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Abstract—
In a world of rich, complex, and demanding audio environments, intelligent systems can mediate
our interaction with the sounds around us – both to enable meaningful, aesthetic experiences
and to transition work from humans to computational agents. Drawing from several years of our
research, we suggest that the design of such systems must be driven by a deep understanding
of auditory cognition. In this article, we discuss two concrete approaches we take towards
cognition-informed interface design – one that begins with sounds themselves to form explicit,
contextualized, cognitive models, built on the foundations of large-data parsing infrastructure;
and one that begins with the individual, built from intuition surrounding the influence of cognitive
state on perception. We point towards an unexplored and compelling future at their intersection.

INTRODUCTION

It’s a Friday evening and you are at an office
party, chatting away with the colleague standing
nearest to you. It is loud and crowded, and

you are focused on tuning in to your colleague,
suppressing the vibrant voices and conversations
around you. Suddenly, you turn around, com-
pelled to address the source of the sound that has
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momentarily distracted you — someone has just
mentioned your name. Fascinatingly, despite your
inability to recall anything the speaker has said
prior to this moment, it is clear that the utterance
has caught your attention.

This anecdote underscores the complex, hier-
archical nature of auditory cognition. In William
Gaver’s seminal 1993 work, he introduces the
notion of “everyday listening”, suggesting that
our interaction with ambient sounds in our day-to-
day environments — unlike speech understanding
or musical listening — is determined by an inter-
play of gestalt processing and acoustic process-
ing: gestalt, whereby our perception of a sound
is shaped by its semantic associations, emo-
tions, sound-producing actions and events, spatial
congruence, and location context; and acoustic,
whereby our understanding of sounds is driven by
texture, timbre, pitch, intensity, or other spectral
cues [1]. Over the last two decades, research
efforts in empirical psychology, cognitive science,
and neural imaging have reinforced these early
ideas, elucidating the role that these concepts play
in how we hear: what we perceive, what we attend
to, and what we remember. For example, stud-
ies involving the measurement of Event-Related
Potentials (ERPs) in the brain demonstrate that
pre-attentive responses are invoked due both to
semantic novelty (like an animal sound appearing
amidst a series of urban sounds) and acoustic nov-
elty (like a sudden, loud sound) [2]. Furthermore,
a listener’s intuition about the cause of a sound
(the sound source) and contextual cues dominates
their use of acoustic cues in audio categorization
tasks, opting for the latter only when the source
is deemed uncertain [3]. Cognitive tests have
demonstrated that the emotionality of a sound
plays a significant role in memory formation,
even when the source is unclear to the listener
[4].

To understand even the most basic aspects of
how sounds interact with our cognition, we must
consider what caused the sound, how ambiguous
that cause is, expectations related to that sound
in a given context, and, in virtual environments,
the realism of different aspects of the rendering
process. These aspects of sounds themselves are
fundamental in shaping how they will be per-
ceived.

This is only part of the story, however. While

both gestalt and acoustic properties factor into
the way a sound alters our experience or the
likelihood that it rises to the level of our conscious
recognition, our individual cognitive state also
factors heavily into our experience [5]. Our level
of focus, alertness, and excitement modulate the
likelihood that we’ll notice important background
sounds, the contextual or spatial incongruence
between sound objects, or changes in a sound
we expect to occur. If an individual is afraid, for
example, they are more likely to pay attention to
sounds they perceive as threatening, or to inter-
pret otherwise neutral sounds as threatening. If an
individual is busy at work, focused on studying
or reading, they may not attend to sounds that
might otherwise be considered extremely salient,
such as alarms or notifications. These large, dy-
namic perceptual shifts depend on an individual’s
momentary, internal cognitive state.

While the literature has shed light on such
structural aspects of auditory cognition, the em-
bodiment of these principles in HCI systems has
proven elusive. We find ourselves in an increas-
ingly rich and complex auditory world of greater
social contact, urban density, and access to novel
experiences. Our interactions with this world are
enabled by ubiquitous infrastructure that allows
us to capture, store, and stream more audio than
ever before. In our research, the systems that
mediate our interaction with these sonic environ-
ments often share two broad objectives — (1) to
offload tedious labor to intelligent computational
entities, such as the task of searching for instances
of wildlife in large databases of ecological record-
ings, and (2) to create meaningful, aesthetic expe-
riences, such as facilitating a sense of immersion
in nature or producing a “summary soundtrack”
from an ambient recording that evokes nostalgia
of a time and place.

In pursuit of these objectives, we suggest that
a deep understanding of auditory cognition must
underpin system design. We posit that the first
of these objectives can lie within the domain
of statistical models that can scale over large
datasets, applying technical analysis to sounds to
extract cognitive relationships that are common
across all users, regardless of individual mental
state. The second can be built on a foundation of
a designer’s intuition about user perception and
how it interacts with mental state and holistic
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experience; designers either attempt to influence
the user’s mental state or consider it a fea-
ture that supports their intended goal. Literature
in psychology and in the cognitive sciences is
abundant with well-established causal links that
help us form a scaffolding for how to advance
our intuition in these domains, but distilling this
information and integrating it into the interfaces
of the future is a challenging exercise.

In this article, we discuss the practical artifacts
we have built to embody these ideas. We discuss
our early explorations in isolating, identifying,
and quantifying sound percepts in the context
of real-world, ubiquitous audio; we discuss the
potential for novel interfaces driven by implicit
design choices reflecting intuition about individ-
ual perception and mental state; and we finally
discuss the explicit models we have built to
aid in the design of shared experiences, which
serve as a strong prior for individualization of a
sonic environment. We close by pointing towards
a compelling technological future that exists at
the horizons of advances in cognitive modeling.
Through this article, we suggest the value of a
cognition-informed approach to interface design
in the face of pervasive audio, and hope to initiate
a dialogue surrounding the scope for research
within this emerging sub-field.

1. Parsing Large-Scale, Ubiquitous
Audio Datasets

As audio infrastructure has become cheaper
and smaller, we are now able to collect, stream,
and manipulate large sets of audio data from
natural environments. These large datasets are
an attractive resource for new kinds of analysis
that can aid our efforts in deriving the statistical
relationships between our auditory worlds and our
cognition, and enabling, in turn, more intelligent
interfaces. This analysis requires us to extract and
isolate sound objects and events, identify them
robustly, and measure their influence on common
aspects of perception. Here, we provide illus-
trations of these analyses in two very different
auditory environments.

Tidmarsh Audio
As part of a major reclamation project of

commercialized marshland, the Tidmarsh Living
Observatory was formed to study and support

public understanding of wildlife restoration on a
marsh in Southern Massachusetts. Our research
group has instrumented this area with hundreds of
sensors; twenty-four of those sensors are custom
microphones designed for the harsh environment,
clustered in different areas of the vast marsh.
All of these microphones are streaming their data
off-site using a custom API that allows them to
be used in real-time. A collection of years of
historical audio data can also be easily accessed
through this API [6].

Wide-area Source Separation The setting of
these twenty-four microphones streams makes
identification and reconstruction of the aural land-
scape challenging – a single real sound, like
the call of a single goldfinch, will appear in
multiple streams with different delays; simple
playback of the microphone recordings as virtual
objects will cause artifacts. To correct for this,
we have developed an efficient method to trans-
late microphone streams into sound objects by
extracting foreground sounds and estimating their
location amongst the microphones [7]. Typically
source separation and localization is approached
with a tight cluster of microphones; addressing
this problem for sparse, wide-area microphones
results in a unique solution to meet real-world
constraints.

Tidzam The most useful information for pre-
dicting whether a sound is important and how
it will be perceived is to identify what it is.
Tidzam is a deep learning classification engine
that has been deployed in the marsh to identify
common wetland sounds [8]. The Tidzam engine
runs continuously on the Tidmarsh microphone
streams, and is used to label the sounds of in-
sects, frogs, rain, wind, airplanes, and 15 different
species of bird call with 93% accuracy in real-
time. The engine and its corresponding web-
interface, Tidplay, is used to crowd-source and
validate annotations from experts, bootstrapping
and refining the classifier with time.

Audio Summarization
The Tidzam and Wide-Area Source Separa-

tion projects allow us to isolate and label sound
objects in the context of a marsh. Labels don’t tell
us, however, how a sound is perceived– whether it
will catch our attention, whether it is a distraction,
how it contributes to subtle changes in our sense
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Figure 1. From Microphone Streams To Sound Objects: the Tidmarsh project includes 24 microphones
installed over a large wetland area (A). We use these microphone streams to identify, isolate, and locate
foreground sounds (B); the image shows a frog recording in the upper right, a probability map of its location
amongst the microphones on the left, and the results of a low-rank subspace extraction process to isolate it from
the background in the lower right. We also run a real-time classifier called Tidzam on all streams (C). Finally, as
part of our Audio Summarization work, we attempt to classify the perceptual impact of different sounds given
sound labels and acoustic information (D).

of envelopment and presence, and whether it
alters our emotional and cognitive states.

The Audio Summarization project attempts to
measure these aspects of perception for everyday
sounds across typical human contexts. In this
work, we combine gestalt features – based on
sound labels and measures of semantic related-
ness – with acoustic analysis, to curate extended
ambient audio recordings into short “summaries”.
We then ask human listeners to assign perceptual
descriptors to the resulting presentations, such
as whether the summary might be useful as a
background track for studying or sleeping, or
be considered nostalgic, or simply distracting. In
this way, we can map the semantic and acoustic
analysis to perceptual outcomes. We find that the
tool surfaces diverse collections of sounds across
the long-term environmental recordings that point
to different regions of our perceptual outcome
space.

The Future of Parsing Ubiquitous Audio

We’ve reviewed here our effort to deconstruct
and parse large-scale audio datasets in ways that
map directly to human perception; we translate
microphone streams to sound objects, locate them
in space, label them, and explore some basic char-
acteristics of how they interact with perception.
This type of analysis can be used to design vir-
tual and real experiences of spaces– highlighting
specific types of sounds or emotions, augmenting
our real-time perception in natural environments,
and curating large swaths of content in ways that
were once reserved for human listeners.

Valuable future work takes one of two forms;
generalizing and scaling the tools to sense, sep-
arate, and label foreground sound objects, and
advancing the state of perceptual prediction for
sounds and sound contexts.

In the first case, sensing infrastructure can
take many new and interesting forms. Low-
power wearables with embedded microphones
and lightweight neural networks will soon be able
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to instantly and accurately identify sound sources
in the wearer’s environment; however there is
still a lot of effort required to take traditional
successes in this space, like Google’s Audioset
networks for sound recognition [9], and turn
them into scalable solutions for sound identifica-
tion that can be engineered to preserve accuracy
in constrained computational contexts with less
ideal input data. Scalable source separation and
recognition continues to be an area of research.

In the second case, we require new techniques
to gauge the impact of a sound in isolation
and in context, and new modeling strategies that
perform well with the irreducible uncertainty and
noise that define any attempt to quantify human
experience. We will discuss both our attempts
to tackle this problem and projections for future
work in this space in later sections.

Ultimately, virtual and augmentative reality
devices will be able to perform real-time spatial
sound analysis and rendering, isolating sound
objects for input into a statistical model. Powerful
combinations of such technologies will be able
to monitor and gauge our responses to these
sounds, both actively and passively, in order to
build closed-loop systems that are capable of
predicting and mediating the effects of our sonic
environment in real-time.

2. Frontiers in User Interface Design
The above projects demonstrate a method-

ical approach to breaking down our auditory
experience, beginning with sound percepts – this
assumes a static, shared notion of human per-
ception. This type of approach, however, fails to
capture the dynamics we experience as a result
of our individual cognitive state – our attention,
our emotions, our mental load, and other similar
factors. We present two examples from our work
which showcase the ways in which traditional
notions of interfaces can be driven in new di-
rections based on an intuitive understanding of
how perception itself can be modified or extended
depending on cognitive state — by creating a
hyper-awareness of our own faculties, pushing
them to their limits, or exploring what it takes to
fool them – and identifying, as a result, untapped
spaces for new behaviors to emerge.

PhoxEars and HearThere
As a part of a series of work merging artistic

practice with the newest frontiers in HCI, we
developed PhoxEars — a device consisting of
a helmet with two parabolic microphones at-
tached as “ears”, whose positions a user can
independently control with joysticks [10]. Based
on a custom bone conduction headset, the user-
controlled ears overlay highly directional sound
sources on top of the user’s natural experience of
the soundscape.

The evolution of this work led us to de-
velop a more comprehensive system, known as
HearThere [11]. HearThere users wear a bone-
conduction headset that overlays virtual sounds
over their natural hearing when they are phys-
ically present at Tidmarsh. These virtual sound
sources are sourced through the Tidmarsh in-
frastructure, and are therefore real sounds from
the marsh that have been identified and located;
the HearThere headset uses a combination of
GPS and head tracking to render these sounds
as though they are coming from their real-world
locations.

This can be considered a sensory prosthesis
much like a pair of glasses– a user’s natural
ability to hear is supplemented and extended
instinctively. Moreover, users wearing HearThere
experience sensory confusion; it is difficult for
them to tell which sounds are real and which are
virtual. This prosthesis simply provides the user
access to an additional perceptual layer, to which
they may naturally direct their conscious atten-
tion; when the user turns their visual attention
to a particular area of the marsh, for instance,
sounds from that area (normally too far to hear)
organically blend over their usual hearing.

Both projects richly inform the extension of
underlying cognitive principles to future interac-
tions — for example, allowing users to control
when and how they direct and heighten their
perception on demand creates a way to measure
their intention. This iterative process can also
be used to understand the value of different
rendering methods– which techniques preserve a
sense of realism? Which techniques preserve the
underlying sense without realism? As we cod-
ify intuitive practices into explicit ones, we can
design more reactive, interesting, and technically
advanced versions of projects like PhoxEars or
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Figure 2. User Interfaces at the Perceptual Boundary: the HearThere project (A) can be used in the marsh
environment to naturally extend a user’s hearing in a way that requires no conscious effort and is organically
managed by our auditory attention. This follows the earlier PhoxEars project (B) which also extended auditory
perception through overlay, this time using parabolic microphones on user-controlled motorized gimbals. A final
example is the Sound Signaling project (C), which introduces real-time alterations to your music library as a
notification tool. These changes are less likely to be noticed by a focused or preoccupied user– fundamentally
incorporating their mental state into the design of this notification UI.

HearThere.

SoundSignaling
In SoundSignaling, we introduce a platform

for notification delivery (such as from email,
social media, or SMS) via subtle, stylistic manip-
ulations in a personal corpus of music [12]. The
system will inject genre-specific modifications —
such as adding harmonies to a jazz standard,
adding extra layers of rhythm to a blues track,
or altering the tempo of a classical piece — at
varying levels of conspicuity to a stream of music
in real-time.

SoundSignaling is an example of design by
cognitive heuristics: it operates on the implicit
assumption that attentional load modulates aware-
ness of incongruence, an idea borrowed from
Stroop’s famous colored text experiments [13]
and explorations of auditory and visual switching
costs [14]; here, the magnitude of “incongruence”

is intuited by the designer based on music theory
and studies in musical perception. Quantitative
and anecdotal data from in-the-wild, long-term
studies support the conclusion that SoundSignal-
ing reduces task-switching cost and mediates the
intrusion of everyday notifications as a function
of cognitive load.

Most participants noted that personalization
would be an important facet for the success of
such interfaces in the long run. For example, the
original design – applied to participants’ personal
music preferences indiscriminately – evinced both
that we habituate to repeated violations of our
musical expectations with increased time and use,
and that the intensity with which such a violation
will draw our attention varies on an individual
basis across occupational contexts and musical
selection. This result highlights the power of an
interface built upon an understanding of how
focus-related cognitive states mediate perception,

6 IT Professional



just as it surfaces the limitations of implicit,
heuristic-driven cognitive models.

The Future of Interface Design
The above projects interface deeply and in-

tuitively with individual perception, working in
concert with a user’s attention and focus to
support a holistic experience. We expect that
most of the interesting work of the future will
combine similarly advanced real-time spatial ren-
dering hardware with models of perception and
cognitive state. In the limit, these models will be
informed by contextual analysis of environmental
data, as we saw in Section 1. It’s easy to imagine,
for instance, HereThere enabling super-sensitivity
to certain types of sounds in the environments–
insects, frogs, a particular species of bird– or even
to remix the soundscape in a way that promotes
a certain mood.

In order to create interfaces that give us more
control over or allow us to engage more directly
with an individual’s experience, we require un-
derlying models that are informed by more than
just assumptions and heuristics. These models
must contain an explicit structure that can ac-
count for contextual information and is capable of
evolving with uncertain observations of cognitive
phenomena. How do we enable our PhoxEars
device, for example, to naturally guide us to
regions in our spatial periphery that we identify
to be of interest in a way that doesn’t disrupt the
sense of immersion? How do we devise “musical
modifications” that are most appropriate for one’s
taste in music, that evolve in response to one’s
increasing mental fatigue with the passage of time
in a day?

3. Explorations in Constructing
Cognitive Models

Thus far in the discussion, we have alluded
to the unifying role of cognitive modeling – in
Section 1 we’ve suggested that the infrastructure
needed to extract and analyze individual sound
objects while beginning to examine their influ-
ence on our perception is a necessary predecessor
to more complex models that capture aspects of
cognition at greater levels of abstraction; and in
Section 2, we’ve hypothesized that the future of
user interfaces to the auditory world rests on our
ability to advance the capabilities of these very

same models, catalyzing an evolution from im-
plicit design choices to explicit ones. Future tools
and interfaces will require powerful predictive
insight into the interactions between soundscapes
and our internal experience that follows from
rigorous and explicit modeling. In this section,
we shine a spotlight on the notion of cognitive
modeling in isolation, to examine it in greater
depth.

Our early explorations have shaped our think-
ing about the nature of ideal cognitive models,
in terms of both the learning methodologies and
data labeling strategies best suited to constructing
them. We began our work with an investiga-
tion of principles at the lowest rungs of the
ladder of cognition, which include aspects of
unconscious processing such as psychoacoustics,
attention, and memory. Here, we describe two
preliminary modeling efforts which employ su-
pervised learning strategies and present creative,
effective ways of “probing” the cognitive state of
interest to obtain labeled data. We then address
the expected shortcomings of these approaches in
real-world audio contexts, and delineate a likely
path forward.

Modeling Auditory Memory
Our group began a research effort in 2018

to develop statistical models to predict memora-
bility from audio features [15], [16]. While the
literature indicates that auditory memory is an
incredibly complex phenomenon, we were mo-
tivated to work towards coarse, general purpose
models that might serve as a baseline for enabling
futuristic audio interfaces — augmentative sys-
tems, for example, that could manipulate sound
objects in the environment to make them more
or less memorable, or artistic virtual reality plat-
forms that could create immersive, spatial sound
presentations that are likely to be remembered
long after the experience is over. Drawing from
the theory surrounding ecological listening, we
hypothesized that causal uncertainty and other
gestalt sound properties might also play a critical
role in short-term memory formation. To quantify
this relationship, we constructed a dataset of 400
sounds, intentionally curated to span the spectrum
of source ambiguity. For each sound, we obtained
thousands of crowd sourced annotations for the
perceived source of the sound, and likert scale
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Figure 3. Exploring Cognitive Models: to begin to explore auditory memory, we had thousands of people
play a custom audio memory game using a set of 400 curated, everyday sounds; the web interface of the game
is shown in (A). Our work also extends to psychoacoustically motivated loss functions for training audio neural
networks; in (B) we show the performance of the loss function via original, lossless spectrograms (top row), the
compressed and reconstructed versions that preserve perceptually meaningful information (third and bottom
rows), and the ideal result from an MP3 codec (second row).

ratings for arousal, valence, sound familiarity, and
likelihood of eliciting an image in the listener’s
mind (“imageability”), pairing them with several
extracted spectral features. We also included fea-
tures based on pre-existing models of our neural
response to salient stimuli. After aggregating the
source labels into a measure of causal uncertainty
based on a novel word-relatedness technique, we
created an online memory game to assess sound
memorability, and built a regression model to
map the gestalt and spectral features to memory
outcomes. The data reflects what one might ex-
pect — certain sounds are repeatably memorable
across individuals (i.e. “man screaming”, “women
crying”, “opera” and “flute”), and certain sounds
are not (i.e. causally ambiguous sounds like
“truck idling”, or synthetically generated sounds).
Furthermore, while gestalt features were the best
predictors of memorability, auditory memory pro-
cesses are not well approximated using a simple
weighted combination of our feature annotations.

Modeling Listening Perception
In a parallel effort, we also developed a model

of perception at the psychoacoustic level, cap-
turing well-understood elements of pre-attentive

listening such as frequency masking, the irrel-
evance of high-frequency content, etc [17]. We
envisioned a model that could be used as an error
function for optimizing supervised components of
upstream tasks, such as real-time speech denois-
ing or audio source separation, by serving as a
transform to enable a comparison of a predicted
and ground truth sound sample in the perceptual
domain. To achieve this, we chose to “sample”
a low bit-rate mp3 codec as an approximation of
psychoacoustic principles in the average listener,
training a supervised model on examples of com-
pressed and lossless track pairs. In this generic
form, we show the utility of the model as a means
to improve the performance of select upstream
tasks as measured by subjective listening tests.

We believe these and similar modeling efforts
will form the cornerstone of audio interfaces
of the future; both for next generation off-line
compression and search of soundscapes based on
the principles of human-perception, as well as
for real-time analysis and control of our audi-
tory landscape to direct our attention, promote
our focus, and strengthen our memory. We will
see “sensory prostheses” based on these princi-
ples in the near future, at the convergence of
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recent advances in low-power, real-time silicon
for (1) beamforming and source separation, (2)
embedded machine learning, and (3) in-situ noise
cancellation and source modification.

The Limitations of Crowd-aggregate,
Supervised Modeling

These efforts do suffer, however, from similar
limitations: firstly, both models are examples of
statistical relationships built by harnessing the
power of the crowd, and do not capture individual
differences in aural experience. Users that are
surveyed for ground truth labels find themselves
in constantly shifting, real-world contexts and
cognitive states; even if the participants from our
modeling exercises above were all in a similar
mindset, we know that memory formation is
highly dependent on an individual’s experience,
and listening perception varies from person to
person based on age, gender, genetics, and other
personal factors. How do we extend these sam-
pling strategies to exhibit relevance on a personal
level?

Secondly, there is irreducible uncertainty in
both the observation of cognitive state and rela-
tionships inherent to the data itself. For example,
the models fail to address the likelihood that
the same input can lead to different internal
experiences, even for the same person; they also
fail to account for variability in the quality of data
labels which may stem from unreasonable probes
of cognitive state – such as asking, for instance,
an individual to reflect on their past experience
and articulate largely subconscious feelings.

4. The Future of Cognitive Modeling
Looking ahead, we envision two classes of

strategies for creating explicit models that are
highly personalized. In the first, we begin by
constructing a system with implicit, cognitively
motivated heuristics; we then create opportunities
for user feedback and system teaching, allowing
the original heuristics to be informed and mended
with time. Concretely, we reprise the example
of the SoundSignaling project. We imagine an
extension to the project wherein modifications to
the music stream evolve with time to be perfectly
tailored to a user’s musical choices and cognitive
state, based on sparse queries for user preference
and supplementary multimodal input to the sys-

tem that adapt the existing causal structure.
In the second, we consider the scenario where

identifying such heuristics is not immediately
tractable; here, we sample the crowd en masse
to build coarse models representing the average
listener, and use the heuristics from these models
as “priors”, or a priori information that forms the
basis for an individualized model. Forthcoming
work on our Audio Summarization projects il-
lustrates this paradigm, wherein our priors, the
simplistic, crowd-wide mappings between deep
learning-enabled sound object labels and per-
ceptual descriptors, are adjusted based on user
preferences of the summaries generated by the
priors in personal auditory environments.

In both approaches, human labels designed to
be reflections of cognition are noisy, sparse, and
vary in structure with time and context. Building
models directly from these perceptual observa-
tions becomes a challenging learning problem
with fragile outcomes. Instead, we emphasize the
use of domain adaptation strategies – namely ac-
tive learning, uncertainty sampling, and machine
teaching – that are coupled with probabilistic,
unsupervised learning methods to construct such
models. We also look towards labels that include
more than just simple self-report; physiological
measurements, behavioral observations, and sim-
ple models of the effect of an experience on its
later recall can all serve to improve our estimates
of our unobservable cognitive worlds.

Intent and Causal Reasoning
Finally, we look to cognitive models that

describe more than cognitive state. We imagine
constructing models that go on to map cognitive
state to intent – likelihood estimations of physical
actions, of expectations of changes in the envi-
ronments, of needs or wants. We further imagine
models that build upon estimations of cognitive
state and intent to reason about the environment
and its actors, much as our minds do on a second-
by-second basis. The HearThere project includes
a simple example of intent modeling already – at
the heart of the system is a causal link suggesting
that head orientation and gaze are indicative of the
location into which a user would like to aurally
“zoom in”. More complex models open many
more possibilities. A model that can identify the
objects in the soundscape that are drawing your
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attention could, in tandem with subtle physical
cues, actively mitigate (or amplify!) the sensory
confusion resulting from the overlay of the bone
conduction audio upon your natural hearing. A
model that could draw simple inferences about
the expected locations of sound sources given ap-
pearances in different audio streams could direct
you to a particular place or time in the Tidmarsh
database based on your interest in a particular
animal species. Such models, while seemingly
out of the current realm of possibility, can be
constructed from the building blocks of simpler
models. We suggest that advances in hierarchical
Bayesian techniques and causal inference strate-
gies will be the enablers for models at greater and
greater levels of abstractions, in line with [18].

Cognitive models will improve by making
the implicit explicit; by moving towards proba-
bilistic modeling techniques that measure uncer-
tainty directly, fit to individual users, and learn
from better, more naturalistic labeled data. Low-
level perceptual models will inevitably extend up
the cognitive ladder, towards modeling of intent
and reasoning, leaving us with tools that require
simpler, less demanding expressions of agency,
and interfaces that anticipate our needs and help
curate and extend our organic experience of the
auditory world.

5. Conclusion
There are exciting opportunities for parsing

ubiquitous audio sensor data in the ways the
human mind might, and presenting it to users
in ways that take advantage of an understanding
of their perception, subconscious, and conscious
processing. We present examples from our re-
search illustrating an “audio-first” approach to
cognitive interface design by deconstructing sen-
sor data into human-meaningful sound objects,
an “individual-first” approach built on intuition
surrounding the relationship between cognitive
state and perception, and early explorations in
statistical modeling which we believe form the
foundations for greater complexity and novelty
in both interfaces and models themselves. We see
great opportunities in virtual environments driven
by real-world audio data; in sensory prostheses
that support our goals by extending and by medi-
ating our perception; and in advanced tools that
allow the user to focus completely on expression

of agency rather than menial listening tasks. In all
cases, a deep understanding of our cognitive pro-
cessing, embodied as explicit statistical models,
drive every design. We hope that our examples
motivate a compelling vision of the future, and
form a first step towards a significant body of
research to come.
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