

The ubiQoS Middleware for Audio Streaming to Bluetooth Devices

Paolo Bellavista
Dip. Elettronica, Informatica e Sistemistica

Università di Bologna
pbellavista@deis.unibo.it

Cesare Stefanelli, Mauro Tortonesi
Dipartimento di Ingegneria

Università di Ferrara
{cstefanelli, mtortonesi}@ing.unife.it

Abstract
The full and seamless integration of wireless devices
with traditional fixed networks is more and more
important to foster the mobile and ubiquitous access to
the Internet. In particular, the heterogeneity and
resource limitations of wireless devices motivate novel
support infrastructures that can facilitate the wired-
wireless integration and can provide service tailoring
depending on client characteristics. The paper presents
an application-level portable middleware, called
ubiQoS, for QoS-enabled audio streaming to Bluetooth
clients. ubiQoS exploits support proxies for QoS
tailoring and for managing the QoS over the last
segment of the audio distribution path towards the
clients, by using different types of Bluetooth links.
Proxies execute at the wired-wireless network edges and
can even migrate to follow the device movements, where
and when needed. The reported experimental results
show the feasibility of the application-level approach in
the challenging case of QoS-enabled audio streaming to
resource-limited Bluetooth devices.

1. Introduction

The growing market of Bluetooth portable appliances is
enabling the realization of spontaneous networks of
devices that are located within the range of a single user,
and often referred to as Personal Area Networks (PANs).
In addition, there is an increasing research and
commercial interest in allowing PANs to integrate with
the fixed Internet. In the following, we will use the term
wireless Internet to refer to the above deployment
scenario where PANs work as the “last-meter”
connectivity solution that extends the traditional Internet
infrastructure [1]. The ultimate goal is to ubiquitously
provide both traditional and location-dependent services
in the wireless Internet [2].

Service providers and wireless network operators
have to address new technical challenges for the
seamless integration of portable devices in the wireless
Internet. A primary issue is the wide heterogeneity of the
hardware/software capabilities of wireless access
devices, e.g., screen size/resolution and supported
multimedia formats/players. In addition, portable
terminals usually have limited resources in terms of
processing, memory, storage, and network connectivity.
In this scenario, resource-consuming services designed
for the fixed network, such as multimedia streaming,
requires being downscaled to fit the limited clients.
Moreover, the wide heterogeneity makes impractical to
provide statically tailored service versions to all the
possible categories of access terminals.

One of the most widespread wireless technology is
Bluetooth, which is the primary solution today for
enabling the realization of PANs [3]. Bluetooth-enabled
portable devices, such as laptops, phones, and PDAs,
can interconnect to form a piconet, which consists of one
master and up to 7 slaves. The master device has direct
visibility of all slaves in the piconet and can handle two
types of connections with different Quality of Service
(QoS) levels. Asynchronous Connection-Less (ACL)
links provide a packet-oriented service. Synchronous
Connection Oriented (SCO) links, instead, are circuit-
oriented connections, designed to support time-bounded
transmissions such as voice streaming. The usage of
SCO links may leave very little of the piconet bandwidth
available to ACL links [4]. Depending on service and
user requirements, streaming services to Bluetooth
devices should be capable of choosing the most suitable
link type.

The paper proposes a middleware-level solution,
called ubiQoS, for the QoS management of mobile
multimedia services to Bluetooth devices in the best-
effort wireless Internet. ubiQoS adopts an application-
level approach that facilitates dynamic un/installation of
infrastructure/service components, application-specific
service tailoring and adaptation, security, and

interoperability [5, 6]. ubiQoS supports multimedia
streaming with differentiated QoS levels and can
dynamically tailor service provisioning to the specific
requirements of the served users, the device
characteristics, and the available wireless connections
[7].

In particular, the paper focuses on how to support the
last-meter Bluetooth-based connection for QoS-enabled
audio streaming services. The main design guideline is
to exploit support proxies that are located at the edges
between the fixed Internet and the Bluetooth PANs.
Proxies work as masters in the Bluetooth piconets of
access devices and dynamically tailor the QoS level of
audio streams to the characteristics of both the Bluetooth
links used and the target clients. Proxies are
implemented in terms of mobile agents, i.e., active
entities that can migrate from node to node during their
execution by carrying their code and by preserving their
reached execution state. Agent mobility facilitates the
deployment of ubiQoS components in the proximity of
wireless access localities, only when and where needed.
In addition, mobile proxies can continuously serve their
associated clients by following the device movements
between different wireless points of attachment to the
Internet.

To achieve portability in the open wireless Internet,
we have designed a Java-based interface, called
JSR82+SCO interface in the following, that extends the
standard Java APIs for Bluetooth (JSR82) [8] with the
SCO link support. On the one hand, our implementation
extends JavaBluetooth (with its current limitations to the
serial profile [9]) to fully support JSR82-based ACL
management. On the other hand, we have developed
from scratch the Java-based SCO support, also by
integrating with platform-dependent native SCO
libraries via the Java Native Interface [10]. ubiQoS
proxies exploit the implemented JSR82+SCO interface
to control Bluetooth links from within the standard Java
Virtual Machine (JVM).

The paper also reports the first experimental results of
the performance of the ubiQoS prototype in the
provisioning of audio streaming with differentiated QoS
levels to Bluetooth devices. The results show that the
Java-based application-level approach introduces an
acceptable and very limited degradation of the Bluetooth
link performance.

The rest of the paper is structured as follows. Section
2 introduces Bluetooth, describes the QoS characteristics
of ACL/SCO links, and briefly overviews the state-of-
the-art of the Java-based technologies to interwork with
Bluetooth. Section 3 motivates the adoption of proxy-
based service tailoring. Section 4 gives an overview of
ubiQoS, while Section 5 describes how ubiQoS proxies
manage the Bluetooth-based last-meter links. Section 6

reports some performance results of the implemented
prototype. Concluding remarks and directions for future
work follow.

2. Java-based Bluetooth Support for the
Provisioning of QoS-enabled Services

Bluetooth is an emerging technology in the wireless
world and is the standard solution for PAN applications.
The Bluetooth specification defines two main classes of
traffic: unframed data traffic, with guaranteed QoS
requirements, and framed data traffic, with both best-
effort and guaranteed QoS [11]. Unframed data traffic is
carried over SCO and enhancedSCO (eSCO) baseband
links; framed data traffic is carried over ACL and Active
Slave Broadcast (ASB) links.

SCO and eSCO baseband links are point-to-point bi-
directional, symmetrical (eSCO links can also be
asymmetrical), isochronous, and have a constant bit-rate.
The bit-rate is fixed to 64Kb/s for SCO and user-defined
for eSCO. SCO and eSCO logical transports do not
support the multiplexing of data streams; when needed,
multiplexing operations should be performed at the
application level.

ACL links are bi-directional, connection-oriented,
asynchronous or isochronous, and support the
specification of QoS settings to indicate the desiderata
for the delivery of the data frames. QoS settings are
typically used to instruct the Bluetooth core system to
discard undelivered packets after a given lifetime or to
specify the reliability characteristics of the data
transmission. The Bluetooth v1.1 specification provides
the QoS Setup command of the Host Controller Interface
(HCI) to specify QoS settings on ACL links
symmetrically. The QoS support in Bluetooth v1.2 is
still more advanced, e.g., the new specification
introduces the HCI Flow Specification command that
can be used to specify QoS flow parameters in an
asymmetrical way for (even already established) ACL
connections. Unfortunately, the largest part of the
(firmware of) Bluetooth chips in commerce still provides
only a partial implementation of the QoS support, and
very first chips compliant with Bluetooth v1.2 are being
commercialized in these days.

In addition, Bluetooth also defines connection-less
ASB links for broadcasting traffic from the master to all
the slaves in the piconet. The ASB-based transmission is
best-effort, with no possibility of QoS management.

Java-based applications can interwork with Bluetooth
via the recently approved JSR82 standard interface [8].
JSR82 allows the creation of different types of
connections, e.g., L2CAP and RFCOMM, and supports
the Service Discovery Protocol and the Object Exchange

protocol [11]. In addition, JSR82 provides the support
for several profiles defined in the Bluetooth
specification: the Generic Access Profile, the Service
Discovery Application Profile, the Serial Port Profile
and the Generic Object Exchange Profile. Most relevant,
JSR82 has been designed by taking into consideration
the characteristics of resource-limited portable devices;
as a result, the JSR82 API can be also offered on top of
any compliant implementation of the limited Java 2
Micro Edition with the Connected Limited Device
Configuration [12].

Unfortunately, JSR82 lacks some important
functionality. First of all, the JSR82 specification does
not include the support for SCO, eSCO, and ASB links,
thus complicating the portable implementation of Java-
based audio streaming applications. In addition, JSR82
introduces the Bluetooth Control Center as one of its
main architectural components, with the intent to enable
users and OEMs to change Bluetooth settings (basic
security settings, security policies for connection
authorizations, lists of known/trusted devices) in a
portable way; however, the specification does not
standardize the API to access the Control Center
services, thus making it unusable in an open
environment.

Also in response to the above JSR82 limitations,
several Java libraries, alternative to JSR82, continue to
be adopted and proposed, such as JBlueZ [13]. These
libraries provide Java-based applications with full-
featured access to existing Bluetooth stacks via a non-
standard proprietary API. The libraries often exploit the
lower-level interface exported by the underlying
Bluetooth stack implementation they work in
conjunction with. They usually integrate with their
Bluetooth stack by using the mechanisms of the Java
Native Interface (JNI), the standard API for interfacing
native modules and the JVM [10]. The adoption of JNI
ensures the code portability over any standard JVM
implementation.

3. Middleware Approaches to the QoS

Tailoring of Audio Streams

Service provisioning to wireless portable devices
requires dynamically downsizing service content to the
characteristics of both access terminal and wireless
connections. In particular, the tailoring of the dynamic
content is crucial for resource-consuming services such
as audio streaming. For instance, when streaming an
audio guide to a small group of museum visitors with
Bluetooth-enabled earphones, DVD-quality 153.6 Kb/s
audio flows in the .WAV format should be dynamically
transcoded to minor quality 30 Kb/s MP3 versions, in

order not to overload, uselessly and excessively, the
Bluetooth ACL links in the visitors PAN.

An important design choice is where to operate the
tailoring of the transmitted audio flows, typically by
reducing the audio quality and transcoding the
representation format. In server-based solutions, the host
that provides the service is in charge of either selecting
the version of the requested flow with the most suitable
QoS level among a pool of statically pre-determined
ones (off-line tailoring) or dynamically operating
downscale transformations on the unique high-quality
stored version (on-the-fly tailoring). These solutions
concentrate service and tailoring functions on the server
side. This approach has several drawbacks, from
overloading the server computing capabilities to making
distributed caches ineffective.

On the opposite, client-based tailoring requires a
significant amount of computational resources on the
client side and has higher bandwidth requirements.
However, it usually improves the effectiveness of
distributed caching solutions. Let us observe that most
Bluetooth-based devices have very limited resources and
cannot directly perform downsizing operations on-board.
When the downscaling is needed, e.g., because the client
device cannot play an audio file with the provided
format/QoS level, the client necessarily has to delegate
the service tailoring to middleware components hosted in
the fixed infrastructure.

This motivates the design of a distributed and
decentralized infrastructure consisting of middleware
proxy components working on behalf of the device.
Proxies can help in smoothing the discontinuities
between the fixed Internet and the Bluetooth PAN. They
are mainly in charge of tailoring the QoS level of audio
flows depending on the device characteristics, and of
properly supporting the device connectivity by adapting
service provisioning to the exploited Bluetooth link.

4. The ubiQoS Middleware

ubiQoS is a middleware support for the QoS-enabled
provisioning of dynamically tailored multimedia flows
to heterogeneous clients. ubiQoS has been first
developed for nomadic computing deployment scenarios
over traditional wired networks [7]. Here, the paper
focuses on the significant ubiQoS extension to the
wireless Internet, and, in particular, on the peculiar
aspects of the QoS management of audio streaming in
the case that Bluetooth is the connectivity technology
enabling the last-meter client connection.

ubiQoS provides any Bluetooth client device with
one companion entity, called shadow proxy, and with

several application-specific processors, called QoS
adapters.

The shadow proxy works on behalf of the associated
Bluetooth device, usually at the edge between the device
PAN and the Internet. Depending on user requirements,
device characteristics, and available audio servers, the
proxy decides the tailoring operations to perform. QoS
adapters, instead, are the middleware components
responsible for the actual QoS management operations
(reduction of bitrate, format transcoding) on audio flows.

ubiQoS proxies and QoS adapters are hosted in
execution environments, called places, that offer the
basic services for mobile agent communication and
migration. Places typically model nodes and can be
grouped into domains that correspond to network
localities, e.g., Local Area Networks with IEEE
802.11b/Bluetooth access points providing wireless
connectivity to WiFi/Bluetooth portable devices (see
Figure 1).

Place3

ubiQoS
Domain B

Place1ubiQoS
Domain C

Place3Place2

Place2
Place3

ubiQoS
Domain A

Place1

Place2

Default
Place

Default
Place

Default
Place

Place1

WiFi/Bluetooth
access point

Figure 1. Wireless devices roaming among ubiQoS

domains

Figure 2 concentrates on a single domain and depicts a
typical ubiQoS deployment scenario. At the client
request to look up for audio flows, the shadow proxy
interrogates the ubiQoS naming service [7] to obtain the
list of available audio servers, either in the locality or in
other ubiQoS domains. Then, the proxy retrieves the
applicable profiles, i.e., the metadata describing the
characteristics of its companion device, the preferences
of its currently logged user, and the characteristics of the
requested audio flow. Depending on these profiles, the
proxy decides which downscaling transformations to
perform by instantiating and interworking with the
suitable QoS adapters.

Shadow proxies and QoS adapters are implemented
as mobile agents on top of the SOMA platform
(available at lia.deis.unibo.it/Research/SOMA).

They execute in the ubiQoS domain where the portable
devices are currently attached and can follow them in the
case of runtime movements between different points of
attachment to the fixed Internet. We usually associate
one shadow proxy for each portable device (with a 1-to-
1 mapping). However, it is also possible to define group
shadow proxies in charge of managing a set of portable
devices with synchronization constraints, e.g., when
distributing a synchronized audio guide to a tourist
group visiting the rooms of a museum.

QoS adapters are in charge of audio compression,
e.g., reduction of bit/sample rate, and format
transcoding, e.g., from WMA/OGG/WAV to MP3, to
tune the provided QoS level to suit the profiles of both
device characteristics and user preferences. Their mobile
agent implementation permits to dynamically migrate the
needed adaptation code to the places where it is not
already available, by following the movements of
associated shadow proxies. Let us rapidly observe that
SOMA mobile agent migration only moves the code not
already present at the new place; if the code is already
there, SOMA only migrates the state and re-instantiates
the agent by exploiting the transmitted state and the local
code [6]. QoS adapters receive audio flows, operate the
flow transformations decided by their associated proxy,
and forward processed flows to device-specific audio
players. The current implementation of QoS adapters is
based on SUN Java Media Framework (JMF) [14]. For
the transport and control of packet flows towards the
servers, QoS adapters exploit the JMF APIs to integrate
with the Real-time Transport Protocol (RTP) and its
corresponding RTCP control protocol [15].

ubiQoS
Domain A

Profile
Manager

Naming

shadow
proxy 1

QoS
adapter1

Default
Place

Place3

Place2 Place1

Stub

audio
server1

QoS
adapter2

MA-based ubiQoS
component

fixed ubiQoS
component

audio server

middleware
coordination

audio flows

toward an
out-of-domain
audio server

Figure 2. The ubiQoS middleware while distributing
audio flows to wireless clients

Shadow proxies and QoS adapters are generally portable
on any platform that hosts a standard JVM. For
performance sake, QoS adapters sometimes exploit local

plug-ins available as native components. To achieve
portability, they retrieve dynamically the list of plug-ins
installed on their places to bind only to the locally
available components. The current implementation of
ubiQoS exploits a proprietary lightweight solution to
discover in-place/domain available resources and service
components; we are working on migrating towards open
standard solutions to interface with local resources, such
as the OSGi Alliance proposal [16].

In addition to these two primary middleware
components, ubiQoS includes a profile manager service
and device-specific stubs. The profile manager service
stores profiles of supported devices, registered users, and
available audio flows. It implements a partitioned and
partially replicated directory service specialized for
profiles. ubiQoS profiles are represented according to
the W3C Composite Capabilities/Preference Profile
(CC/PP) standard format [2, 17]. CC/PP profiles are
processed via a proprietary Java library for profile
parsing and management developed within the ubiQoS
project, due to the lack of standard Java-based supports
for CC/PP at the time of ubiQoS development. The next
ubiQoS release will replace that library with the recent
reference implementation of the JSR188 API for CC/PP
profiles processing [18]. Device-specific stubs are the
only middleware components that run in the Bluetooth-
enabled access terminals. They handle the
communication forwarding between the on-board audio
player and the associated shadow proxy and are
implemented on top of the J2ME/CLDC/MIDP/JSR82
software suite.

Implementation insights about the above ubiQoS
middleware components and functionality are out of the
scope of the paper and can be found in [19]. In the
following, this paper specifically focuses on the peculiar
aspects of distributing audio streaming over the
Bluetooth last meter with differentiated QoS levels. In
particular, it details how ubiQoS shadow proxies handle
the different Bluetooth connections available, how they
decide the allocation of Bluetooth connections to device-
specific stubs depending on the associated user classes,
and how ubiQoS achieves a portable Java-based
implementation of such a support.

5. The Management of Last-Meter
Bluetooth Links in ubiQoS

ubiQoS proxies run in Bluetooth-enabled fixed network
places and act as piconet masters for their PANs. They
interwork with local QoS adapters and with the other
ubiQoS middleware components over the fixed network
to receive audio flows with the properly downscaled
QoS level. In the following, the paper focuses on the

PAN side and on how the proxies manage the different
Bluetooth links available in their PANs.

The ubiQoS proxy can support different classes of
users, e.g., gold, silver, and bronze, with differentiated
QoS levels. It retrieves the profiles of involved users and
audio flows; depending on these metadata, it chooses
how to manage the different Bluetooth communication
links. As already stated, the ubiQoS proxy has been
designed to exploit both SCO and ACL links. In
particular, the proxy performs an application-level
ranking of the current clients to decide the allocation of
the different links. The usage of one SCO link is
suggested when providing an audio flow of 64 kbps or
less to a single gold client with guaranteed QoS
requirements. However, even in the best case of SCO
links using HV1 packets and requiring only 2 time slots
every 6, the SCO exploitation leaves very little of the
piconet bandwidth available to other links. In practice,
no more than two SCO links can be concurrently active
in the same piconet and, also in this case, the other
connections may easily get starved [4].

For this reason, when concurrently serving several
clients, the ubiQoS proxy mainly exploits ACL-based
connections, and possibly allocates one single SCO link
to the best-ranked gold client that requires guaranteed
QoS and requests a bandwidth-compatible audio flow.
The allocation of the single SCO link can be
dynamically modified: for instance, after the arrival of a
new gold user with better ranking, the proxy can choose
to de-class the client that currently exploits SCO, by
switching it to an ACL-based connection.

Let us observe that the current ubiQoS
implementation does not take into consideration the
usage of eSCO and ASB links. This choice is motivated
by the fact that the two link types above are still not fully
supported in most Bluetooth commercial solutions.
eSCO has been introduced in the recent Bluetooth 1.2
specification and, to the best of our knowledge, the
market still lacks eSCO-compliant devices. In addition,
most of the widely adopted Bluetooth stack
implementations, such as BlueZ [20], do not currently
support the broadcast transmission over ASB links.

To achieve a portable implementation of ubiQoS
proxies, we have implemented them by using the Java
technology. The Java choice is almost compulsory when
willing to provide middleware components that can
change their location at runtime, as demonstrated by the
implementation of the most recent mobile agent
platforms [21]. To have full control of both ACL and
SCO links, Java-based ubiQoS proxies exploit the
JSR82+SCO interface, which we have designed and
implemented within the ubiQoS project.

Figure 3 depicts the layered architecture of the
JSR82+SCO interface (the light colored blocks in the

JVM level part represent the components originally
developed in our research). Our implementation
significantly extends the open source and JSR82-
compliant JavaBluetooth protocol stack [9].
JavaBluetooth does only support serial Bluetooth
adapters by exploiting the javax.comm API and cannot
interface with native Bluetooth device drivers. To
overcome these limitations, we have developed
BlueZTransport, a low-level interface between the
JavaBluetooth protocol stack and BlueZ, the native
Bluetooth v1.1 protocol stack included in the Linux
kernel, via the Java Native Interface (JNI) [20]. This
enables our JSR82+SCO implementation to
communicate with the HCI interface of Bluetooth
devices via low-level BlueZ native API, thus allowing
the usage of our JSR82+SCO stack with the whole range
of Bluetooth adapters supported by BlueZ.

We have also developed from scratch the Java-based
SCO support by integrating with basic support
mechanisms provided by native SCO libraries. The
platform-dependent native support for SCO sockets is
integrated in a JVM-independent way via JNI. From the
developer point of view, the creation of SCO
connections in JSR82+SCO closely resembles the one
defined by JSR82 for the creation of L2CAP
connections. The Generic Connection Framework of the
J2ME CLDC software suite provides the base
connection for the implementation of the communication
protocol. JSR82+SCO allows developers to exploit SCO
connections almost transparently: developers should
simply indicate SCO-specific URLs (starting with btsco)
and should not specify a Protocol Service Multiplexer
parameter for their SCO connections.

HCI Raw Sockets

BlueZTransport

JavaBluetooth

ubiQoS Proxy

Linux Kernel 2.4 (BlueZ included)

JVM-level

OS-level

JSR82+SCO
Interface

Linux Syscalls
Interface

Java Native
Interface

JVM

SCO Sockets

ubiQoS JSR82+SCO Support

Figure 3. The software architecture of the ubiQoS proxy

Additional details about the implementation of the
JSR82+SCO interface and its downloadable code are
available at http://lia.deis.unibo.it/
Research/ubiQoS/audioStreaming/

6. Experimental Results

We have organized an experimental testbed to measure
the performance of the ubiQoS middleware when
supporting audio streaming over Bluetooth, especially to
verify the feasibility of the Java-based application-level
approach. In particular, our experiments have focused on
measuring the average throughput, the average packet
delay, and the average standard deviation for packet
delays when the ubiQoS proxy handles Bluetooth links
via the JSR82+SCO interface.

The testbed consists of one workstation, which hosts
the execution of the proxy (piconet master), and of some
laptops (piconet slaves), where the ubiQoS device-
specific stubs and the audio players run. The laptops are
all located within the range of the Bluetooth master
visibility. The master and the slaves host Linux (kernel
version 2.4.25-pre7) with the latest version of the BlueZ
userspace tools (bluez-utils 2.4, bluez-libs 2.5). They
exploit Bluetooth USB adapters based on the Cambridge
Silicon Radio Bluecore chip [22], e.g., D-Link DBT-120
and Belkin F8T003 adapters.

The master can distribute different audio flows, with
different QoS levels, to the different slaves. To show the
ubiQoS performance under heavy network load
conditions, the reported experimental results are
obtained by transmitting audio flows with a constant
bitrate of 512kbps and with packets of 672 bytes. Such
high bandwidth-requiring flows saturate the piconet
bandwidth with a limited number of concurrent slaves.
Note that, for instance, when adopting uncompressed
pulse code modulation, a phone quality audio requires
64kbps and a CD-quality one 1378kbps, while by using
MPEG-3 compression very high-quality audio flows
typically require 320kbps.

First, we have measured the throughput, the packet
delay, and the associated standard deviation when
serving a growing number of concurrent slaves by
exploiting only ACL. We have experimented all the
different types of packets (DH1, DH3, DH5) available
for ACL links without payload protection. We have not
considered ACL DMx packets, whose payload is
Forward Error Correction-coded with a simple 2/3 rate
block code, because less suitable for audio streaming
[23]. Figures 4, 5, and 6 report, respectively, the average
results for throughput, delay, and standard deviation.

The results show that ACL links can well support the
distribution of audio flows when exploiting DH3 and
DH5 packets, also under different load conditions of the
piconet. The total bandwidth is efficiently exploited and,
when the number of slaves grows, is equally distributed
between the slaves. This is a consequence of the
centralized control in the access to the Bluetooth
channels in a piconet, which successfully prevents the

slaves from starvation. DH5 packets achieve the best
performance because of the lower overhead due to the
DH5 header/payload ratio. It is worth observing that
DH3 packets achieve performance results similar to
DH5, while DH1 performs significantly worse and does
not fit well the audio streaming requirements, especially
in terms of packet delay when the number of concurrent
slaves is greater than 3.

With regard to SCO links, we have experienced that
the BlueZ SCO support in the Linux kernel is still
immature (in both v2.4 and v2.6) and leads to very poor
performance. In addition, our experiments have pointed
out that the performance of ACL links significantly
suffers from the concurrent usage of SCO. This result
has also emerged in [4] that, with a different approach
and different goals, exploits SCO links for voice
transmission. For this reason, it seems reasonable to use
a single SCO link only when an overloaded PAN hosts a
single gold user with guaranteed bandwidth
requirements.

0

100

200

300

400

500

1 2 3 4 5

Number of slaves

A
ve

ra
ge

 T
hr

ou
gh

pu
t

pe
r S

la
ve

 (K
bp

s)

DH1
DH3
DH5

Figure 4. Average throughput per slave when exploiting

ACL DH1/DH3/DH5 packets.

5

25

45

65

85

105

125

1 2 3 4 5

Number of slaves

A
ve

ra
ge

 P
ac

ke
t

D
el

ay
 (m

s) DH1
DH3
DH5

Figure 5. Average packet delay when exploiting ACL

DH1/DH3/DH5 packets.

As a conclusive remark, the collected data point out
that the performance of our Java-based middleware, in
terms of both throughput and packet delay, is close to
the Bluetooth raw hardware performance [4]. This
confirms the viability of flexible application-level
overlays to support QoS-enabled audio streaming, even
when exploiting the Bluetooth links as the last-meter
connectivity technology in the wireless Internet.

0
5

10

15
20
25
30

35
40
45

1 2 3 4 5

Number of slaves

A
ve

ra
ge

 S
ta

nd
ar

d
D

ev
ia

tio
n

fo
r

Pa
ck

et
 D

el
ay

 (m
s)

DH1
DH3
DH5

Figure 6. Average standard deviation for packet delays

when exploiting ACL DH1/DH3/DH5 packets.

7. Conclusions and Current Work

Bluetooth is emerging as a market-successful
connectivity technology for the last-meter access to the
wireless Internet. The integration of the traditional best-
effort Internet with Bluetooth PANs calls for
middleware overlay networks capable of supporting
QoS-enabled services, in particular by operating QoS
management operations at the wired/wireless edges.
Recent standardization efforts are making possible to
design and implement first Java-based portable
middleware solutions for these scenarios. The
development and deployment of the ubiQoS prototype
have produced first experimental results pointing out
that the middleware approach can satisfy both the
flexibility and the performance requirements of audio
streaming services over Bluetooth. In fact,
notwithstanding the Java-based implementation and the
application-level approach, ubiQoS achieves throughput
and packet delay performance close to the Bluetooth raw
hardware one, thus confirming the possibility to exploit
Bluetooth-based last-meter connectivity also for audio
distribution, at least at the currently usual Internet
transmission rates. At the same time, the prototype
deployment has revealed that the BlueZ SCO support in
Linux is still immature to fully enable the exploitation of
SCO links.

Further research activities are going on within the
framework of the ubiQoS project. We are currently
working on the exploitation of ASB links to distribute
the same audio flow to slaves in the same piconet, in
order to enable services such as synchronous group
visits to a museum exhibition. In addition, we are
extending the middleware to include also the support for
the guaranteed QoS HCI Flow Specification of
Bluetooth v1.2. Finally, we are working on the porting
of the implementation of the JSR82+SCO module over
the BluePC Bluetooth stack for Windows XP, also to
verify the effectiveness of the SCO support in this
software suite [24].

Acknowledgments
Work supported by the Italian Ministero dell'Istruzione,
dell'Università e della Ricerca (MIUR) in the framework
of the FIRB WEB-MINDS Project "Wide-scale
Broadband Middleware for Network Distributed
Services" and by the Italian Consiglio Nazionale delle
Ricerche (CNR) in the framework of the Strategic IS-
MANET Project "Middleware Support for Mobile Ad-
hoc Networks and their Application".

References

[1] P. Johansson, M. Kazantzidis, R. Kapoor, M.

Gerla, “Bluetooth: an Enabler for Personal Area
Networking”, IEEE Network, Vol. 15, No. 5, Sept.-
Oct. 2001, pp. 28-37.

[2] P. Bellavista, A. Corradi, R. Montanari, C.
Stefanelli, “Context-aware Middleware for
Resource Management in the Wireless Internet”,
IEEE Transactions on Software Engineering, Vol.
30, No. 2, Dec. 2003, pp. 1086-1099.

[3] K. Sairam, N. Gunasekaran, S.R. Redd, “Bluetooth
in Wireless Communication”, IEEE
Communications, Vol. 40, No. 6, June 2002, pp.
90-96.

[4] R. Kapoor, Ling-Jyh Chen, Yeng-Zhong Lee, M.
Gerla, “Bluetooth: Carrying Voice over ACL
Links”, 4th IEEE Int. Workshop on Mobile and
Wireless Communications Network, 2002.

[5] R. Oppliger, "Security at the Internet Layer", IEEE
Computer, Vol. 31, No. 9, Sep. 1998, pp. 43-47.

[6] P. Bellavista, A. Corradi, C. Stefanelli, “Mobile
Agent Middleware for Mobile Computing”, IEEE
Computer, Vol. 34, No. 3, March 2001, pp. 73-81.

[7] P. Bellavista, A. Corradi, C. Stefanelli,
“Application-level QoS Control for Video-on-
Demand”, IEEE Internet Computing, Vol. 7, No. 6,
Nov.-Dec. 2003, pp. 16-24.

[8] Java Community Process – Java APIs for Bluetooth
(JSR82), http://jcp.org/en/jsr/detail?id=82

[9] Sourceforge.Net – The JavaBluetooth Stack,
http://sourceforge.net/projects/javabluetooth

[10] Sun Microsystems, Inc. – The Java Native
Interface 1.1 Specification,
http://java.sun.com/j2se/1.4.2/
docs/guide/jni/spec/jniTOC.html

[11] Bluetooth SIG – Bluetooth Core Specification v1.2,
https://www.bluetooth.org/foundry/adopters/docum
ent/Bluetooth_Core_Specification_v1.2

[12] Sun Microsystems, Inc. - Java 2 Platform: Micro
Edition (J2ME) and Connected Limited Device
Configuration (CLDC), http://java.sun.com/j2me/

[13] Sourceforge.Net – JBlueZ, the Java Extension for
the BlueZ Bluetooth Protocol Stack, http://jbluez.
sourceforge.net

[14] Sun Microsystems, Inc. - The Java Media
Framework (JMF) API,
http://java.sun.com/products/java-media/jmf/

[15] T. Braun, "Internet Protocols for Multimedia
Communications - Resource Reservation,
Transport, and Application Protocols", IEEE
Multimedia, Vol. 4, No. 4, 1997.

[16] Open Services Gateway Initiative – OSGi Service
Platform Release 3 Spec., http://www.osgi.org

[17] W3 Consortium - Composite Capability/Preference
Profiles (CC/PP), http://www.w3.org/Mobile

[18] Java Community Process – Java APIs for CC/PP
Processing (JSR188), http://jcp.org/en/jsr/detail?
id=188

[19] P. Bellavista, A. Corradi, “How to Support
Internet-based Distribution of Video on Demand to
Portable Devices”, 7th IEEE Int. Symp. on
Computers and Communications (ISCC'02), pp.
126-132, July 2002.

[20] BlueZ Project – BlueZ, the Official Linux Protocol
Stack, http://www.bluez.org

[21] R.H. Glitho, E. Olougouna, S. Pierre, “Mobile
Agents and their Use for Information Retrieval: a
Brief Overview and an Elaborate Case Study”,
IEEE Network, Vol. 16, No. 1, pp. 34-41, Jan.-Feb.
2002.

[22] Cambridge Silicon Radio – CSR’s Bluecore Chips,
http://www.csr.com

[23] S. Zurbes, “Considerations on Link and System
Throughput of Bluetooth Networks”, 11th IEEE Int.
Symp. Personal, Indoor and Mobile Radio
Communications (PIMRC), pp. 1315-1319, Sep.
2000.

[24] Impulsesoft – The BluePC Bluetooth Protocol
Stack, http://www.impulsesoft.com/HomePage/
products/bluepc.html

