
FOCUS: GUEST EDITORS’ INTRODUCTION

20 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY 0 7 4 0 - 7 4 5 9 / 1 8 / $ 3 3 . 0 0 © 2 0 1 8 I E E E

Collaborative Modeling in
Software Engineering
Henry Muccini, University of L’Aquila

Jan Bosch, Chalmers University of Technology

André van der Hoek, University of California, Irvine

FOCUS: GUEST EDITORS’ INTRODUCTION

 NOVEMBER/DECEMBER 2018 | IEEE SOFTWARE 21

FOR THOUSANDS OF years, hu-
mans have engaged in modeling.
From conceptual models to predict
animal movement during hunting
expeditions, to graphical representa-
tions on cave walls to document and
explain phenomena, humans have
used models of all kinds to make
sense of the world, predict the fu-
ture, explore and document designs
for making something new, and
share knowledge with others.

Someone could argue that the
Enlightenment in the 17th and 18th
centuries and the adoption of the
scientific method shortly thereafter
were critically enabled by fundamen-
tal improvements in the models used
to describe the world. Instead of
relying on historical texts, religious
beliefs, authoritarian figures, or indi-
viduals’ opinions (however well rea-
soned), the use of models based on
data and experiments allowed for a
level of precision, comprehensiveness,
and clarity that enabled new forms of
inquiry, knowledge generation, and
verification.

Today, models are at the heart
of many an endeavor. Buildings are
designed using models of all kinds,
from paper blueprints to mockups to
virtual-reality models—all of which
help assess a building’s different
aspects. CPUs are designed using
advanced models that feed into au-
tomated verification tools. Modern
racing bicycles are designed using
CAD/CAM and fluid-dynamics soft-
ware, so that engineers can verify
the bikes’ stiffness, compliance, and
aerodynamics before they go into pro-
duction. Researchers in certain disci-
plines now almost exclusively conduct
their explorations on models, instead
of working in a lab with petri dishes
or some set of organic compounds.

Although models can easily be
seen as conceptual, modeling has

an important empirical dimension.
Experimentation with, as well as
the engineering and construction
of, real-world systems not only is
based on models but also equally in-
forms models and the modeling pro-
cess. The vocabulary of our models
is based on practitioners’ empirical
needs, and collaboration is driven
largely by educated practitioners’
ability to read, interpret, use, and
change each other’s models. In fact,
a common modeling language pro-
vides the basis for collaboration.
So, it’s no surprise that a plethora of
modeling languages exist and new
ones continue to be invented and
explored.

Collaboration
Critically, models facilitate collabo-
ration. Behind every architect is a
team of specialists contributing to
what eventually become the blue-
print and planning documents gov-
erning the building’s construction.
Different engineers design different
parts of CPUs. Bicycles result from
teams working to refine a conceptual
first shape into a complete design in-
cluding the frame, wheels, handle-
bars, saddle, gears, shifters, brakes,
and more—often by incorporating
designs from external manufacturers
for off-the-shelf (and in some cases
custom) components.

And, in science, despite the
myth of the lone researcher slav-
ing away to achieve unfathomable
intellectual breakthroughs, the re-
ality is that behind every Nobel
Prize scientist is a research commu-
nity that for decades has worked
on models and theories. Collabo-
ration, then, can be both direct—
as in people working together at
the same time on a model—and
indirect—as in leveraging a model
through communication among

parties that otherwise might never
interact.

Software engineering is inher-
ently collaborative. Ranging from
Amazon’s “two pizza” teams to the
thousands of software engineers
building telecom network equip-
ment at companies such as Ericsson
or autonomous-driving solutions at
companies such as Zenuity, the cre-
ation of large, complex software
systems is highly collaborative. Any
software project with more than
one person is created through col-
laborative software engineering.1
In this process, collaboration oc-
curs on all sorts of artifacts, includ-
ing documents detailing a client’s
workflows, architectural diagrams,
source code, and project-planning
timelines.

It’s no surprise, then, that
modeling is central to software
development. Models enable the rep-
resentation, approximation, and view
of complex software, letting us under-
stand and constructively contribute
to the creation of novel software-
intensive systems. (Christof Ebert and
Capers Jones reported that the size of
software systems grows an order of
magnitude—10 times the size—every
five to 10 years.2)

Sometimes, modeling is more
formal, with detailed representa-
tions developed in dedicated envi-
ronments with advanced features
for creating and analyzing those
representations. Other times, mod-
eling is more informal, involving,
for instance, whiteboard sketching
or working through an architec-
tural decision through pseudocode.
Regardless, most often, modeling
is highly collaborative: multiple de-
velopers work together to create,
analyze, and understand a model
capturing some aspect of the soft-
ware on which they’re working.

22 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: GUEST EDITORS’ INTRODUCTION

Collaborative Modeling
The topic of collaborative modeling
has long been relevant in software.
It has been a subject of extensive re-
search, collaborative facilities are part
and parcel of modeling tools, and
every day hundreds of thousands of
developers engage in collaborative
modeling of some sort. Yet, a theme
issue on the topic is particularly timely,
given the following four phenomena.

First, in practice, we’re witness-
ing the emergence of a large number
of Web 3.0 collaborative-modeling
environments. Anyone can start
a collaborative-modeling session
nearly instantly with tools such
as GenMyModel (https://www
.genmymodel.com), emfCollab (http://
qgears.com/products/emfcollab),
WebGME (https://webgme.org), or
Visual Paradigm (https://www.visual
-paradigm.com/features/collaborative
-modeling). Although some of these
are more successful than others, the
steady uptick in these tools’ use in-
dicates that a significant need exists.

Second, a number of projects are
focusing on enabling large teams
of modelers to construct and refine
large models collaboratively. Exam-
ples include

• the Dawn Eclipse project (http://
wiki.eclipse.org/Dawn), which
investigates collaborative UIs
to provide collaborative access
for GMF (Graphical Modeling
Framework) diagrams;

• the Morsa NoSQL-based collab-
orative model repository;3

• the Modeling Team Framework
(MTF; http://www.eclipse.org
/proposals/mtf) open source
project under the Eclipse Mod-
eling Framework Technology
Project (EMFT); and

• UNICASE (https://marketplace
.eclipse.org/content/unicase).

These tools aim to go beyond what
current tools provide, enabling easier,
more powerful collaboration.

Third, we’re witnessing a surge
in academic publications discussing
collaborative modeling from a range
of angles. These publications include
theoretical contributions offering
conceptual frameworks,4,5 newly pro-
posed tools and frameworks support-
ing collaborative modeling,6,7 and
new modeling languages designed to
be friendlier for collaborative model-
ing.8 As with the new tools stemming
from the practice community, these
academic tools aim to build more
powerful and more usable tools.

Fourth, new settings are giving rise
to new challenges in the domain. For
example, the emergence of software
ecosystems requires collaborative-
modeling techniques and tools that
function over organizational bound-
aries and across different roles in a
company. This, in turn, brings up
sharing and intellectual-property
issues, because not all of a collab-
orative model can be or needs to be
shared with all parties.

In short, collaborative modeling is
at an interesting point. On one hand,
it represents one of the more challeng-
ing activities in software engineer-
ing. As we stated earlier, hundreds of
thousands of developers engage in it
every day. However, the effectiveness
of their efforts, what might be con-
sidered best practices, tooling needs,
and how to adjust for different set-
tings are not as understood as they
should be. On the other hand, we
observe high levels of activity in both
the research community and in prac-
tice, with experimental techniques
and novel tools emerging regularly. If
we’re to continue to develop increas-
ingly complex software, these new
approaches must successfully address
the many practical challenges.

The Theme Articles
The four articles (selected from a
rich set of 24 submissions) in this
theme issue elucidate some of these
challenges, introduce new tech-
niques, and shine a light on collab-
orative modeling as an area rich with
opportunities for improvement.

“Collaborative-Design Conflicts:
Costs and Solutions,” by Jae young
Bang, Yuriy Brun, and Nenad
Medvidović, looks at the problem of
conflicts that might arise from mul-
tiple developers working on the same
model at the same time. Developers
might make conflicting changes that
are difficult to resolve. The authors

• motivate the need for proactive,
early conflict detection;

• identify requirements for conflict
detection tools; and

• introduce FLAME (Framework
for Logging and Analyzing
Modeling Events).

“Secure Views for Collaborative
Modeling,” by Csaba Debreceni
and his colleagues, addresses the
problem of sharing only parts of a
model with different parties, so as
to protect intellectual property. The
authors

• identify key challenges in col-
laborative modeling, particularly
the need for secure views to en-
able role-based access to parts of
a model;

• introduce the MONDO col-
laboration framework, which
supports such sharing at a fine-
grained level; and

• summarize this approach’s
benefits and limitations.

“Does Distance Still Matter?
Revisiting Collaborative Distributed
Software Design,” by Rodi Jolak

 NOVEMBER/DECEMBER 2018 | IEEE SOFTWARE 23

and his colleagues, revisits the clas-
sic 2000 “Distance Matters” paper
by Gary Olson and Judith Olson.9
Nearly two decades later, with a
host of powerful collaboration tools
available, the question arises: Does
distance still matter? Jolak and his
colleagues answered this question
through a carefully constructed ex-
periment in which they analyzed
how distance affects design deci-
sions, collaborative communication,
and the technical and social chal-
lenges. They found that, yes, distance
very much still matters, particularly
because of a lack of social awareness
and trust.

Finally, “Collaborative Modeling
and Group Decision Making Using
Chatbots in Social Networks,” by
Sara Pérez-Soler, Esther Guerra, and
Juan de Lara, explores a radically
different way for developers to col-
laborate in building a model. SOCIO,
an experimental chatbot,

• listens to developers’ conversations,
• interprets specific sentences,
• automatically builds a diagram-

matic representation of the con-
cepts being discussed, and

• enables developers to come to a
consensus about the discussed
model.

T hese four articles provide
only a glimpse of what’s
happening in collaborative

modeling. Many other tools are be-
ing researched and developed, other
studies are being performed, and
many interesting experience reports
exist. To learn more about the state
of the art and research, see the
websites of the International Work-
shop on Collaborative Modeling in
Model-Driven Engineering (http://cs
.gssi.it/commitmde2018) and the

Workshop on Modeling in Soft-
ware Engineering (https://sselab.de
/ l ab2 /publ ic /w ik i / M iSE / i ndex
.php?title5Main_Page), and Jonas
Sorgalla and his colleagues’ survey
involving a classification framework
and research roadmap.4

We thank the authors of all the
submitted papers. This field of re-
search wouldn’t exist without the
relentless work of many who are ad-
dressing the challenges of increased
software system complexity and
team development practices through
collaborative modeling. We hope you
readers enjoy the authors’ insights as
much as we enjoyed preparing this
issue for you.

References
 1. I. Mistrık et al., eds., Collaborative

Software Engineering, Springer, 2010.

 2. C. Ebert and C. Jones, “Embed-

ded Software: Facts, Figures, and

Future,” Computer, vol. 42, no. 4,

2009, pp. 42–52.

 3. J.E. Pagán and J.G. Molina, “Que-

rying Large Models Efficiently,”

Information and Software Tech-

nology, vol. 56, no. 6, 2014, pp.

586–622.

 4. M. Franzago et al., “Collaborative

Model-Driven Software Engineer-

ing: A Classification Framework and

a Research Map,” to be published

in IEEE Trans. Software Eng.;

doi:10.1109/TSE.2017.2755039.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

HENRY MUCCINI is an associate professor of computer sci-

ence at the University of L’Aquila. His research interests include

the role of software architectures, model-driven engineering, and

software verification and validation in producing higher-quality

systems. Muccini received a PhD in computer science from the

University of Rome—La Sapienza. He’s on the IEEE Software

editorial board. Contact him at henry.muccini@univaq.it.

JAN BOSCH is a professor of software engineering and the

Software Center director at Chalmers University of Technol-

ogy. His research interests include software ecosystems,

compositional software engineering, software architecture,

and software product lines. Bosch received a PhD in computer

science from Lund University. He’s on the IEEE Software advi-

sory board. Contact him at jan@janbosch.com.

ANDRÉ VAN DER HOEK is a professor in, and the chair of,

the Department of Informatics at the University of California,

Irvine. His research interests are design, collaboration, and

education in software engineering. Van der Hoek received

a PhD in computer science from the University of Colorado

Boulder. Contact him at andre@ics.uci.edu.

24 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: GUEST EDITORS’ INTRODUCTION

 5. C. Masson, J. Corley, and E. Syriani,

“Feature Model for Collaborative

Modeling Environments,” 2017;

http://ceur-ws.org/Vol-2019

/commitmde_5.pdf.

 6. P. Nicolaescu et al., “Near Real-Time

Collaborative Modeling for View-

Based Web Information Systems

Engineering,” Information Systems,

May 2018, pp. 23–39.

 7. N. Rußkamp and A. Nicolaescu,

“Tool Support for Collaborative

UML Modelling,” Continuous

Software Engineering and Full-Scale

Software Engineering, 2018, pp.

43–48; https://www2.swc.rwth-aachen

.de/docs/teaching/seminar2018

/CSE%20FsSE%202018.pdf.

 8. J. Sorgalla et al., “On Collaborative

Model-Driven Development of

Microservices,” 2018; https://arxiv

.org/abs/1805.01176.

 9. G.M. Olson and J.S. Olson, “Distance

Matters,” Human–Computer

Interaction, vol. 15, nos. 2–3, 2000,

pp. 139–178; http://dx.doi.org

/10.1207/S15327051HCI1523_4.

Read your subscriptions
through the myCS
publications portal at

http://mycs.computer.org

IEEE Computer Graphics and Applications bridges the theory
and practice of computer graphics. Subscribe to CG&A and

• stay current on the latest tools and applications and gain
invaluable practical and research knowledge,

• discover cutting-edge applications and learn more about
the latest techniques, and

• benefit from CG&A’s active and connected editorial board.

September/October 2016

 IEEE C
O

M
PU

T
ER G

R
A

PH
IC

S A
N

D
 A

PPLIC
A
T

IO
N

S
Sep

tem
b

er/O
cto

b
er 2

016

Sp
o

rts D
ata V

isu
alizatio

n

V
O

LU
M

E 3
6

 N
U

M
B

ER 5

c1.indd 1 8/22/16 2:59 PM

November/December 2016

 IEEE C
O

M
PU

T
ER G

R
A

PH
IC

S A
N

D
 A

PPLIC
A
T

IO
N

S
N

o
vem

b
er/D

ecem
b

er 2
016

D

efen
se A

p
p

licatio
n

s
V

O
LU

M
E 3

6
 N

U
M

B
ER 6

Defense
Applications

c1.indd 1 10/24/16 3:44 PM

January/February 2017

 IEEE C
O

M
PU

T
ER G

R
A

PH
IC

S A
N

D
 A

PPLIC
A
T

IO
N

S
Jan

u
ary/Feb

ru
ary 2

017

W
ater, Sky, an

d
 th

e H
u

m
an

 Elem
en

t
V

O
LU

M
E 37

 N
U

M
B

ER 1

c1.indd 1 12/14/16 12:21 PM

July/August 2016

 IEEE C
O

M
PU

T
ER G

R
A

PH
IC

S A
N

D
 A

PPLIC
A
T

IO
N

S
Ju

ly/A
u

g
u

st 2
016

Q

u
ality A

ssessm
en

t an
d

 Percep
tio

n
 in

 C
o

m
p

u
ter G

rap
h

ics
V

O
LU

M
E 3

6
 N

U
M

B
ER 4

Quality
Assessment

and
Perception
in Computer Graphics

c1.indd 1 6/22/16 1:20 PM A&GC
www.computer.org/cga

