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Abstract—With the fast development of natural language pro-
cessing, recent advances in information hiding focus on covertly
embedding secret information into texts. These algorithms either
modify a given cover text or directly generate a text containing
secret information, which, however, are not reversible, meaning
that the original text not carrying secret information cannot be
perfectly recovered unless much side information are shared in
advance. To tackle with this problem, in this paper, we propose
a general framework to embed secret information into a given
cover text, for which the embedded information and the original
cover text can be perfectly retrieved from the marked text. The
main idea of the proposed method is to use a masked language
model to generate such a marked text that the cover text can be
reconstructed by collecting the words of some positions and the
words of the other positions can be processed to extract the secret
information. Our results show that the original cover text and the
secret information can be successfully embedded and extracted.
Meanwhile, the marked text carrying secret information has good
fluency and semantic quality, indicating that the proposed method
has satisfactory security, which has been verified by experimental
results. Furthermore, there is no need for the data hider and data
receiver to share the language model, which significantly reduces
the side information and thus has good potential in applications.

Index Terms—Reversible data hiding, text, language model.

I. INTRODUCTION

As an effective means to secret communication, information
hiding (typically also called data hiding) enables us to covertly
embed a secret message in a digital media by taking advantage
of the redundancy of the digital media. The newly generated
media containing secret information will not introduce notice-
able artifacts, resulting in that the usage of the media will not
be impaired and additional purposes such as secret information
transmission and copyright protection can be achieved. Though
the secret information can be successfully extracted for many
data hiding methods, permanent distortion will appear in the
altered media content, which indicates that the original media
content cannot be perfectly recovered which is not desirable
for sensitive applications that require the original media to be
fully recovered at the receiver side.

Reversible data hiding (RDH) [1] is therefore deeply studied
to deal with the above problem in recent years. Compared with
traditional data hiding (DH) algorithms, RDH allows the data
receiver to restore the original media content without distortion
after extracting the embedded information from the embedded
media. That is to say, after secret transmission via a lossless
channel, when the user is authorized to obtain the same key,
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Fig. 1. Sketch for reversible data hiding in texts.

the original cover and the secret information can be recovered
losslessly from the media containing the secret information. At
present, RDH has been widely applied to digital images and
video sequences [2[]-[5], but there are very few achievements
on RDH in texts. The reason is that text has the highly coded
nature with little redundancy, and there are rather fewer bits of
information available for embedding than images and videos.
Therefore, it is necessary to design novel schemes for RDH in
texts. Among many media types, text is the most commonly
used information carrier by human beings. Moreover, text also
has the property of high robustness with little change through
channel transmission, and is not easily disturbed by noise. It
means that RDH in texts has good application prospect, which
motivates the authors in this paper to study RDH in texts.

As shown in Fig. 1, RDH in texts can be briefly described as
follows. The data hider needs to design such a data embedding
algorithm that it accepts a given text (i.e., cover text), a secret
key and the secret data as input and thereafter outputs a new
text carrying the secret data (i.e., marked text). The resulting
marked text will be sent to the data receiver via an insecure
channel. According to the secret key, the data receiver is able
to extract the secret data from the marked text and reconstruct
the cover text without any error. In this way, RDH in texts
is realized. One of the most important requirements for RDH
in texts is that the marked text should be seemingly normal,
i.e., the marked text should not introduce suspicious traces that
will reveal the existence of secret information. It requires that
the fluency and the semantic quality of the marked text should
be satisfactory. Moreover, the marked text should be able to
resist against statistical detection tools.

A simple method of realizing RDH in texts is to change the



text format in a lossless fashion. For instance, the white space
between two adjacent words (or adjacent lines) can be adjusted
to accommodate secret bits [6]—[8]. By extracting secret bits
from the marked text format, the original text can be further
recovered since the words of the original text are unchanged.
Another simple idea is to alter the characters within words of
the cover text, which enables secret bits to be embedded but
may result in incorrect words. In order to recover the cover
text, these incorrect words caused by data embedding should
be corrected. Nevertheless, abnormal text format and incorrect
words will easily arouse suspicion from the adversary, thereby
impairing the imperceptibility of secret information.

One could extend reversible embedding strategies originally
designed for digital images to texts. For example, Liu et al.
[9]] convert some words in the cover text into integers and then
embed secret bits into the words by applying integer transform
and difference expansion widely used in RDH in images. Even
though this method ensures reversibility, the pure payload size
is quite low due to the underflow/overflow problem. Moreover,
though it can be improved so as to increase the payload size to
a certain extent, new problems such as large side information
will arise [[LO], [11]]. This indicates that it is not easy to extend
RDH methods applied to digital images to texts.

With the fast development of deep learning [|12]] and natural
language processing, mainstream DH methods applied to texts
use a trained language model for facilitating embedding [13]-
[17]. However, these methods cannot ensure reversibility. Just
in recent, Chang [[18]] proposes a method to reversibly embed
secret bits into a cover text by exploiting index expansion. In
the method, a trained language model is used to predict the
word of a position to be embedded, which allows the data hider
to collect a list of prediction probabilities for all the candidate
words. These words can be associated with an index according
to the prediction probabilities. Thus, by determining the index
matching the present bit to be embedded, the corresponding
word can be selected as the output. Though the method shows
good trade-off between data-embedding capacity and semantic
distortion, it requires the data hider and the data receiver to
share the pre-trained language model in advance, which may
be not suitable for applications. On the one hand, a language
model contains a number of parameters, meaning that the side
information shared between the data hider and the data receiver
is too much, which is not desirable in practice. On the other
hand, the data hider may not want to share the trained language
model with the data receiver since the trained language model
can be treated as a private assert of the data hider. In addition,
using a language model for data extraction corresponds to a
high computational complexity, which is not good for practice.

Therefore, we urgently need to develop more efficient RDH
schemes for texts. This has motivated the authors in this paper
to propose a general framework for text based RDH. The main
idea of the proposed framework is to generate such a marked
text that the cover text can be reconstructed by collecting the
words of some specific positions, and the words of the other
positions can be processed to extract the secret information. As
a result, the secret information and the original cover text can
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Fig. 2. General framework for the proposed method.

be successfully concealed within the marked text, and perfectly
extracted from the marked text as well. Experimental results
show that the proposed work ensures reversibility and provides
good text quality and security, demonstrating the superiority.

The rest of this paper is organized as follows. In Section II,
we introduce the proposed framework. Then, in Section III,
experimental results and analysis are provided to demonstrate
the superiority and applicability of the proposed framework.
Finally, we provide conclusion and discussion in Section IV.

II. PROPOSED METHOD

The proposed method follows the framework shown in Fig.
1. However, different from mainstream methods that modify
a given cover text to embed secret information, the proposed
method uses the cover text as a “semantic control key” to guide
us to generate a marked text carrying the secret information.
Fig. 2 shows the general framework of the proposed method. It
can be inferred from Fig. 2 that there are five important parts in
the proposed framework, i.e., semantic initialization, semantic
control, masked language modeling, data extraction and cover
reconstruction. We detail each of them in the following.

A. Semantic Initialization

Given a cover text and a secret (position) key, the purpose
of semantic initialization is to produce an initialized text that
will be used for the subsequent data embedding procedure. In
detail, let ¢ = {cy, ca, ..., ¢, } denote the cover text, where c;,
1 <7 < n, is the i-th word (token) sampled from a very large
vocabulary V. The secret position key p = {p1,p2,...,Pn} is
an integer sequence that satisfies 1 < p; < p2 < ... < p,. The
goal of semantic initialization is to generate the initialized text
u = {uy,ug, ..., un } that satisfies p,, < m and

if 1 = Pj €P,
otherwise,

R ¢Gj
e {[MASK] M
where ‘[MASK] denotes a special token. For example, as-
suming that ¢ = {I, do, .}, p = {1, 7, 12} and m = 12, u can
be determined as {I, [MASK], [MASK], [MASK], [MASK],
[MASK], do, [MASK], [MASK], [MASK], [MASK], .}.

B. Semantic Control

The purpose of semantic control is to generate a masked text
that will be fed into the subsequent masked language modeling
module. It is free to design the algorithm of semantic control,



namely, there is no strict restriction on the masked text except
that the words corresponding to the cover text should not be
changed. The proposed method simply sets the masked text
as the initialized text or the temporary marked text, which is
due to the reason that the subsequent embedding method is an
iterative process (refer to the next subsection).

C. Masked Language Modeling (Data Embedding)

The purpose of masked language modeling is to generate a
marked text carrying secret information, which is an iterative
process. In each iteration, we use a pre-trained language model
to generate a temporary marked text based on the masked text
and secret data to be embedded. The difference between the
masked text and the temporary marked text is that exactly one
masked position of the masked text is replaced by a word. The
temporary marked text will be used to replace the masked text
for the next iteration unless all masked positions are processed.
It is noted that masked language modeling is a popular strategy
for text generation in mainstream natural language processing
tasks. However, in this paper, the masked language modeling
strategy is used for generating texts carrying additional infor-
mation. That is why the masked language modeling procedure
in this paper is actually equivalent to data embedding.

The pseudo-code of data embedding is shown in Algorithm
1. It can be seen that by predicting the word of each masked
position, we can generate the final marked text. However, as
shown in Line 5 of Algorithm 1, we should use an information
encoding method to determine the word of a specific masked
position, which is free for us to design. The goal of information
encoding is to select a candidate word from a list of candidate
words to replace the special token ‘[MASK] and meanwhile
match the secret data to be embedded. Since it is not the main
interest of this paper, we use the existing information encoding
method for simplicity. In experiments, we will evaluate various
information encoding strategies.

D. Data Extraction

The goal of data extraction is to extract the secret infor-
mation b from the marked text. It depends on the information
encoding method shown in Line 5 of Algorithm 1. Specifically,
if the mapping relationship between words and secret bits is
based on the prediction probabilities of candidate words, both
information encoding and information decoding are controlled
by the pre-trained language model M. It indicates that the pre-
trained language model M should be shared between the data
hider and the data receiver because the data receiver should
use the language model to reconstruct the mapping relationship
between words and secret bits. Otherwise, there is no need for
the data hider to share M with the data receiver. Obviously,
from the viewpoint of practical use, it is more desirable that
only the data hider holds the language model. However, from
the viewpoint of embedding performance, sharing the language
model may be better. In experiments, we find that the former
already achieves a competitive performance, implying that not
sharing the language model is a good strategy for RDH.

Algorithm 1 Pseudocode for the data embedding procedure

Input: Initialized text u, language model M, secret bits b
Output: Marked text s.
1: Initialize s = u
2: for e =1,2,...,m do
3:  if s; = [MASK] then
4: Apply M and s to generate a list of candidate words
each associated with a prediction probability for s; //
notice that s can be called as a masked text here

5: Determine a candidate word w carrying a prefix of b
according to an information encoding method

6: Update s by applying s; = w // notice that s can be
called as a temporary marked text here

7 Remove the embedded prefix from b

8: end if

9: end for

10: return s

E. Cover Reconstruction

Reconstructing the original cover text is straightforward. It
can be described as

¢ = 8p,;, V1 <1 <, 2)

where the position key p = {p1,p2,...,pn} should be shared
between the data hider and the data receiver in advance.

III. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we are to provide experimental results and
analysis for performance evaluation.

A. Setup and Evaluation Metrics

We use Python and PyTorch for simulation. For the language
model, we use Google’s BERTp e, uncases model and Hugging
Face’s transformers package [|19] based on the default settings.
The benchmark dataset BookCorpus [20], a large text corpus
widely used in natural language processing tasks, consisting of
around 18,000 books with rich topics and different fine-grained
semantic information, is used for experiments. We randomly
select 10,000 cover texts for RDH. One thing to note is that
the length of each cover text, i.e., n, needs to be controlled
within a reasonable range, which can reduce the computational
complexity while ensuring the quality of the marked text. And,
for simplicity, we assume that the length of the marked text
is a multiple of that of the cover text, namely, n|m. m may
be adaptively increased to become a larger integer not divided
by n so that the marked text ends with a stop token.

To evaluate the quality of the marked texts generated by the
proposed method, the standard measure of perplexity (PPL) is
used. The PPL calculates the average log probability of each
word in the sentence. Generally, the lower the perplexity is,
the more natural the generated text is and the more secure the
generated text will be. We use GPT-2 [21]] to determine the
average PPL of all marked texts as the judging criterion. In
order to evaluate the security, we use 10,000 natural texts and
10,000 marked texts with the same length range and similar



grammatical structure for steganalysis with the method in [22].
Two common metrics: accuracy (Acc) and F1 score (F1) [23]],
[24]], are used to measure the ability to resist steganalysis tools.
Yet another indicator is the data-embedding payload, which is
defined as the average bits carried by each word (i.e., bits per
word, bpw) and is expected to as high as possible.

B. Information Encoding Strategies

For fair comparison, we use different information encoding
strategies for simulation. Four representative information en-
coding strategies, i.e., block coding [25]], Huffman coding [[17]],
adaptive dynamic grouping (ADG) [26]], and bins coding [27]
are tested in our experiments. For self-contained, we briefly
describe the technical details of them in the following.

1) Block Coding: Given a set of candidate words, the block
coding method assigns k-bit binary codes from 0 to 2¥ —1 to
2% — 1 words selected from the set according to the prediction
probabilities. For example, for a specific masked position, by
sorting all the candidate words in the vocabulary V' according
to their prediction probabilities in a descending order, each of
the top-2¥ words can be associated with a binary code with
a length of k. We need to use a threshold ¢, to control the
number of usable words in V, i.e., for a given masked position,
only those words in V' with a prediction probability larger than
t, can be used for carrying secret bits. On the other hand, the
data receiver should hold ¢,, and the (masked) language model
so that he can extract the embedded data from the marked text.

2) Huffman Coding: Huffman coding is a consistency cod-
ing technique. While the above block coding method assigns
fixed-length codes to the words, Huffman coding assigns codes
with an indefinite length to words according to the prediction
probabilities. Same as block coding, Huffman coding needs ¢,
and the language model to embed data and extract data.

3) Adaptive Dynamic Grouping (ADG): The target of ADG
is to group all words (tokens) in the vocabulary into a certain
number of groups so that each group represents a unique secret
binary stream. To embed secret data, for a masked position, a
word is sampled from the corresponding group as the output.
For data extraction, the data receiver should have the language
model and vocabulary, and know the grouping algorithm. For
consistency, ¢, is used to control the number of usable words.

4) Bins Coding: Bins coding maps all words in the vocab-
ulary into a binary stream in advance. During data embedding,
for a masked position, among a list of words that match the
secret data to be embedded, the one with the largest prediction
probability is used as the output. For example, the vocabulary
V' can be divided into two disjoint subsets 1} and V7, where
[Vo| = |Vi|. The words in V} are mapped to the secret bit
b € {0,1}. During data embedding, if the secret bit is b, the
word with the largest prediction probability in Vj, is selected as
the output. Obviously, it is easy for the data receiver to extract
the secret data without knowing the prediction probability of
the word. In other words, compared with the above methods,
there is no need for the data hider and the data receiver to
share the language model, which significantly reduces the side
information. By default, in our experiments, we divide V' into

TABLE I
SOME EXAMPLES FOR THE MARKED TEXT, WHERE m/n = 4.

Encoding tp Marked text
0.02 I was going to try to do the same for myself .
Block 0.03 | I have no way to really do the same without him .
0.04 I do this , but I do not do this now .
0.02 | I know what the police will do if he comes here .
Huffman | 0.03 I do it . you always do it . I know .
0.04 I always do it for a living .
0.02 I have no one willing to do a little crazy thing .
ADG 0.03 | I did the same thing you do for the same reason .
0.04 1 did . but you can do that for her too .
Bins - I know the way they can do it to me now .
Top-1 - I know what I have to do to keep her safe .

TABLE II
MEAN PAYLOAD SIZES (BPW) DUE TO DIFFERENT INFORMATION
ENCODING STRATEGIES, WHERE n € [4, 8].

Encoding strategy tp m/n=3 | m/n=4| m/n=5

0.02 1.2113 1.3822 1.4691

Block 0.03 0.9538 1.0794 1.1402
0.04 0.7865 0.8839 0.9315

0.02 1.2269 1.3946 1.4792

Huffman 0.03 1.0166 1.1464 1.2154
0.04 0.8576 0.9620 1.0168

0.02 0.4734 0.5335 0.5507

ADG 0.03 0.3561 0.3977 04113
0.04 0.2742 0.3015 0.3104

Bins - 0.6507 0.7259 0.7660

TABLE III

MEAN PPLS DUE TO DIFFERENT INFORMATION ENCODING STRATEGIES,
WHERE n € [4, 8].

Encoding strategy tp m/n=3 | m/n=4 | m/n=>5
0.02 | 223.8311 157.5531 128.8145

Block 0.03 | 202.9565 134.4043 103.8719
0.04 187.6439 118.5401 91.9489

0.02 | 202.6945 138.0253 108.4690

Huffman 0.03 189.8209 126.0925 97.6912
0.04 180.3138 116.3862 89.3254

0.02 260.7759 189.2484 157.2128

ADG 0.03 | 216.1935 153.3190 125.8440
0.04 199.3847 134.2199 104.6727

Bins - 274.5535 179.6919 134.2634

two subsets, implying that, we use each word to carry one
bit. It is pointed that there is no need for the data hider and
the data receiver to store V}, because the mapping relationship
between words and secret bits can be realized by applying a
hash function, which is very convenient for data extraction.

C. Results and Analysis

We first provide some examples to verify the feasibility of
the proposed method. The examples are in Table I, where we
have ¢ = {I, do, .}, p = {1, 7, 12}, m = 4n = 12. Regardless
of the length of the embedded payload, it can be inferred that
the generated marked texts have satisfactory quality. In Table
I, “Block”, “Huffman”, “ADG” and “Bins” are corresponding
to block coding, Huffman coding, adaptive dynamic grouping



TABLE IV
DETECTION ACCURACY DUE TO DIFFERENT INFORMATION ENCODING STRATEGIES, WHERE n € [4, 8].

. m/n 3 4 5
Encoding strategy t,/, Acc Acc FI Acc Fl

0.02 | 0.8017 | 0.8934 | 0.9213 | 0.9211 | 0.9418 | 09416
Block 0.03 | 0.9040 | 0.9030 | 0.9247 | 0.9254 | 0.9473 | 0.9469
0.04 | 0.8938 | 0.8925 | 0.9232 | 0.9216 | 0.9425 | 0.9438
0.02 | 0.8992 | 0.8987 | 00195 | 0.9202 | 0.9435 | 0.9441
Huffman 0.03 | 09020 | 0.9028 | 0.9250 | 0.9260 | 0.9535 | 0.9540
0.04 | 09002 | 0.9018 | 09248 | 0.9245 | 0.9497 | 0.9495
0.02 | 0.9255 | 09267 | 0.0475 | 0.9478 | 0.9537 | 09542
ADG 0.03 | 09127 | 0.9143 | 0.9397 | 0.9407 | 0.9540 | 0.9538
0.04 | 09087 | 0.9069 | 0.9398 | 0.9402 | 0.9573 | 0.9568
Bins — [ 09098 [ 0.9094 | 0.9305 | 0.9290 | 09515 | 0.9521

and bins coding, respectively. “Top-1" means that no informa-
tion is embedded, i.e., each masked position was always filled
with the word having the largest prediction probability.

To measure the embedding payload, we empirically limit n
to range [4, 8] for simplicity. Table II shows the mean payload
sizes due to different information encoding strategies, from
which we can find that different information encoding strate-
gies result in different payload sizes. It is reasonable because
different strategies have different information utilization. As
shown in Table II, the size of the mean payload will decline
when t, increases. The reason is that a higher ¢, indicates
that less words are used to carry secret data, thereby resulting
in a lower payload size. For bins coding, though the payload
size is less than that of block coding and Huffman coding
in most cases, the payload size can be increased by dividing
the vocabulary V' into more disjoint subsets. For example, by
dividing V' into four disjoint subsets, each word can be used
to carry two bits, resulting in a double payload size, thereby
outperforming other methods in terms of embedding payload.
In addition, a higher m/n means that more masked positions
are used for data embedding, accordingly resulting in a higher
payload size, which has been verified by Table II.

The mean PPLs of the marked texts due to different infor-
mation encoding strategies are also determined. As shown in
Table III, the PPL value declines when ¢, increases, which is
due to the reason that a higher ¢, is corresponding to a lower
embedding payload size, resulting in a lower distortion to the
generated marked text. Moreover, the PPL gradually declines
when m/n increases, which is due to the reason that a longer
text tends to become more fluent because of more contexts.

In order to further measure the security of the marked texts,
we evaluate the ability of the marked text to resist steganalysis.
10,000 natural texts and 10,000 marked texts are selected to
form the sample set, divided into training set, validation set
and testing set according to the ratio of 6:1:3, evaluated on the
testing set by the model with the highest validation accuracy.
The results are provided in Table IV. It can be inferred that
the detection accuracy and F1 score gradually decline in most
cases when t,, increases. It is reasonable because a higher %,
corresponds to a lower embedding payload size, resulting in a
lower statistical difference between natural texts and marked
texts, making the detection accuracy and F1 score lower. The

detection accuracy and F1 score gradually increase when m/n
increases, which is due to the reason that longer texts are
more likely to expose statistical anomalies. However, though
different information encoding strategies result in different
steganalysis performance, the performance difference between
different strategies are close to each other in most cases. From
the viewpoint of practical use, it will be more desirable to use
information encoding strategies that does not require the data
hider and the data receiver to share much side information. In
other words, in terms of practicality, based on Table 1V, it is
more desirable to use bins coding for RDH.

IV. CONCLUSION

In this paper, we propose a novel framework for reversible
data hiding in texts, which is totally different from previous
methods that extend reversible embedding strategies designed
for digital images to texts. In the proposed framework, by
distributing the cover text into the masked text according to
the position key, the masked positions of the masked text are
filled with marked words to embed secret data. Experimental
results show that secret data can be extracted from the marked
text without any error. The original cover text can be perfectly
recovered with the pre-shared position key. By fine-tuning the
parameters, a sufficient payload can be achieved. Furthermore,
the generated marked texts have good quality and satisfactory
ability to resist against steganalysis. In future, we will further
improve the embedding performance. We hope this framework
could inspire more advanced works.
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