
SIFT-Based Local Image Description Using Sparse
Representations

Joaquin Zepeda#1, Ewa Kijak ∗2, Christine Guillemot#3

# INRIA, Centre Rennes - Bretagne Atlantique
Rennes, France

1 joaquin.zepeda@irisa.fr
3 christine.guillemot@irisa.fr

∗ Universit́e de Rennes 1, IRISA
INRIA, Centre Rennes - Bretagne Atlantique, Rennes, France

2 ewa.kijak@irisa.fr

Abstract—This paper addresses the problem of efficient SIFT-
based image description and searches in large databases within
the framework of local querying. A descriptor called the bag-
of-features has been introduced in [1] which first vector quan-
tizes SIFT descriptors and then aggregates the set of resulting
codeword indices (so-calledvisual words) into a histogram of
occurence of the different visual words in the image. The aimis to
make the image search complexity tractable by transformingthe
set of local image descriptor vectors into a single sparse vector as
sparsity particularly permits efficient inner product calc ulations.
However, aggregating local descriptors into a single histogram
decreases the discerning power of the system when performing
local queries. In this paper, we propose a new approach that aims
to enjoy the complexity benefits of sparsity while at the same
time retaining the local quality of the input descriptor vectors.
This is accomplished by searching for a sparse approximation
of the input SIFT descriptors. The sparse approximation yields
a sparse vector per local SIFT descriptor, and helps preserving
local description properties by using each sparse-transformed
descriptor independently in a voting system to retrieve indexed
images. Our system is shown experimentally to perform better
than histogram based systems under query locality, albeit at an
increased complexity.

I. I NTRODUCTION

Content-based image retrieval [2] aims at finding an image
in a database by using a query made of a user-selected
image region instead of a text. The problem can be seen
as consisting of two (not necessarily disjoint) sub-problems:
(i) designing a good image descriptor (one that is invariant
to image transformations) and (ii) designing a good way of
indexing such descriptors (one that permits low-complexity
match retrieval). Regarding the first problem,local descriptors
are the most appropriated [2]: multiple such descriptors are
obtained each from a local region of the underlying image. The
most successful local descriptor [3] is the SIFT descriptor[4].
It consists of a128 dimensional histogram of angles of the
differential gradients of the pixels’ intensity. To address the
second problem, Sivic and Zisserman have recently introduced
the so-calledbag-of-featuresdescription [1]. This approach
allows using theinverted file index of the text search com-
munity [5] for content-based image retrieval with tractable
complexity.

The bag-of-featuresimage description is constructed as
follows. A set ofNI local SIFT descriptorssd, d = 1, . . . , NI

is first computed on MSER regions [6] that are the most
stable affine covariant regions [6]. These SIFT vectors are then
quantized (using vector quantization) on codewords (called
visual words) of a codebook trained on SIFT descriptors
extracted from a large image dataset. Letqd, d = 1, . . . , NI ,
be the quantization indices of theNI local descriptorssd of
an image. Thebag-of-featuresw is defined as a weighted
histogram of theqd indices. For sufficiently large codebooks,
w is very sparse. This approach based on vector quantization
which selects the nearest codeword in the vector quantization
codebook, has been generalized in [7] by keeping multiple
nearest codewords. Thanks to the sparsity ofw, the bag-of-
featuresapproach reduces the search complexity, compared
with the initial SIFT local descriptors: only elements at com-
mon non-zero positions need to be multiplied, when computing
inner-product distances between the query descriptors andthe
descriptors stored in the database. The sparse vectors can
indeed be stored in a row-major matrix structure, known
as inverted file in the text search community, whose row
entries allow to access all descriptor vectors having a non-zero
component at the corresponding row position. This structure
permits efficient access to the data, as descriptors in the
database having coefficients at positions common to the query
vectors coefficients are stored contiguously in memory.

Nonetheless, the sparsity ofbag-of-featuresis attained by
sacrificing the locality of the input descriptorssd during
the histogram construction. This is particularly harmful in
the context of local querying. Treating local requests is an
important functionality of image search systems as it makes
possible to seek particular objects. In this paper, two methods
are described which, rather than building a histogram to induce
sparsity, transforms each local image SIFT descriptorsd into
a sparse vectorxd individually. In the first approach, the
sparse representation of each local SIFT descriptor is derived
by keeping thek-nearest codewords in a trained codebook.
In contrast with [7], the image is described here by the
resulting set ofNI sparse vectors rather than by a histogram of
these vectors. The second method uses sparse decomposition



algorithms [8], [9], [10] and in particular the basis pursuit
algorithm [11] to derive a sparse approximation of each local
SIFT descriptor. Note that sparse approximations have already
been considered in pattern recognition problems, e.g., for
finding approximate nearest neighbors search in [12], or for
constructing a mathematical model for the manifold composed
of pattern’s transformations in [13]. The resulting manifold
is then a continuous, connected set of points in pattern space.
Querying using a given input pattern thus amounts to finding
the manifold that is theclosest(eg., in the euclidean sense) to
the input pattern (a single point in pattern space).

The complexity and the performance of proposed search
methods are assessed comparatively to thebag-of-features
approaches [1], [7] as a function of the query locality (i.e.,
size of the query area). The comparison is performed using
analytical derivations as well as simulations on an image
database.

The rest of the paper is organized as follows. Section II
briefly reviews thebag-of-featuressystems and analyses their
behavior under local querying. Section III presents the sparse
local descriptors constructed by taking thek-NN approxima-
tions of the SIFT vectors. It then presents the local descriptors
constructed by using the basis pursuit algorithm. The voting
system based on the inverted files principles which has been
used to assess the performance of the local descriptors in the
image retrieval application is then described. A complexity
analysis, in comparison with thebag-of-features, is also given.
Section IV gives performance evaluation results as a function
of the complexity and the locality of the search using the
Holidays image database.

For notational clarity, we use un-emphasized letters likea
to denote scalars, while underlines as ina denote vectors. The
i-th element of a vectora is denoted asai. Thek-th vector in
a set of vectors isak, and itsi-th element is denotedak,i.

II. SEMI-LOCAL SEARCHESUSING BAG-OF-FEATURES

In this section, after reviewing thebag-of-featuressystems,
we carry out an analysis of the score of a correct response
under local queries to illustrate how the locality propertyof
the initial SIFT descriptors is affected by thebag-of-features
algorithm.

Searches using local descriptors require establishing corre-
spondences between sets of descriptor vectors, associatedto
the query image and to one of many indexed images. Local
description algorithms can yield hundreds or even thousands
of descriptors per image. In addition, the descriptor vectors are
high dimensional,128-dimensional for the case of the SIFT
descriptor [4]. This high density of local descriptors combined
with their high-dimensionality renders an exhaustive search
of matches impossible under reasonable time constraints.
Their high-dimensionality further proscribes traditional data
structures that have complexity that can grow exponentially
with dimensionality.

Due to the high-dimensionalityd of local descriptorss
(d = 128 for the case of SIFT) and their large density per im-
age (hundreds or thousands), thebag-of-featuresscheme [1],

[7] aims to reduce search complexity by reducing searches to
time and memory efficient inner product calculations between
sparse vectorsw1. Let NI be the number of local descriptors
in an image, and|D|c the codebook size with|D|c >> d. The
i-th component of abag-of-featuresw1 of size|D|c is written
as:

w1i =
1

α
f1

i log
1

fDB
i

, i = 1, . . . , |D|c (1)

where f1
i is the frequency of occurrence of the codeword

(or visual word) i in the image which results from the vector
quantization of its local descriptorssj ; fDB

i is the frequency
of occurrence of images containing the codewordi within the
database, andα is a normalization constant. Letx1

j be the all
zero vector with a single unit coefficient at the position given
by the selected codeword index and note that the codeword
image frequency vectorf1 of size |D|c can be written as
1

NI

∑NI

j=1 x1
j .

The bag-of-featuresapproach has been extended in [7] by
computing the vectorfk as

fk =
1

NI

NI∑

j=1

xk
j , (2)

wherexk is a vector ofl-0 normk > 1 for which the positions
of the k non-zero components correspond to thek nearest
codewords (visual words) in the codebook. The values of the
k non-zero components are given by

xk
l =

1

λ
exp(−δ2

l /σ2), l = 1, . . . , k. (3)

Hereσ2 is a fixed parameter tuned according to the used code-
book, δl is the euclidean distance betweens (the underlying
local descriptor) and thel-th chosen codeword, andλ is an
l-1 normalization constant [7]. The associatedbag-of-features
vectorwk is built similarly to w1 by substitutingfk in place
of f1 in (1):

wk
i =

1

α
fk

i log
1

fDB
i

. (4)

Letting k = 1 reduceswk [7] to w1 [1]. When irrelevant, we
will discard the superscriptk and usew to denotebag-of-
featuresvectors in general.

The bag-of-featuressparsity-inducing mechanism results in
a loss of performance under local querying: the algorithm
achieves sparsity by forming a single (global) histogram
descriptor from a set of (local) input descriptors. To illus-
trate this, consider a local querywq defined by a subset of
descriptors of an indexed image. We can then decompose an
indexedbag-of-featuresw in terms of background (wB) and
query region (wq) bag-of-features. The number of times the
codewordi occurs in the indexed image can be written as
NIfi = Nqf

q
i + (NI − Nq)f

B
i, whereNq is the number of

descriptors in the query region, thebag-of-featuresw is thus
given by:

wi =
αB

α
·
NI − Nq

NI

· wBi +
αq

α
·
Nq

NI

· wqi
, (5)



where αB, αq and α respectively denote the norm of the
backgroundwB, the querywq, and the entire imagew. The
resulting score for the matchingbag-of-featuresw, given the
local querybag-of-featureswq, is then:

〈w, wq〉 =
αB(NI − Nq)

αNI

〈wB, wq〉 +
αq

α
·
Nq

NI

. (6)

This expression illustrates how the score is more and more
impacted by the backgroundbag-of-featureswB as the query
region becomes more local. The score due only to the query
region (right-hand term in the sum) will be contaminated
by the correlation between query and background descriptors
(left-hand side in the sum).

III. N EW LOCAL SPARSEDESCRIPTORS

In the previous section, we have shown how thebag-of-
featuressystem succeeds in reducing a complex query between
images each being represented by sets of local descriptors
into simple inner product distance calculation between sparse
vectorsw. The approach nonetheless suffers from a loss in
descriptor locality, as the set of local image descriptors were
transformed into a single global descriptor. In this section, we
present sparse descriptors that retain the locality of the input
descriptors while at the same time enjoying the complexity
benefits of sparsity. We propose two different approaches to
get sparse representations: the first one is based onk-NN
approximations, whereas the second one borrows sparse de-
composition algorithm from the image compression and signal
processing community. We also discuss the voting system
and the complexity induced by having several descriptors per
image.

A. k-NN based descriptor

The first descriptor is constructed by selecting thek nearest
codewords as explained in Section II for thebag-of-features,
but this time keeping the set ofNI individual sparse vectors
instead of a single descriptorw per treated image. This ap-
proach yieldsNI sparse descriptorsxk and a voting algorithm
can be used to carry out queries. With this representation,
codewords define cells in the SIFT description space. As the
weighting coefficients of a sparse vectorxk are computed
as a function of the euclidean distance between the SIFT
descriptor and itsk nearest codewords, the weighted vector
xk can be seen as a local coordinates of the SIFT descriptor
relatively to its thek nearest neighbouring cells. It acts as
an approximated localization of the SIFT descriptor in the
description space. The distance between two sparse descriptors
xk thus approximates the distance between underlying SIFT
descriptors in the description space.

B. Visual Sentences

The second descriptor is constructed by running the basis
pursuit algorithm [11] to find a sparse approximation of each
input SIFT descriptor, thus obtaining a single sparse vector
xs per input descriptors. Similarly, the approach yieldsNI

sparse descriptorsxs.

Let D be the matrix that contains the codewordsDk along
its columns. The visual wordx1 used when building thebag-
of-featuresdescriptor yields a coarse representationŝ of the
underlying SIFT descriptors by specifying the one codeword
Dk most similar tos. This can be formalized as:

ŝ = Dx1. (7)

wherex1 has a single, unit-valued, non-zero coefficient. This
suggests using a better reconstructionŝs of s by using a linear
combination of codewords

ŝs = Dxs, (8)

where xs is a real-valued sparse vector with multiple non-
zero coefficients. The vectorxs is the proposed descriptor; we
name it avisual sentence, an extension of the namevisual
words given to the vectorsx1 in [1], as it defines a linear
combination of visual wordsDk.

The problem of selecting the best coefficients and code-
words (non-zero positions) forxs is an open question. Mo-
tivated by (8), in this work we optimize the reconstruction
error |Dxs − s|2 and sparsity ofxs. Both characteristics are
of importance: the reconstruction error is directly related to the
performance of the descriptor while sparsity is related to com-
plexity, as we will show later, analytically and experimentally.
This optimization problem has been addressed extensively in
the image processing literature [8], [9], [10], [11].

In our work, we use the basis pursuit algorithm [11] as it
provides an optimal tradeoff between sparsity and reconstruc-
tion error. The algorithm formulates the selection ofxs as the
following constrained optimization problem:

xs = argmin
xs

|s − Dxs|2 + h|xs|1, (9)

where | · |1 is the l-1 norm denoting the sum of coefficients
of xs. The parameterh controls the tradeoff between sparsity
and reconstruction error: the higherh is, the more sparsexs

is. It would be more natural to use thel-0 norm corresponding
to the number of non-zero elements ofxs. The l-1 norm is
used nonetheless as it reduces the problem to a linear program
that can be solved using standard mathematical routines.

The meaning of this representation is different from thek-
NN based descriptor. Here, the sparse vectorxs represents an
approximated reconstruction of the SIFT descriptor. Thus,the
inner product between sparse vectors can be seen as a rough
approximation of the descriptors correlation.

C. Voting system and data structure

The query score usingbag-of-featuresis computed as the
distance calculation (normalized inner product) betweenw
vectors. Given that the sparse decomposition provideNI

sparse and local descriptorsxs (or equallyxk), this ranking
system no longer applies. It is replaced by the following voting
system: for each of theNq local descriptorsxs of a query
image, theK closest descriptors among the whole database
are retained. Each image having at least one descriptor among
theseK-nn will vote once. In the end, at most ofK × Nq



votes are distributed amongst all database images, and the
cumulative votes for each image yields its score.

The sparsity of the descriptors is exploited for inner-product
calculation. Indeed, finding theK nearest neighbors of a query
descriptorxs can be efficiently implemented using an inverted
file index which is slightly different from the one used in the
context ofbag-of-features. The row entryj of the row-major
matrix stores in a contiguous memory bin thej-th non-zero
coefficient and the corresponding descriptor identifier of all the
indexedxs. Only memory bins having the same index as the
positions of the non-zero coefficients of the query descriptor
need to be retrieved from memory (or disk) and processed.

D. Complexity Analysis

We now present an image search complexity analysis com-
paring sparse descriptors andbag-of-features. As a complexity
measure we will use an estimate of the mean number of
coefficients to retrieve given a set of query descriptors. This
number further equals the mean number of multiplications
to carry out when calculating all inner products between the
query set and the indexed descriptors. If the query set consists
of a single global query descriptorw, this complexity measure
is given by the cumulative sum of all the bins having en
index corresponding to thek non-zero positions of the query
descriptor. For the case of sparse descriptors, we will further
sum bin sizes over all descriptors in the query set.

We first derive a complexity expression for sparse descrip-
tors. Since multiple sparse descriptors are available per query,
the complexity for the entire query will be the sum of per-
descriptor complexity over all descriptors present in the query.
Let I denote the number of images in the database,N̄I the
mean number of local descriptors per-image andn̄s the mean
number of non-zero coefficients in the sparse descriptorsxs.
An estimate of the mean bin sizeBs can be defined as the
total number of non-zero coefficients in the database divided
by the total number of bins:

Bs = n̄sN̄I · I/|D|c, (10)

where |D|c is the number of codewords available. For a
single visual sentence, the number of multiplications to carry
out is equal to the sum of bin sizes of all bins activated
by the query. Thus, for a query comprising an average of
N̄q query descriptors, an estimate of the mean number of
multiplications required can be taken as the total of non-zero
query coefficients times the estimated mean bin size in (10):

Ms = n̄sN̄q · Bs

= n̄sN̄q · (n̄sN̄I · I/|D|c)

= n̄2
s · N̄qN̄I · (I/|D|c). (11)

Considering next the case ofbag-of-featuresscoring, the
number of non-zero coefficients of abag-of-featuresw is
generally not equal toN̄I . Due to possible overlap in non-
zero coefficient positions amongst thexk in (3): each of theN̄I

descriptors in the image willat mostcontributek new non-zero
coefficients to thebag-of-featuresw. We model the overlap in

coefficients position with an overlap coefficientν ∈ [1/N̄I , 1],
thus writing thel-0 norm of abag-of-features(built using all
the NI descriptors in the entire image) asνn̄wN̄I , wheren̄w

denote the mean number of non-zero coefficients inxk. The
mean bin sizeBw (when indexingbag-of-featuresvectorsw)
can thus be estimated as:

Bw = νn̄wN̄I · I/|D|c. (12)

Likewise, the number of bins activated by the querybag-of-
featurescan be written asνn̄wN̄q, with ν ∈ [1/N̄q, 1]. The
complexity forbag-of-featuresscoring can then be written as:

Mw = νn̄wN̄q · Bw

= νn̄wN̄q · (νn̄wN̄I · I/|D|c)

= ν2n̄2
w · N̄qN̄I · (I/|D|c). (13)

Comparing the resultingbag-of-featurescomplexity above
to that of sparse descriptors in (11) indicates thatbag-of-
features is more computationally efficient by a factor of

n̄2

s

ν2n̄2
w

. Thebag-of-featuresdescriptors gain in performance for
smaller l-0 norm [7], and thus this factor will tend to favor
bag-of-features. We will see in the results section that for
small l-0 norm thebag-of-featuresoutperfom the local sparse
descriptors in terms of complexity. However, a discerning
descriptor under local queries is able to return better results
for lower numbers of query descriptors (i.e., for lower values
of N̄q). In the results section we evaluate the performance of
different query systems as a function of̄Nq and verify that
the sparse descriptorsxs yield better performance for smaller
values ofN̄q.

IV. RESULTS

In this section, we compare experimentally thebag-of-
features image description and retrieval system [1] to the
proposed local sparse descriptors using the voting system
described in section III-C. The experiments have been made
with the holidays image database [14] which consists of1491
images organized into500 groups of images of varying size.
For all methods, to compare withbag-of-featuresprocess,
the initial SIFT descriptors are computed on MSER regions.
In total, more than3 millions local SIFT descriptors have
been extracted (two thousand per image on average). For each
image, thebag-of-features, the exponentially-weighted vectors
xk (3) and the visual sentencesxs have been computed.

The performance of the system has been evaluated as a
function both of complexity and of the locality of the search.
Each image has one or more relevant images in the database,
and each image out of the1491 images has been used as
a query image. The locality of the search is controlled by
varying the numberNq of query descriptors used, where the
descriptors used are always taken to be those related to regions
of the image closest to the image center. This choice of query
region allows us to easily control the locality of the search,
hence to evaluate its influence on performance. As the same
query region has been used both for the reference and the
proposed systems, this choice does not favor one or the other.



Fig. 1. Comparison of performance as a function of the dictionary training
method. All systems use the visual sentences descriptorxs, whereh is given
in (9).

As a measure of performance we use average precision (over
all queries) calculated at specified recall values (we useR =
0, 0.1, 0.2, . . . , 1) [15]. The complexity is computed as the
total number of multiplications required for the image query.
Section III-D gives an estimate of the complexity expressed
according to the mean number of non-zero coefficients of a
query and the mean bin size of the index structure. However,
in practice, the codewords are not uniformly distributed over
the image database, leading to different bin sizes. Thus, the
complexity varies from one query to another, depending on
its sparsity and the size of bins needed to be retrieved. As a
complexity measure, we thus present both the 10% and 90%
complexity quartiles, computed over all queries.

The same codebookD has been used for the all the
setups considered; it consists of10, 000 codewords obtained
by applying K-means on SIFT/MSER descriptors obtained
from the Stewénius-Nistér image database [16]. Other training
algorithms better suited to sparse approximation algorithms
exist, notably theK-SVD algorithm [17]. These algorithms
are nonetheless very costly and the available implementations
yield prohibitive complexity for the dataset and codebook
sizes concerned by description and indexing application. To
gauge the potential impact of the codebook training method,
we provide results for our proposed description/voting system
when training a small codebook of1, 000 atoms using both
the K-SVD algorithm and theK-means algorithm. It can be
noticed that the sparsity decreases along with the codebook
size, resulting in a complexity increase. The results are plotted
in Figure 1. For comparable complexity levels, the figure

Fig. 2. Comparison of visual sentences vs.bag-of-featuresin terms of
complexity and recall vs. precision when usingNq = 30 and Nq = 50.
A value of h = 250 (cf. (9)) is used to build the visual sentencesx

s.

shows that the performance is not greatly affected by the
training algorithm.

Figure 2 compares visual sentences to thebag-of-features
when usingNq values of30 and50. The top graph represents
the complexity quartiles as explained before, for each of the
four experiments, while the bottom graph shows the search
results quality in terms of recall and precision. While the
performance of visual sentences remains stable when reducing
the numberNq of query regions, the performance ofbag-of-
featuresdegrades rapidly with reducedNq. As expected, the
improved performance for local queries comes at the price of
increased complexity (top of Fig. 2), as the visual sentences
descriptors require a greaterl-0 norm and thus (i) a greater
number of coefficients needs to be indexed and (ii) a greater
number of index rows is activated by each query.

We also comparatively assess the two local sparse descrip-
tors, the one constructed using a sparse approximation of the
initial SIFT descriptor obtained with the basis pursuit algo-
rithm, and the one constructed by considering thek nearest
codewords in the codebook, with weighting coefficients given
by (3). In this last method, the sparsity of the resulting vector
xk is clearly determined by the numberk of nearest codewords
chosen. When using the basis pursuit algorithm, the sparsity
of vector xs is controlled by theh parameter present in the
optimization cost function (9). In order to compare these two
approaches in terms of complexity, we set the parameters of
the basis pursuit algorithm in order to obtain similar sparsity
of xs andxk. Figure 3 shows that the two methods perform
comparably with similar complexity.
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Fig. 3. Local descriptor voting usingxk with k = 3 and k = 5 and x
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with k = 2.8 andk = 5.1 (mean). The parameterh corresponds to (9) and
σ andk correspond to (3).

V. CONCLUSION

In this paper, we have described two methods for efficient
SIFT-based image description and searches in large databases
in the context of local querying. The methods rely on a
sparse representation of SIFT descriptors computed on MSER
regions. A retrieval and voting system based on an inverted
file has been developed and adapted to the two descriptors.
These approaches benefit from a complexity decrease which
result from the descriptor vector sparsity, while preserving the
locality properties of the indexed descriptors. The analysis
has indeed shown that local queries using these descriptors
perform better than with thebag-of-featuresimage descriptor
and retrieval system, where a single histogram is constructed
from multiple local descriptors and used as a single descriptor
for the query region. The corresponding complexity is also
increased, but the methods, by tuning thel0-norm of the sparse
descriptors, allow an easy control of the trade-off between
complexity versus precision of the local queries. Note that
the inner product distance may not be the most appropriate
distance measure between sparse vectors, due to instability
in the codeword selection process under slight variations of
original vectors. Further work will be dedicated to study a
more appropriate distance measure. Another possible improve-
ment will be to exploit the property of codeword selection
process using another sparse decomposition algorithm that
gives different importance to the codewords selected.
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