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Abstract 
The full and seamless integration of wireless devices 
with traditional fixed networks is more and more 
important to foster the mobile and ubiquitous access to 
the Internet. In particular, the heterogeneity and 
resource limitations of wireless devices motivate novel 
support infrastructures that can facilitate the wired-
wireless integration and can provide service tailoring 
depending on client characteristics. The paper presents 
an application-level portable middleware, called 
ubiQoS, for QoS-enabled audio streaming to Bluetooth 
clients. ubiQoS exploits support proxies for QoS 
tailoring and for managing the QoS over the last 
segment of the audio distribution path towards the 
clients, by using different types of Bluetooth links. 
Proxies execute at the wired-wireless network edges and 
can even migrate to follow the device movements, where 
and when needed. The reported experimental results 
show the feasibility of the application-level approach in 
the challenging case of QoS-enabled audio streaming to 
resource-limited Bluetooth devices. 
 
 
 
1. Introduction 
 
The growing market of Bluetooth portable appliances is 
enabling the realization of spontaneous networks of 
devices that are located within the range of a single user, 
and often referred to as Personal Area Networks (PANs). 
In addition, there is an increasing research and 
commercial interest in allowing PANs to integrate with 
the fixed Internet. In the following, we will use the term 
wireless Internet to refer to the above deployment 
scenario where PANs work as the “last-meter” 
connectivity solution that extends the traditional Internet 
infrastructure [1]. The ultimate goal is to ubiquitously 
provide both traditional and location-dependent services 
in the wireless Internet [2].  

Service providers and wireless network operators 
have to address new technical challenges for the 
seamless integration of portable devices in the wireless 
Internet. A primary issue is the wide heterogeneity of the 
hardware/software capabilities of wireless access 
devices, e.g., screen size/resolution and supported 
multimedia formats/players. In addition, portable 
terminals usually have limited resources in terms of 
processing, memory, storage, and network connectivity. 
In this scenario, resource-consuming services designed 
for the fixed network, such as multimedia streaming, 
requires being downscaled to fit the limited clients. 
Moreover, the wide heterogeneity makes impractical to 
provide statically tailored service versions to all the 
possible categories of access terminals. 

One of the most widespread wireless technology is 
Bluetooth, which is the primary solution today for 
enabling the realization of PANs [3]. Bluetooth-enabled 
portable devices, such as laptops, phones, and PDAs, 
can interconnect to form a piconet, which consists of one 
master and up to 7 slaves. The master device has direct 
visibility of all slaves in the piconet and can handle two 
types of connections with different Quality of Service 
(QoS) levels. Asynchronous Connection-Less (ACL) 
links provide a packet-oriented service. Synchronous 
Connection Oriented (SCO) links, instead, are circuit-
oriented connections, designed to support time-bounded 
transmissions such as voice streaming. The usage of 
SCO links may leave very little of the piconet bandwidth 
available to ACL links [4]. Depending on service and 
user requirements, streaming services to Bluetooth 
devices should be capable of choosing the most suitable 
link type. 

The paper proposes a middleware-level solution, 
called ubiQoS, for the QoS management of mobile 
multimedia services to Bluetooth devices in the best-
effort wireless Internet. ubiQoS adopts an application-
level approach that facilitates dynamic un/installation of 
infrastructure/service components, application-specific 
service tailoring and adaptation, security, and 



interoperability [5, 6]. ubiQoS supports multimedia 
streaming with differentiated QoS levels and can 
dynamically tailor service provisioning to the specific 
requirements of the served users, the device 
characteristics, and the available wireless connections 
[7]. 

In particular, the paper focuses on how to support the 
last-meter Bluetooth-based connection for QoS-enabled  
audio streaming services. The main design guideline is 
to exploit support proxies that are located at the edges 
between the fixed Internet and the Bluetooth PANs. 
Proxies work as masters in the Bluetooth piconets of 
access devices and dynamically tailor the QoS level of 
audio streams to the characteristics of both the Bluetooth 
links used and the target clients. Proxies are 
implemented in terms of mobile agents, i.e., active 
entities that can migrate from node to node during their 
execution by carrying their code and by preserving their 
reached execution state. Agent mobility facilitates the 
deployment of ubiQoS components in the proximity of 
wireless access localities, only when and where needed. 
In addition, mobile proxies can continuously serve their 
associated clients by following the device movements 
between different wireless points of attachment to the 
Internet.  

To achieve portability in the open wireless Internet, 
we have designed a Java-based interface, called 
JSR82+SCO interface in the following, that extends the 
standard Java APIs for Bluetooth (JSR82) [8] with the 
SCO link support. On the one hand, our implementation 
extends JavaBluetooth (with its current limitations to the 
serial profile [9]) to fully support JSR82-based ACL 
management. On the other hand, we have developed 
from scratch the Java-based SCO support, also by 
integrating with platform-dependent native SCO 
libraries via the Java Native Interface [10]. ubiQoS 
proxies exploit the implemented JSR82+SCO interface 
to control Bluetooth links from within the standard Java 
Virtual Machine (JVM). 

The paper also reports the first experimental results of 
the performance of the ubiQoS prototype in the 
provisioning of audio streaming with differentiated QoS 
levels to Bluetooth devices. The results show that the 
Java-based application-level approach introduces an 
acceptable and very limited degradation of the Bluetooth 
link performance.  

The rest of the paper is structured as follows. Section 
2 introduces Bluetooth, describes the QoS characteristics 
of ACL/SCO links, and briefly overviews the state-of-
the-art of the Java-based technologies to interwork with 
Bluetooth. Section 3 motivates the adoption of proxy-
based service tailoring. Section 4 gives an overview of 
ubiQoS, while Section 5 describes how ubiQoS proxies 
manage the Bluetooth-based last-meter links. Section 6 

reports some performance results of the implemented 
prototype. Concluding remarks and directions for future 
work follow.   

 
 

2. Java-based Bluetooth Support for the 
Provisioning of QoS-enabled Services 

 
Bluetooth is an emerging technology in the wireless 
world and is the standard solution for PAN applications. 
The Bluetooth specification defines two main classes of 
traffic: unframed data traffic, with guaranteed QoS 
requirements, and framed data traffic, with both best-
effort and guaranteed QoS [11]. Unframed data traffic is 
carried over SCO and enhancedSCO (eSCO) baseband 
links; framed data traffic is carried over ACL and Active 
Slave Broadcast (ASB) links.  

SCO and eSCO baseband links are point-to-point bi-
directional, symmetrical (eSCO links can also be 
asymmetrical), isochronous, and have a constant bit-rate. 
The bit-rate is fixed to 64Kb/s for SCO and user-defined 
for eSCO. SCO and eSCO logical transports do not 
support the multiplexing of data streams; when needed, 
multiplexing operations should be performed at the 
application level. 

ACL links are bi-directional, connection-oriented, 
asynchronous or isochronous, and support the 
specification of QoS settings to indicate the desiderata 
for the delivery of the data frames. QoS settings are 
typically used to instruct the Bluetooth core system to 
discard undelivered packets after a given lifetime or to 
specify the reliability characteristics of the data 
transmission. The Bluetooth v1.1 specification provides 
the QoS Setup command of the Host Controller Interface 
(HCI) to specify QoS settings on ACL links 
symmetrically. The QoS support in Bluetooth v1.2 is 
still more advanced, e.g., the new specification 
introduces the HCI Flow Specification command that 
can be used to specify QoS flow parameters in an 
asymmetrical way for (even already established) ACL 
connections. Unfortunately, the largest part of the 
(firmware of) Bluetooth chips in commerce still provides 
only a partial implementation of the QoS support, and 
very first chips compliant with Bluetooth v1.2 are being 
commercialized in these days.  

In addition, Bluetooth also defines connection-less 
ASB links for broadcasting traffic from the master to all 
the slaves in the piconet. The ASB-based transmission is 
best-effort, with no possibility of QoS management. 

Java-based applications can interwork with Bluetooth 
via the recently approved JSR82 standard interface [8]. 
JSR82 allows the creation of different types of 
connections, e.g., L2CAP and RFCOMM, and supports 
the Service Discovery Protocol and the Object Exchange 



protocol [11]. In addition, JSR82 provides the support 
for several profiles defined in the Bluetooth 
specification: the Generic Access Profile, the Service 
Discovery Application Profile, the Serial Port Profile 
and the Generic Object Exchange Profile. Most relevant, 
JSR82 has been designed by taking into consideration 
the characteristics of resource-limited portable devices; 
as a result, the JSR82 API can be also offered on top of 
any compliant implementation of the limited Java 2 
Micro Edition with the Connected Limited Device 
Configuration [12]. 

Unfortunately, JSR82 lacks some important 
functionality. First of all, the JSR82 specification does 
not include the support for SCO, eSCO, and ASB links, 
thus complicating the portable implementation of Java-
based audio streaming applications. In addition, JSR82 
introduces the Bluetooth Control Center as one of its 
main architectural components, with the intent to enable 
users and OEMs to change Bluetooth settings (basic 
security settings, security policies for connection 
authorizations, lists of known/trusted devices) in a 
portable way; however, the specification does not 
standardize the API to access the Control Center 
services, thus making it unusable in an open 
environment.  

Also in response to the above JSR82 limitations, 
several Java libraries, alternative to JSR82, continue to 
be adopted and proposed, such as JBlueZ [13]. These 
libraries provide Java-based applications with full-
featured access to existing Bluetooth stacks via a non-
standard proprietary API. The libraries often exploit the 
lower-level interface exported by the underlying 
Bluetooth stack implementation they work in 
conjunction with. They usually integrate with their 
Bluetooth stack by using the mechanisms of the Java 
Native Interface (JNI), the standard API for interfacing 
native modules and the JVM [10]. The adoption of JNI 
ensures the code  portability over any standard JVM 
implementation. 
 
 
3. Middleware Approaches to the QoS 

Tailoring of Audio Streams  
 
Service provisioning to wireless portable devices 
requires dynamically downsizing service content to the 
characteristics of both access terminal and wireless 
connections. In particular, the tailoring of the dynamic 
content is crucial for resource-consuming services such 
as audio streaming. For instance, when streaming an 
audio guide to a small group of museum visitors with 
Bluetooth-enabled earphones, DVD-quality 153.6 Kb/s 
audio flows in the .WAV format should be dynamically 
transcoded to minor quality 30 Kb/s MP3 versions, in 

order not to overload, uselessly and excessively, the 
Bluetooth ACL links in the visitors PAN. 

An important design choice is where to operate the 
tailoring of the transmitted audio flows, typically by 
reducing the audio quality and transcoding the 
representation format. In server-based solutions, the host 
that provides the service is in charge of either selecting 
the version of the requested flow with the most suitable 
QoS level among a pool of statically pre-determined 
ones (off-line tailoring) or dynamically operating 
downscale transformations on the unique high-quality 
stored version (on-the-fly tailoring). These solutions 
concentrate service and tailoring functions on the server 
side. This approach has several drawbacks, from 
overloading the server computing capabilities to making 
distributed caches ineffective.  

On the opposite, client-based tailoring requires a 
significant amount of computational resources on the 
client side and has higher bandwidth requirements. 
However, it usually improves the effectiveness of 
distributed caching solutions. Let us observe that most 
Bluetooth-based devices have very limited resources and 
cannot directly perform downsizing operations on-board. 
When the downscaling is needed, e.g., because the client 
device cannot play an audio file with the provided 
format/QoS level, the client necessarily has to delegate 
the service tailoring to middleware components hosted in 
the fixed infrastructure. 

This motivates the design of a distributed and 
decentralized infrastructure consisting of middleware 
proxy components working on behalf of the device. 
Proxies can help in smoothing the discontinuities 
between the fixed Internet and the Bluetooth PAN. They 
are mainly in charge of tailoring the QoS level of audio 
flows depending on the device characteristics, and of 
properly supporting the device connectivity by adapting 
service provisioning to the exploited Bluetooth link.  

 
 

4. The ubiQoS Middleware 
 

ubiQoS is a middleware support for the QoS-enabled 
provisioning of dynamically tailored multimedia flows 
to heterogeneous clients. ubiQoS has been first 
developed for nomadic computing deployment scenarios 
over traditional wired networks [7]. Here, the paper 
focuses on the significant ubiQoS extension to the 
wireless Internet, and, in particular, on the peculiar 
aspects of the QoS management of audio streaming in 
the case that Bluetooth is the connectivity technology 
enabling the last-meter client connection.  

ubiQoS provides any Bluetooth client device with 
one companion entity, called shadow proxy, and with 



several application-specific processors, called QoS 
adapters.  

The shadow proxy works on behalf of the associated 
Bluetooth device, usually at the edge between the device 
PAN and the Internet. Depending on user requirements, 
device characteristics, and available audio servers, the 
proxy decides the tailoring operations to perform. QoS 
adapters, instead, are the middleware components 
responsible for the actual QoS management operations 
(reduction of bitrate, format transcoding) on audio flows.  

ubiQoS proxies and QoS adapters are hosted in 
execution environments, called places, that offer the 
basic services for mobile agent communication and 
migration. Places typically model nodes and can be 
grouped into domains that correspond to network 
localities, e.g., Local Area Networks with IEEE 
802.11b/Bluetooth access points providing wireless 
connectivity to WiFi/Bluetooth portable devices (see 
Figure 1).  
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Figure 1. Wireless devices roaming among ubiQoS 

domains 
 
Figure 2 concentrates on a single domain and depicts a 
typical ubiQoS deployment scenario. At the client 
request to look up for audio flows, the shadow proxy 
interrogates the ubiQoS naming service [7] to obtain the 
list of available audio servers, either in the locality or in 
other ubiQoS domains. Then, the proxy retrieves the 
applicable profiles, i.e., the metadata describing the 
characteristics of its companion device, the preferences 
of its currently logged user, and the characteristics of the 
requested audio flow. Depending on these profiles, the 
proxy decides which downscaling transformations to 
perform by instantiating and interworking with the 
suitable QoS adapters.  

Shadow proxies and QoS adapters are implemented 
as mobile agents on top of the SOMA platform 
(available at lia.deis.unibo.it/Research/SOMA). 

They execute in the ubiQoS domain where the portable 
devices are currently attached and can follow them in the 
case of runtime movements between different points of 
attachment to the fixed Internet. We usually associate 
one shadow proxy for each portable device (with a 1-to-
1 mapping). However, it is also possible to define group 
shadow proxies in charge of managing a set of portable 
devices with synchronization constraints, e.g., when 
distributing a synchronized audio guide to a tourist 
group visiting the rooms of a museum.  

QoS adapters are in charge of audio compression, 
e.g., reduction of bit/sample rate, and format 
transcoding, e.g., from WMA/OGG/WAV to MP3, to 
tune the provided QoS level to suit the profiles of both 
device characteristics and user preferences. Their mobile 
agent implementation permits to dynamically migrate the 
needed adaptation code to the places where it is not 
already available, by following the movements of 
associated shadow proxies. Let us rapidly observe that 
SOMA mobile agent migration only moves the code not 
already present at the new place; if the code is already 
there, SOMA only migrates the state and re-instantiates 
the agent by exploiting the transmitted state and the local 
code [6]. QoS adapters receive audio flows, operate the 
flow transformations decided by their associated proxy, 
and forward processed flows to device-specific audio 
players. The current implementation of QoS adapters is 
based on SUN Java Media Framework (JMF) [14]. For 
the transport and control of packet flows towards the 
servers, QoS adapters exploit the JMF APIs to integrate 
with the Real-time Transport Protocol (RTP) and its 
corresponding RTCP control protocol [15].  
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Figure 2.  The ubiQoS middleware while distributing 
audio flows to wireless clients 

 
Shadow proxies and QoS adapters are generally portable 
on any platform that hosts a standard JVM. For 
performance sake, QoS adapters sometimes exploit local 



plug-ins available as native components. To achieve 
portability, they retrieve dynamically the list of plug-ins 
installed on their places to bind only to the locally 
available components. The current implementation of 
ubiQoS exploits a proprietary lightweight solution to 
discover in-place/domain available resources and service 
components; we are working on migrating towards open 
standard solutions to interface with local resources, such 
as the OSGi Alliance proposal [16]. 

In addition to these two primary middleware 
components, ubiQoS includes a profile manager service 
and device-specific stubs. The profile manager service 
stores profiles of supported devices, registered users, and 
available audio flows. It implements a partitioned and 
partially replicated directory service specialized for 
profiles. ubiQoS profiles are represented according to 
the W3C Composite Capabilities/Preference Profile 
(CC/PP) standard format [2, 17]. CC/PP profiles are 
processed via a proprietary Java library for profile 
parsing and management developed within the ubiQoS 
project, due to the lack of standard Java-based supports 
for CC/PP at the time of ubiQoS development. The next 
ubiQoS release will replace that library with the recent 
reference implementation of the JSR188 API for CC/PP 
profiles processing [18]. Device-specific stubs are the 
only middleware components that run in the Bluetooth-
enabled access terminals. They handle the 
communication forwarding between the on-board audio 
player and the associated shadow proxy and are 
implemented on top of the J2ME/CLDC/MIDP/JSR82 
software suite.  

Implementation insights about the above ubiQoS 
middleware components and functionality are out of the 
scope of the paper and can be found in [19]. In the 
following, this paper specifically focuses on the peculiar 
aspects of distributing audio streaming over the 
Bluetooth last meter with differentiated QoS levels. In 
particular, it details how ubiQoS shadow proxies handle 
the different Bluetooth connections available, how they 
decide the allocation of Bluetooth connections to device-
specific stubs depending on the associated user classes, 
and how ubiQoS achieves a portable Java-based 
implementation of such a support.  

 
 

5. The Management of Last-Meter 
Bluetooth Links in ubiQoS  
 

ubiQoS proxies run in Bluetooth-enabled fixed network 
places and act as piconet masters for their PANs. They 
interwork with local QoS adapters and with the other 
ubiQoS middleware components over the fixed network 
to receive audio flows with the properly downscaled 
QoS level. In the following, the paper focuses on the 

PAN side and on how the proxies manage the different 
Bluetooth links available in their PANs.  

The ubiQoS proxy can support different classes of 
users, e.g., gold, silver, and bronze, with differentiated 
QoS levels. It retrieves the profiles of involved users and 
audio flows; depending on these metadata, it chooses 
how to manage the different Bluetooth communication 
links. As already stated, the ubiQoS proxy has been 
designed to exploit both SCO and ACL links. In 
particular, the proxy performs an application-level 
ranking of the current clients to decide the allocation of 
the different links. The usage of one SCO link is 
suggested when providing an audio flow of 64 kbps or 
less to a single gold client with guaranteed QoS 
requirements. However, even in the best case of SCO 
links using HV1 packets and requiring only 2 time slots 
every 6, the SCO exploitation leaves very little of the 
piconet bandwidth available to other links. In practice, 
no more than two SCO links can be concurrently active 
in the same piconet and, also in this case, the other 
connections may easily get starved [4].  

For this reason, when concurrently serving several 
clients, the ubiQoS proxy mainly exploits ACL-based 
connections, and possibly allocates one single SCO link 
to the best-ranked gold client that requires guaranteed 
QoS and requests a bandwidth-compatible audio flow. 
The allocation of the single SCO link can be 
dynamically modified: for instance, after the arrival of a 
new gold user with better ranking, the proxy can choose 
to de-class the client that currently exploits SCO, by 
switching it to an ACL-based connection.  

Let us observe that the current ubiQoS 
implementation does not take into consideration the 
usage of eSCO and ASB links. This choice is motivated 
by the fact that the two link types above are still not fully 
supported in most Bluetooth commercial solutions. 
eSCO has been introduced in the recent Bluetooth 1.2 
specification and, to the best of our knowledge, the 
market still lacks eSCO-compliant devices. In addition, 
most of the widely adopted Bluetooth stack 
implementations, such as BlueZ [20], do not currently 
support the broadcast transmission over ASB links. 

To achieve a portable implementation of ubiQoS 
proxies, we have implemented them by using the Java 
technology. The Java choice is almost compulsory when 
willing to provide middleware components that can 
change their location at runtime, as demonstrated by the 
implementation of the most recent mobile agent 
platforms [21]. To have full control of both ACL and 
SCO links, Java-based ubiQoS proxies exploit the 
JSR82+SCO interface, which we have designed and 
implemented within the ubiQoS project.  

Figure 3 depicts the layered architecture of the 
JSR82+SCO interface (the light colored blocks in the 



JVM level part represent the components originally 
developed in our research). Our implementation 
significantly extends the open source and JSR82-
compliant JavaBluetooth protocol stack [9]. 
JavaBluetooth does only support serial Bluetooth 
adapters by exploiting the javax.comm API and cannot 
interface with native Bluetooth device drivers. To 
overcome these limitations, we have developed 
BlueZTransport, a low-level interface between the 
JavaBluetooth protocol stack and BlueZ, the native 
Bluetooth v1.1 protocol stack included in the Linux 
kernel, via the Java Native Interface (JNI) [20]. This 
enables our JSR82+SCO implementation to 
communicate with the HCI interface of Bluetooth 
devices via low-level BlueZ native API, thus allowing 
the usage of our JSR82+SCO stack with the whole range 
of Bluetooth adapters supported by BlueZ. 

We have also developed from scratch the Java-based 
SCO support by integrating with basic support 
mechanisms provided by native SCO libraries. The 
platform-dependent native support for SCO sockets is 
integrated in a JVM-independent way via JNI. From the 
developer point of view, the creation of SCO 
connections in JSR82+SCO closely resembles the one 
defined by JSR82 for the creation of L2CAP 
connections. The Generic Connection Framework of the 
J2ME CLDC software suite provides the base 
connection for the implementation of the communication 
protocol. JSR82+SCO allows developers to exploit SCO 
connections almost transparently: developers should 
simply indicate SCO-specific URLs (starting with btsco) 
and should not specify a Protocol Service Multiplexer 
parameter for their SCO connections. 
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Figure 3. The software architecture of the ubiQoS proxy 
 

Additional details about the implementation of the 
JSR82+SCO interface and its downloadable code are 
available at http://lia.deis.unibo.it/ 
Research/ubiQoS/audioStreaming/  

6. Experimental Results 
 

We have organized an experimental testbed to measure 
the performance of the ubiQoS middleware when 
supporting audio streaming over Bluetooth, especially to 
verify the feasibility of the Java-based application-level 
approach. In particular, our experiments have focused on 
measuring the average throughput, the average packet 
delay, and the average standard deviation for packet 
delays when the ubiQoS proxy handles Bluetooth links 
via the JSR82+SCO interface. 

The testbed consists of one workstation, which hosts 
the execution of the proxy (piconet master), and of some 
laptops (piconet slaves), where the ubiQoS device-
specific stubs and the audio players run. The laptops are 
all located within the range of the Bluetooth master 
visibility. The master and the slaves host Linux (kernel 
version 2.4.25-pre7) with the latest version of the BlueZ 
userspace tools (bluez-utils 2.4, bluez-libs 2.5). They 
exploit Bluetooth USB adapters based on the Cambridge 
Silicon Radio Bluecore chip [22], e.g., D-Link DBT-120 
and Belkin F8T003 adapters. 

The master can distribute different audio flows, with 
different QoS levels, to the different slaves. To show the 
ubiQoS performance under heavy network load 
conditions, the reported experimental results are 
obtained by transmitting audio flows with a constant 
bitrate of 512kbps and with packets of 672 bytes. Such 
high bandwidth-requiring flows saturate the piconet 
bandwidth with a limited number of concurrent slaves. 
Note that, for instance, when adopting uncompressed 
pulse code modulation, a phone quality audio requires 
64kbps and a CD-quality one 1378kbps, while by using 
MPEG-3 compression very high-quality audio flows 
typically require 320kbps. 

First, we have measured the throughput, the packet 
delay, and the associated standard deviation when 
serving a growing number of concurrent slaves by 
exploiting only ACL. We have experimented all the 
different types of packets (DH1, DH3, DH5) available 
for ACL links without payload protection. We have not 
considered ACL DMx packets, whose payload is 
Forward Error Correction-coded with a simple 2/3 rate 
block code, because less suitable for audio streaming 
[23]. Figures 4, 5, and 6 report, respectively, the average 
results for throughput, delay, and standard deviation.  

The results show that ACL links can well support the 
distribution of audio flows when exploiting DH3 and 
DH5 packets, also under different load conditions of the 
piconet. The total bandwidth is efficiently exploited and, 
when the number of slaves grows, is equally distributed 
between the slaves. This is a consequence of the 
centralized control in the access to the Bluetooth 
channels in a piconet, which successfully prevents the 



slaves from starvation. DH5 packets achieve the best 
performance because of the lower overhead due to the 
DH5 header/payload ratio. It is worth observing that 
DH3 packets achieve performance results similar to 
DH5, while DH1 performs significantly worse and does 
not fit well the audio streaming requirements, especially 
in terms of packet delay when the number of concurrent 
slaves is greater than 3.  

With regard to SCO links, we have experienced that 
the BlueZ SCO support in the Linux kernel is still 
immature (in both v2.4 and v2.6) and leads to very poor 
performance. In addition, our experiments have pointed 
out that the performance of ACL links significantly 
suffers from the concurrent usage of SCO. This result 
has also emerged in [4] that, with a different approach 
and different goals, exploits SCO links for voice 
transmission. For this reason, it seems reasonable to use 
a single SCO link only when an overloaded PAN hosts a 
single gold user with guaranteed bandwidth 
requirements.  
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Figure 4.  Average throughput per slave when exploiting 

ACL DH1/DH3/DH5 packets. 
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Figure 5.  Average packet delay when exploiting ACL 

DH1/DH3/DH5 packets. 
 

As a conclusive remark, the collected data point out 
that the performance of our Java-based middleware, in 
terms of both throughput and packet delay, is close to 
the Bluetooth raw hardware performance [4]. This 
confirms the viability of flexible application-level 
overlays to support QoS-enabled audio streaming, even 
when exploiting the Bluetooth links as the last-meter 
connectivity technology in the wireless Internet. 
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Figure 6.  Average standard deviation for packet delays 

when exploiting ACL DH1/DH3/DH5 packets. 
 
 
7. Conclusions and Current Work 
 
Bluetooth is emerging as a market-successful 
connectivity technology for the last-meter access to the 
wireless Internet. The integration of the traditional best-
effort Internet with Bluetooth PANs calls for 
middleware overlay networks capable of supporting 
QoS-enabled services, in particular by operating QoS 
management operations at the wired/wireless edges. 
Recent standardization efforts are making possible to 
design and implement first Java-based portable 
middleware solutions for these scenarios. The 
development and deployment of the ubiQoS prototype 
have produced first experimental results pointing out 
that the middleware approach can satisfy both the 
flexibility and the performance requirements of audio 
streaming services over Bluetooth. In fact, 
notwithstanding the Java-based implementation and the 
application-level approach, ubiQoS achieves throughput 
and packet delay performance close to the Bluetooth raw 
hardware one, thus confirming the possibility to exploit 
Bluetooth-based last-meter connectivity also for audio 
distribution,  at least at the currently usual Internet 
transmission rates. At the same time, the prototype 
deployment has revealed that the BlueZ SCO support in 
Linux is still immature to fully enable the exploitation of 
SCO links. 



Further research activities are going on within the 
framework of the ubiQoS project. We are currently 
working on the exploitation of ASB links to distribute 
the same audio flow to slaves in the same piconet, in 
order to enable services such as synchronous group 
visits to a museum exhibition. In addition, we are 
extending the middleware to include also the support for 
the guaranteed QoS HCI Flow Specification of 
Bluetooth v1.2. Finally, we are working on the porting 
of the implementation of the JSR82+SCO module over 
the BluePC Bluetooth stack for Windows XP, also to 
verify the effectiveness of the SCO support in this 
software suite [24]. 
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