The total amounts of training and test data for respective
speakers are shown in Table 1.

The phone boundary information of FSM was annotated manu-
ally whereas that of other speakers was given using HMM-based au-
tomatic forced alignment. Speech signals were sampled at a rate of
16kHz, and the frame shift was 5ms. In this study, we modeled and
generated a spectral features only. 0-39th mel-cepstral coefficients
derived from the spectral envelope extracted by STRAIGHT [19]
were used as the spectral features. The maximum number of frames
B of each block was set to 10001. The maximum number of iter-
ations of the EM algorithm in hyperparameter optimization was 3.
The first 50 sentences included in training were used for hyperpa-
rameter optimization and pseudo data selection.

For the construction of decision trees, 5-state, left-to-right, no-
skip hidden semi-Markov model (HSMM) was used as a model
topology. The output distribution in each state was modeled with a
single Gaussian pdf, with diagonal covariance matrices. The feature
vector included delta and delta-delta dynamic features as well as the
static one. The context set including triphone, accent, and sentence
length was used for the HMM training. In the decision-tree-based
context clustering for parameter tying, MDL was used as a stopping
criterion [20].

The predictive distributions of synthetic speech parameters were
generated using the phone durations of original utterances and the
predictive mean sequences were used for objective evaluation. We
also evaluated the HMM-based speech synthesis as a baseline for
statistical parametric speech synthesis. The experiments were per-
formed on an Intel Core i7-4770K 3.5GHz CPU and Theano [21]
was used for matrix operations.

4.2. Objective evaluation

To evaluate the performance with different pseudo data sets, we cal-
culated mel-cepstral distance, equivalently, root mean square error

1In fact, B is also a hyperparameter of GPR, and it is expected that not
only the performance improves but also the computational cost increases if
B increases. The effect of the value of B will be examined in future work.

between the original and generated log spectra on a mel-frequency
scale. The results using different pseudo data sizes are shown in
Table 2. The results for HMM-based technique are also shown in
the table. In the experiment, the k-medoids clustering was used for
pseudo data selection. As can be seen from the table, the distortion
became the smallest for all speakers when the pseudo data size M
is 2048 and tended to decrease with the increase of the pseudo data
size. In addition, it is confirmed that the distortions for the GPR-
based methods are lower than those of HMM-based one even when
the pseudo data size is 256. Table 3 shows the mel-cepstral distances
using randomly chosen pseudo data sets. Five different pseudo data
set were chosen and their average, worst, and best distortions are
shown in the table. It is seen that random choice of pseudo data set,
which is simpler than k-medoids-based method, seems to be accept-
able because the distances of the worst cases were comparable with
those of k-medoids except for the speaker FKS.

4.3. Computational complexity and footprint

As shown in the previous section, the use of more pseudo data points
reduces the spectral distortion. However, the increase of pseudo data
points causes further computational cost for not only training but
also synthesis and larger model footprint. For the realization of a
real-time synthesis system, it requires shorter generation time than
the utterance duration. To evaluate the trade-off between computa-
tional cost and performance, we show computation time and model
footprint of the proposed technique.

Tables 4 shows the average computation time for each step of
training and synthesis processes. The pseudo data set was divided
using the k-medoids clustering. The training was separated into two
phases: hyperparameter optimization and GPR parameter training.
The processing times at the first iteration in hyperparameter opti-
mization are shown in the table. It is seen that the predominant step
in hyperparameter optimization is the M-step in the EM iteration
of kernel parameter optimization. This is because the each kernel
parameter was picked up and the gradient for the parameter was cal-
culated in each SGD step. The computation time for hyperparameter
optimization became 1.3 to 2.4 times when the pseudo data size got
twice. Similarly, the processing times for GPR parameter training
also increased with the pseudo data size. However, it can be seen
that the computation time is shorter than the total length of training
data even using 2048 pseudo data points. As for the inference of pre-
dictive distribution in the synthesis process, 512 or smaller pseudo
points achieved shorter inference time than the actual average utter-
ance length of 3.81 sec.

Table 5 shows the model footprint. The predominant occupation
of model footprint is the kernel matrices KBsM and ΛBs . The av-
erage footprint size can be approximated by a simple linear function
(1.4 × 10−3M + 1.33) GB where M is a pseudo data size.

5. CONCLUSIONS

In this paper, we have described the framework of speech synthesis
based on GPR with PIC approximation. Furthermore, we examined
the methods of choosing the pseudo data set, and investigated the
trade-off between performance and computational cost with multiple
sizes of the pseudo data set through experiments under practical con-
ditions. Throughout the experiments using four speakers, it is con-
firmed that the proposed GPR-based framework outperformed the
conventional HMM-based one. Moreover it is found that randomly
chosen pseudo data set is acceptable compared with the k-medoids-
based method. In future work, we should model F0 contours and



Table 4. Computation time of optimization, training, and synthesis processes. Average processing times for one sentence are shown in the
synthesis step [sec].

Hyperparameter optimization GPR-parameter training Synthesis
Pseudo data Pseudo data K-medoids Kernel matrix GPR-parameter Predictive

size initialization clustering E-step M-step Sum computation computation Sum distribution

128 67 140 116 1081 1404 461 591 1051 2.54
256 57 131 122 1393 1702 511 612 1123 3.02
512 47 156 137 2318 2657 620 691 1311 3.40

1024 47 222 166 5007 5443 821 661 1482 4.78
2048 52 334 209 11865 12461 1133 1114 2247 7.48

Table 5. Model footprint in GBytes.
Pseudo data size FSM FKS MHT MMY Avg.

128 1.52 1.41 1.50 1.33 1.44
256 1.75 1.63 1.72 1.54 1.66
512 2.20 2.05 2.16 1.94 2.09

1024 3.02 2.87 2.99 2.70 2.89
2048 4.23 4.11 4.35 3.92 4.15

phone durations and examine the effectiveness of the proposed GPR-
based speech synthesis.
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