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Data-driven analysis methods, such as blind source separation (BSS) based on independent
component analysis (ICA), have proven very useful in the study of brain function, in
particular when the dynamics are hard to model and underlying assumptions about the data
have to be minimized. Many problems in medical data analysis involve the analysis of
multiple data sets, either of the same type as in a group study where inferences are based on
the same modality, e.g., group inferences from functional magnetic resonance imaging
(fMRI) data collected from multiple subjects, or from different modalities as in the case of
data fusion where inferences have to be drawn from data collected from multiple modalities
such as fMRI, electroencephalography (EEG), and structural MRI (sMRI), for the same
group of subjects. Canonical correlation analysis (CCA) [1], another data-driven approach,
and its extension to multiple data sets—multiset CCA (M-CCA) [2]—provide a natural
framework for both types of study. In this article, we show how CCA and M-CCA can be
used for the analysis of data from a single modality for group inferences as well as fusion of
data from multiple modalities using a feature-based approach, discuss the advantages of the
CCA-based approach, and compare its performance to ICA that has been successfully
applied to both types of study.

BACKGROUND
Analysis of multiple sets of data, either of the same type as in multitask or multisubject data,
or of different type or nature as in multimodality data, is inherent to many fields and is a
particularly challenging problem in biomedical image analysis because of the rich nature of
the data made available by different imaging modalities. Analysis of multiple sets of same
type of data is an integral part of biomedical imaging studies, e.g., when estimating brain
activations in fMRI data from a group of subjects or when analyzing data from two different
experimental conditions such as fMRI data from subjects scanned at different alcohol levels
while performing a given task. Fusion of data from different modalities promises to provide
a better understanding of the problem at hand since each modality has its own advantages as
well as limitations. In the case of biomedical imaging, an increasing number of studies are
collecting multiple measurements, e.g., fMRI data, sMRI data, EEG data, genetic data, and
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others from the same participants. Efficient use of all this information for inference, while
minimizing assumptions made about the underlying nature of the data and relationships, is
an arduous task but is one that promises significant gains in understanding of the human
brain function. The main purpose of analyzing multiple modalities is to utilize the common
as well as unique information from complementary modalities to better understand neuronal
activity. For example, the fusion of fMRI data and EEG data—fMRI having good spatial
resolution and EEG having high temporal resolution but poor spatial localization of brain
activity—provides a better spatio-temporal mapping of the brain function. In this article, we
address both types of problems: fusion of data sets collected from multiple modalities and
the analysis of multisubject data from the same modality.

Approaches to solve these multidata set problems can be broadly classified as being either
model based or data driven. Model-based approaches investigate the goodness-of-fit of the
data to the prior knowledge about the experimental paradigm and the properties of the data,
for example the general linear model approach [3] for the analysis of fMRI data utilizes the
prior knowledge of the hemodynamic properties of the data and the task. While model-based
approaches have been extensively used in biomedical data analysis, their use is limited when
the dynamics of the experiment become hard to model, e.g., when studying rest state or
naturalistic paradigms such as driving or watching a movie. Data-driven methods are
suitable for the analysis of such complex paradigms as they minimize the assumptions on
the underlying properties of the data by decomposing the observed data based on a
generative model. The most common decomposition is given by X = AS (with the
possibility of including an additive noise term), where X is the mixture that is factorized into
latent variables through two matrices—a mixing matrix A and a component (source) matrix
S. For uniqueness of the decomposition (subject to scaling and permutation ambiguity),
constraints are applied to the two matrices such as sparsity or independence of the
components. Model-based approaches provide a similar decomposition, however they differ
from data-driven methods in their modeling of the matrix A, which is based on prior
knowledge of the experiment and data in the form of regressors. ICA is a popular data-
driven BSS technique that imposes the constraint of statistical independence on the
components, i.e., source distributions. It has been successfully applied to a number of
biomedical data such as fMRI [4], [5] and EEG [6]. A number of approaches have been
proposed to solve the ICA problem, a popular one being the maximum likelihood estimation
technique that finds an approximation of the underlying sources by using the maximum
likelihood estimator of the demixing matrix W such that Ŝ = WX. Second-order data-driven
methods have also been used for biomedical data analysis such as linear discriminant
analysis, partial least squares, CCA, and source-separation algorithms such as the Molgedey
Schuster algorithm [7]. CCA has been used to find latent sources in single subject fMRI data
by taking advantage of the spatial or temporal autocorrelation in the data [8]. An extension
of the Molgedey Schuster algorithm has also been used to extract sources from two or more
data sets based on the temporal autocorrelation in fMRI data [9]. In this article, we focus on
reviewing CCA and M-CCA methods for data fusion and multisubject analysis of
biomedical data and putting these into perspective through comparisons with closely related
ICA-based methods.

DATA FUSION
Data-driven fusion of multimodality data is an especially challenging problem since brain
imaging data types are intrinsically dissimilar in nature, making it difficult to analyze them
together without making a number of assumptions, most often unrealistic about the nature of
the data. Unlike data integration methods, which tend to use information from one modality
to improve the other, data fusion techniques incorporate both modalities in a combined
analysis, thus allowing for true interaction between the different data types [10]. Instead of
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entering the entire data sets into a combined analysis, an alternate approach is to reduce each
modality to a feature, which is a lower-dimensional representation of selected brain activity
or structure, and then to explore associations across these feature data sets through variations
across individuals. Investigating variations across subjects or between patients and controls
at the feature-level provides a natural way to find multimodality associations [11] and also
alleviates the difficulty of fusing data types of different dimensionality and nature as well as
those that have not been recorded simultaneously. Feature-level analysis has been
successfully used in data-driven fusion techniques such as joint-ICA (jICA) [11] and CCA-
based fusion [12]. Given two feature data sets X1 and X2, the jICA approach involves
concatenating the data sets alongside each other and then performing ICA on the
concatenated data set as in [X1X2 = A[S1S2]. Joint-ICA assumes that the sources have a
common modulation profile A across subjects, which is a strong constraint considering that
the data come from two different modalities. Parallel-ICA (paraICA) [13] is another ICA-
based feature-level fusion approach that has been successful in identifying relationships
between neuroimaging data types as well as between genetic and phenotypic data. The
method performs separate ICA on the different modalities in parallel while enhancing
intrinsic correlations across the modalities. While jICA requires the two modalities to have
relatively similar dimensions, the two separate ICA in paraICA is more flexible in that it
allows the modalities to have different dimensions. For a review of feature-based fusion
methods using ICA and their application to biomedical imaging, refer to [14] and [15].

Recently, it has been shown that CCA and M-CCA can allow a more flexible approach to
the fusion problem. The CCA-based fusion method also adopts a feature-based approach and
similarly models the feature data set from each modality as a linear mixture of components
with varying levels of activations for different subjects. Thus, the relationship between
modalities is based on intersubject covariations as shown in Figure 1(a). The scheme is
flexible as the connections are based only on the linear mixing model and intersubject
covariances across modalities, and the modulation profiles of components are not
constrained to be exactly the same as in jICA. Successful application of CCA to feature-
based fusion of two modalities has been shown in [12] and of M-CCA to the fusion of three
brain imaging modalities has been shown in [16]. CCA and M-CCA have also been
successfully used for fusion in other fields such as remote sensing [17] and pattern
recognition [18].

MULTISUBJECT ANALYSIS
M-CCA can be used to perform group BSS, i.e., source separation of single modality data
from multiple subjects [19]. While it is straightforward to apply data-driven techniques such
as BSS to each subject's data separately, the challenge lies in matching the separated sources
across different data sets, which is straightforward in model-based methods. M-CCA
provides an effective tool to perform group BSS while maintaining the correspondence of
the source estimates across different data sets and retaining the intersubject source
variability. The generative model for M-CCA for BSS is shown in Figure 1(b). A number of
data-driven methods have been proposed for achieving group BSS and can be broadly
categorized into two different approaches. One approach is to concatenate multiple data sets
to aggregate the common features, perform analysis in the common feature space to estimate
group components, and back-project the estimated group components into each data set to
obtain individual components with cross-data set cor respondence. Group ICA [20] and
tensorial ICA [21] fall into this category. The other approach assumes a generative model on
latent components with cross-data set correspondence and perform group component
extraction using statistical measures of correspondence. M-CCA and independent vector
analysis (IVA) [22] fall into this category; however, M-CCA and IVA are complementary in
modeling component correspondence [19]. Compared with methods based on data set
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concatenation, M-CCA is more flexible in identifying cross-data set variation of the
components, which can be used for making group level inferences in different ways. M-
CCA has been shown to be successful for the group analysis of fMRI data in [19].

OUTLINE
In this article, we begin with a description of the main statistical tools for fusion and
multisubject analysis—CCA and M-CCA. We then provide a brief introduction to the
medical imaging data that we will be using to demonstrate CCA- and ICA-based analysis
techniques. There are two formats in which the data will be utilized by the approaches we
present: 1) the whole multidimensional data, e.g., for fMRI data, both the time and the
volume information contained in all image slices of the brain, and 2) lower-dimensional
features extracted from the whole data to represent certain aspects of the data, e.g., for fMRI
data, areas of the brain where neuronal activity due to task is exhibited excluding the time
information for these areas. The presented fusion approaches are carried out at the feature-
level using CCA, M-CCA, or jICA while the group analysis is carried out on whole
multidimensional data sets using M-CCA and group-ICA. To further illustrate the use of the
methods, we provide a number of examples of medical imaging applications for the
presented techniques.

CCA
CCA has been traditionally used to analyze relationships between two sets of variables [1].
CCA seeks two sets of transformed variates such that the transformed variates assume
maximum correlation across the two data sets, while the transformation within each data set
are uncorrelated. CCA is an attractive analysis tool, based on second-order statistics and is
less stringent than those based on stronger statistical measures such as ICA. Also, being
multivariate, it can provide increased statistical power over univariate methods.

Given two data sets  and , CCA finds the linear combinations X1W1 and
X2W2 that maximize the pair-wise correlations across the two data sets. A1 and , d
≤ min(rank(X1, X2)), are known as canonical variates and  and  are the
canonical coefficients vectors.

In the deflationary approach, the method finds the first pair of canonical coefficient vectors

 and ,  that maximize linear combinations of the two data
sets given by

to obtain the first pair of canonical variates given by

The remaining d – 1 canonical variates can be calculated similarly, with the following

additional constraints on the columns of the A matrices, i.e., :

■ The canonical variates are uncorrelated within each data set and have zero mean and
unit variance, i.e.,
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(1)

■ The canonical variates have nonzero correlation only on their corresponding indices,

and have correlation coefficients, , where , i.e.,

(2)

where .

The CCA problem can be posed as a constrained optimization problem using Lagrange
multipliers and the canonical covariates can be calculated by solving a generalized
eigenvalue solution, where the columns of W1 and W2 are the eigenvectors of the two
matrices

where λ is vector of eigenvalues or squared canonical correlations, CX1,X2 is the cross-

correlation matrix of X1 and X2 , and CX1 and CX2 are the autocorrelation
matrices of X1 and X2, respectively.

M-CCA
The CCA problem can be extended to multiple data sets using the framework developed in
[2]. In contrast to CCA where correlation between two canonical variates is maximized, M-
CCA optimizes an objective function of the correlation matrix of the canonical variates from
multiple random vectors such that the canonical variates achieve maximum overall
correlation. Furthermore, due to the consideration of multiple random vectors, M-CCA can
not be solved by a simple eigenvalue decomposition problem as in the case of CCA. Instead,
M-CCA takes multiple stages such that in each stage, one group of canonical variates is
obtained by optimizing the objective function with respect to a set of transformation vectors.
For the second stage and higher stages in M-CCA, the estimated canonical variates are
constrained to be uncorrelated to the ones estimated in the previous stages. M-CCA reduces
to CCA when the number of random vectors is two. Given K data sets, the canonical variates

(3)

can be estimated through a deflationary approach such that we first determine the initial K
vectors corresponding to the first source from each of the K data sets using

and then the next vectors using the same procedure such that  is orthogonal to the

previous estimates, i.e., to , k = 1, 2, . . . , K. Here,  is the correlation
between the ith canonical variates, from the kth and lth data sets, estimated in the final
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decomposition and J(·) is an appropriately chosen cost. The canonical correlations can be
obtained by optimizing a number of cost functions proposed in [2], e.g., maximizing the sum
of squared correlations among the canonical variates.

We can summarize the M-CCA procedure based on the sum of squares correlation
(SSQCOR) cost as

■ Stage 1

(4)

■ Stage 2 to d for i = 2:d

end

For M-CCA, up to d canonical variates can be calculated iteratively, where d ≤
min(rank(Xk)). In [2], Stage 1 is solved by first calculating the partial derivative function of

the SSQCOR cost with respect to each  and equating it to zero to find the stationary

point. Since the SSQCOR cost is a quadratic function of each , the partial derivative is a

linear function of  and hence, the closed-form solution can be derived. Starting from an

initial point, each  vector is updated in sequel to guarantee an increase in the cost

function and a sweep through all the  constitutes one step of the iterative maximization
procedure. The iterations are stopped when the cost convergence criterion is met and the

resulting  vectors are taken as the optimal solution. Stage 2 and higher stages are solved
in a similar manner with the cost function replaced by a Lagrangian incorporating the
orthogonality constraints on the canonical coefficient vectors.

Next, we explain the biomedical imaging modalities, the generative models, and some
examples of the application of CCA and M-CCA for data fusion and source-separation
applications.

MEDICAL IMAGING MODALITIES AND FEATURE GENERATION
In this article, we demonstrate the effectiveness of the CCA-based approach using three
modalities: fMRI, sMRI, and EEG. Each of these modalities provides limited information
about the human brain. FMRI is a noninvasive brain imaging technique that provides
information about brain function by measuring the changes in blood-oxygenation in the
brain. SMRI provides information about the tissue type of the brain—gray matter (GM),
white matter (WM), and cerebrospinal fluid (CSF). EEG records brain function by
measuring the brain electrical field through the scalp. For fusion, we adopt a feature-level
analysis to derive a lower dimensional feature from the imaging data as in [14] and [20]. A
feature is a subdata set extracted from one type of data, related to a selected brain activity or
structure. These features can then be analyzed to integrate or fuse the information across
multiple modalities. Next, we briefly introduce the data types, the preprocessing used for
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each of these data types, and the types of features we generate for the fusion analysis from
each of the data sets.

fMRI
FMRI data provide a measure of brain function on a millimeter spatial scale and a subsecond
(and delayed) temporal scale. The data consists of repeatedly imaging the 3-D volume of the
brain slice-by-slice, usually while the subject performs a particular task. A number of
preprocessing are steps important for fMRI—slice-timing correction to correct for the
sequential acquisition of the slices, registration to correct for subject motion in the scanner,
spatial filtering to reduce noise, and spatial normalization to compare brains across different
individuals and to use standardized atlases to identify particular brain regions. For fMRI
data, we use the task-related spatial activity map as calculated by the GLM approach as the
spatial feature for the fusion analysis.

sMRI
We define sMRI analysis as the acquisition and processing of T1-, T2-, and/or proton
density-weighted images. Multiple structural images are often collected to enable
multispectral segmentation approaches. The primary outcome measure in a structural image
may include a measure of a particular structure (e.g., volume or surface area) or a
description of the tissue type, (e.g., GM or WM). There are many methods for preprocessing
sMRI data that may include bias field correction [intensity changes caused by radio
frequency (RF) or main magnetic field (B0) inhomogeneities] [23], spatial linear or
nonlinear [24] filtering, and normalization. MR images are typically segmented using a
tissue classifier producing images showing the spatial distribution of GM, WM, and CSF.
Both supervised and automated segmentation approaches have been developed for sMRI
analysis [25]–[27], and each technique is optimized to detect specific features. We use
probabilistically segmented GM images as features of sMRI data for the fusion analysis.

EEG
EEG is a technique that measures brain function by recording and analyzing the scalp
electrical activity generated by brain structures. Like MRI, it is a noninvasive procedure that
can be applied repeatedly in patients, normal adults and children, with virtually no risks or
limitations. Local current flows are produced when brain cells are activated. It is believed
that contributions are primarily driven by large synchronous populations of firing neurons.
The recorded electrical signals are then amplified, digitized, and stored.

Event-related potentials (ERPs) are small voltage fluctuations resulting from evoked neural
activity and are one of many ways to process EEG data. These electrical changes are
extracted from scalp recordings by computer averaging epochs (recording periods) of EEG
time locked to repeated occurrences of sensory, cognitive, or motor events. The spontaneous
background EEG fluctuations, which are typically random relative to when the stimuli
occurred, are averaged out, leaving the event-related brain potentials. These electrical
signals reflect only that activity that is consistently associated with the stimulus processing
in a time-locked way. The ERP thus reflects, with high temporal resolution, the patterns of
neuronal activity evoked by a stimulus. Due to their high temporal resolution, ERPs provide
unique and important timing information about brain processing and are an ideal
methodology for studying the timing aspects of both normal and abnormal cognitive
processes. More recently, ICA has been used to take advantage of EEG activity that may be
averaged out by computing an ERP [6]. For the feature-based fusion analysis we use ERPs
as the EEG feature.
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DATA FUSION
In this section, we present the data fusion scheme at the feature level using CCA and M-
CCA. We explain the data generation model, the modeling assumptions for feature-based
fusion using CCA methods, and the dimension reduction step that is used to avoid
overfitting. Additionally, we demonstrate the use of the method by presenting two examples
and compare the CCA-based methods with ICA-based fusion method, jICA.

GENERATIVE MODEL FOR DATA FUSION
We develop the following generative model for data fusion. Given two feature data sets X1
and X2, we seek to decompose them into two sets of components, C1 and C2, and
corresponding modulation profiles (intersubject variations), A1 and A2 as shown in Figure
1(a). The connection across the two modalities can be evaluated based on correlations of
modulation profiles of one modality with those of the other. If the modulation profiles are
uncorrelated within each modality, each component can be associated with only one
component across modalities. This one-to-one correspondence aids in the examination of
associations across modalities. The generative model is thus given by

where , , , vk is the number of variables in Xk, n is the number
of observations in Xk, and d ≤ min[rank(X1,X2)]. The modeling assumptions imply that the
modulation profiles, given by columns of A1 and A2 satisfy the constraints given by (1) and
(2). In the feature-based fusion approach [12], the intersubject covariations across the two
modalities, i.e., the correlations across the modulation profiles are identified using CCA as
described in the section “Canonical Correlation Analysis.” The feature-based fusion scheme
models the modulation profiles A1 and A2 as the canonical variates obtained by CCA, and
based on the modulation profiles identified, the associated components can be calculated
using least squares approximations given by

Thus, this fusion approach identifies the cross-modality covariations, and based on these, it
decomposes each feature data set into a set of components—such as spatial areas for fMRI/
sMRI or temporal segments for EEG.

Typically, the number of variables (voxels/time points) in the feature data sets is much
larger than the number of observations (subjects). Due to the high dimensionality and high
noise levels in the brain imaging data, order selection is critical to avoid overfitting the data.
Transforming each set of features to a subspace with smaller number of variables helps
reduce any redundancy in the analysis. The dimension is chosen to fall in a range where the
results are stable and most of the variance in the data can be retained. Dimension reduction
is performed on the feature data set using singular value decomposition (SVD), and we
perform CCA on the dimension-reduced data sets. We assume a noiseless generative model
since we perform dimension reduction. i.e., the assumption in the SVD-based dimension
reduction scheme is that small singular values of the matrix that are discarded correspond to
additive noise.

The generative model we have described with respect to two data sets can be extended to
multiple data sets. For example, for three data sets the CCA fusion method again models the
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modulation profiles A1, A2, and A3 as the canonical variates—however, it is worth noting
that in this case the canonical variates are obtained using M-CCA. The procedure for M-
CCA is as described in the section “Multiset CCA.” The calculation of the components as
well as the dimension reduction steps for the features are the same as described above.

COMPARISON WITH jICA
Joint-ICA has been successfully used for the fusion of data from two modalities such as
fMRI, EEG, and sMRI data [11], [28]. The jICA approach is similar to the CCA-based
fusion approach in that it is a second-level analysis based on lower-dimensional features of
the data and the associations across the two modalities are based on intersubject
covariations. However, there are a number of differences in the modeling assumptions of the
two methods. Most importantly, jICA assumes that the sources share a common modulation
profile while CCA-based fusion models the modulation profiles of each modality to be
separate. Given the diverse nature of the two modalities, assuming that the modulations are
exactly the same across different modalities can be a very strong constraint. Another
important difference between the methods is that the associations across modalities in CCA-
based fusion are solely based on intersubject covariations whereas the associations in jICA
are based on the assumptions of common profiles as well as statistical independence among
the joint sources. While CCA provides a relatively less constrained solution to the fusion
problem, jICA utilizes higher-order statistical information by employing ICA. When
correlations are strong between the two modalities, the assumption of a common mixing
matrix may be justified and the jICA technique could potentially improve approximation of
the joint sources by employing higher-order statistics in the estimation. However, by
allowing for separate mixing matrices, CCA-based fusion promises to identify common as
well as distinct components and reliably estimates the amount of association between the
two modalities. For a detailed comparison of the two models as well as experimental results
based on simulated fMRI-like and ERP-like data, refer to [12].

APPLICATION OF CCA TO FUSION OF TWO MODALITIES
The CCA-based fusion approach has been successfully used to analyze the spatio-temporal
associations between fMRI data and EEG data, and also, to detect functional and structural
relationships between fMRI data and sMRI data in [12]. Here we discuss few of the key
findings on the fusion of fMRI and sMRI data and compare the results to those obtained
using the jICA method presented in [12].

FUSION OF fMRI AND sMRI—FMRI data provides information about brain function
while sMRI data contains information about brain structure. Fusing information from the
two modalities could help to understand the link between brain structure and function. We
demonstrate the fusion approach on sMRI data and fMRI data from 37 patients with
schizophrenia and 36 healthy controls carrying out an auditory sensorimotor task consisting
of patterns of eight tones, alternately increasing and decreasing in pitch. The subjects are
instructed to press a button with their right thumb for each presented tone. Details of the
experimental setup are given in [29]. The fMRI data and sMRI data are converted into
lower-dimensional features using the preprocessing techniques described in the section
“Medical Imaging Modalities and Feature Generation.” The reduced dimension for both
features was empirically chosen as 18.

The pair of components corresponding to profiles showing the strongest correlation

 across the two data sets demonstrate significant group differences (α ≤ 0.05:
tfMRI = –4.92 and tsMRI = –4.80) between patients with schizophrenia and healthy controls
(fMRI map, sMRI map, and scatter plots of the profiles are shown in Figure 3). The fMRI
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component map shows that healthy controls have more functional activity in the temporal
areas (activations enclosed in blue box) and less motor activity (activations enclosed in red
box) compared to patients with schizophrenia. The GM map shows that healthy controls
have more GM compared to the patients in frontal (activations enclosed in purple box) and
temporal areas (activations enclosed in blue box). These results reveal associations between
the modalities in adjacent or close sets of voxels as well as remotely located voxels. This is
consistent with previous studies showing changes in both brain structure and brain function
in frontal and temporal lobe regions in schizophrenia and is also in agreement with previous
studies on fusion of fMRI and GM [28], [30], [31].

We also perform jICA on this data set using the fusion ICA toolbox
(http://icatb.sourceforge.net/fusion/fusion_startup.php). The result obtained using jICA,
shown in Figure 4, is similar to the one obtained using CCA (Figure 3). However, CCA
shows additional motor and temporal areas. Also the structural regions are more localized
and well defined in the CCA-based result. In general, however, the jICA components are
mostly sparse, at least sparser than components obtained using CCA-based fusion, due to the
non-Gaussian emphasis by ICA algorithms such as [32]. In the fusion example presented
here, this was seen for the fMRI result but not for the sMRI result. The sparseness of the
sMRI results for CCA is hence interesting and may be due to the fact that CCA relaxes the
strong constraint of common profiles for the pair of components.

APPLICATION OF M-CCA FOR FUSION OF MULTIPLE MODALITIES
A number of approaches have been proposed to integrate or fuse multitask or multimodality
data. However, these have mostly been limited to two modalities or multiple data sets from
the same modality. In [16], M-CCA was demonstrated to be successful in fusing data from
three modalities. Next, we highlight the key findings from [16] and present new results that
demonstrate the increase in sensitivity of the analysis with addition on more modalities.

FUSION OF fMRI, sMRI, AND EEG—The analysis of more than two brain imaging
modalities collectively, e.g., fMRI, sMRI, and EEG, can help identify interesting
associations across brain structure and function. Performing M-CCA on multiple data sets
can be more restrictive since we are requiring covariation of all three modalities, however,
this is also informative since we find changes that are related across the three modalities. An
interesting point to note is that M-CCA-based fusion allows for associations in local voxels
as well as remotely located voxels, thus enabling discoveries of structural changes causing
compensatory functional activation in distant, but connected, regions.

Again, we decompose the data into sets of components and their corresponding modulation
profiles across the subjects as shown in Figure 5. The data fusion scheme determines the
linear transformation that maximizes the intersubject covariations across the three modalities
using M-CCA, and based on these covariations, the associations among the components
across modalities are determined. As an example for multimodality fusion using M-CCA,
consider the fusion of three brain imaging modalities: fMRI, sMRI, and EEG. The MRI and
EEG data are acquired from 36 subjects (22 healthy controls and 14 schizophrenia patients).
The fMRI and EEG data were collected while the subjects performed an auditory oddball
(AOD) task that required them to press a button when they detect a particular infrequent
sound among three kinds of auditory stimuli. Details of the task design and the participants
are given in [33]. The data was preprocessed and features were obtained as described in the
section “Medical Imaging Modalities and Feature Generation.” EEG features, or ERPs, are
calculated from the midline central position (Cz) because it appeared to be the best single
channel to detect both anterior and posterior sources for the given task.
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We perform CCA on the dimension-reduced fMRI, sMRI, and ERP data to estimate 15 sets
of components that contain interesting associations across the modalities. The results
identify changes in the motor and temporal areas associated with the N2/P3 complex in the
ERP (the EEG feature) as shown in Figure 6, areas that have been also previously noted as
affected in schizophrenia. On examining the intersubject modulation in conjunction with the
spatial and temporal components, the results imply that subjects with schizophrenia have
less functional activity and less GM in the areas detected in this component and also a part
of the ERP response appeared to be affected. Note that in the section “Application of CCA
to Fusion of Two Modalities,” the sensorimotor task showed an increase in motor activity
for patients with schizophrenia, while the current result from an auditory oddball task shows
a decrease in motor activity. The change in direction is likely due to the significant
attentional component in the auditory oddball task. In contrast, the sensorimotor task is
predictable, and increase in motor activity in patients performing similar tasks, have been
noticed in neuroimaging literature.

We also perform CCA-based fusion on the fMRI and sMRI data sets while excluding the
EEG data. Comparing the results of the three-way analysis with those from the two-way
analysis (results not shown), we find that for both experiments the areas detected in the
fMRI and sMRI component are very similar for the component that showed significant
differences between the two groups, with the two-way analysis showing some areas of
deactivation. Additionally, we note that the statistical significance of the difference between
healthy controls and patients increased significantly with the use of three modalities in the
analysis as compared to two modalities (Table 1) confirming the expectation that increased
number of modalities do help identify more discriminative features increasing the overall
sensitivity of the analysis. Also, if the tests are corrected for Type-I errors using the
Bonferroni correction, the significance threshold would be 0.003 and we can see in Table 1
that the results of the three modality fusion satisfy this threshold for at least two modalities
while the two modality fusion results do not pass the threshold. Also, note that the
Bonferroni correction may be too conservative and instead a less conservative false
discovery rate threshold can also be used to check the significance of the results.

In the previous sections, we have presented the use of CCA and M-CCA for the fusion of
data from different modalities. Next, we present a related but different framework for the
use of M-CCA to perform group study of data from the same modality.

MULTISUBJECT DATA ANALYSIS
In biomedical applications, it is common to study data from a number of subjects under
identical experimental conditions and to make inferences based on group analysis—simply
looking for occurrences that can be said to be true for the group. In this section, we present
the M-CCA based group analysis method for multisubject fMRI data analysis introduced in
[19] and highlight one of the key results from the paper along with a comparison with the
group ICA analysis technique.

GENERATIVE MODEL AND M-CCA FOR GROUP ANALYSIS

For a group of K data sets, each data set , k = 1, 2, . . . , K contains

linear mixtures of N sources given in given the source vector , mixed
by a nonsingular matrix, Ak i.e.,

(5)
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where  form the mixture data set and source data set respectively, 
is a nonsingular square matrix. Note that the mixture data set for multisubject BSS is the
whole multidimensional data set and is different from the feature data sets used in the
previous sections for data fusion. Sources are uncorrelated within each data set and have

zero mean and unit variance, i.e., E{Sk} = 0, k = 1, 2, . . . , K and , k = 1, 2, . . . ,
K where I is the identity matrix. Sources from any pair of data sets k ≠ l; k, l ∈ {1, 2, . . . ,
K} have nonzero correlation only on their corresponding indices. Without loss of generality,
we assume that the magnitude of correlation between corresponding sources are in

nondecreasing order, i.e., , where .

This assumed correlation pattern for latent sources in the generative model can be
effectively used to construct a multisubject separation scheme using M-CCA, which is
shown in Figure 1(b). In this scheme, the group of sources that have the maximal between-
set correlation values are first extracted from the data sets. By removing the estimated
sources from the data sets and repeating the correlation maximization procedure, subsequent
procedures can extract groups of corresponding sources from each data set in decreasing
order of between-set correlation values. This procedure is described in the section “Multiset
CCA,” however, in this case the canonical variates will not be defined as in (3) and instead

they will be defined as Sk = WkXk, for k = 1, 2, . . . , K and .

In [19], the study of source separability conditions based on a flexible generative model
shows that the method can be used to achieve successful source separation under mild
conditions. The conditions depend on the chosen cost function, e.g., we show that

 is a practical choice for the cost and that it leads to robust separation
performance and a separability condition that is easily satisfied especially when the number
of observations increases. The superior performance of M-CCA is shown for group source
separation for large number of data sets, robustness to outliers, and robustness to complex-
valued data distributions, when compared with data-driven methods that assume a non-
Gaussian model [19].

COMPARISON WITH OTHER APPROACHES
Group ICA achieves source separation of multiple data sets by first reducing the
dimensionality of data from each subject, followed by reducing the these reduced data sets
to a common subspace, then performing ICA on this common subspace, and finally back-
reconstructing the subject-specific source estimates. The data reduction steps used to obtain
the common subspace reduces the amount of subject variability in the estimated subject-
specific source estimates. M-CCA, on the other hand, performs BSS after a subject-level
data reduction stage and does not work on a common subspace. This allows M-CCA to
retain much of the intersubject variability. Tensorial ICA also specifies a common signal
subspace model that is similar to that of group ICA. Additionally, in tensorial ICA, each
group of the corresponding mixing vectors is represented by a common mixing vector
associated with a cross-subject variation vector using a rank-one approximation. In this way,
the group data sets are decomposed into a three-way tensor product of the common sources,
common mixing vectors, and the associated cross-subject variation vectors. IVA uses a
mutual information-based formulation to perform source separation across multiple data
sets; however, the algorithmic development of the method involves the simplifying
assumption that the estimated sources are uncorrelated across data sets, which is an
unrealistic assumption for many applications including analysis of biomedical data sets. For
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a more detailed comparison of these group analysis techniques, refer to [19], and for review
of ICA-based multisubject analysis methods in fMRI, refer to [15].

APPLICATION OF M-CCA TO MULTISUBJECT DATA ANALYSIS
The multiple data set extension of CCA, M-CCA reveals relationship among the hidden
factors in multiple data sets. In this section, we show how M-CCA can be used for source
separation across multiple data sets.

MULTISUBJECT ANALYSIS OF fMRI—Twelve right-handed participants with normal
vision—six females, six males, average age 30 years—participated in the study. Subjects
performed a visuomotor task involving two identical but spatially offset, periodic, visual
stimulus, shifted by 20 s from one another. A total of 12 data sets are jointly analyzed. Each
data set is preprocessed according to typical fMRI analysis procedures consisting of slice-
timing correction, image registration, motion correction, smoothing, whitening, and
dimension reduction. Thirty-two normalized principal components (PCs) are retained for
each data set and M-CCA is applied to the 12 sets of retained PCs. The optimal number of
PCs are selected using an information theoretic criterion with correction for sample
dependence; for implementation details refer to [19].

We present a source of interest from the M-CCA and group ICA estimation results. The M-
CCA result shows activation at inferior parietal lobule, posterior cingulate, and medial
frontal gyrus—this set of regions is called the “default mode” network that tends to be less
active during the performance of a task [34]—as well as deactivation in motor, temporal,
and visual regions. The group ICA result, on the other hand, focuses on the default mode
activity. The estimated mean activation maps over all data sets, image of the cross-subject
source correlation matrices, and the mean time course are displayed in Figure 7. The right-
and left-side visuomotor task paradigm is overlaid onto the estimated time courses for
reference.

The estimated sources by M-CCA and group ICA are shown in Figure 7. It is observed that
the spatial map estimated by M-CCA shows higher cross-subject correlation level than
group ICA. The time courses of default mode estimated by M-CCA and group ICA both
show expected negative correlation against the onset of the visuomotor task. Furthermore, a
multiple linear regression is performed on the estimated time course with the right (R) and
left (L) visuomotor paradigm regressors. It is observed that time course estimated by M-
CCA has more significant regression coefficients with the task paradigms, i.e., the values are
for M-CCA (R): –0.52 with estimated confidence interval (CI): [–0.38, –0.65] and (L): –
0.87 CI: [–0.74, –1.01]; group ICA (R): –0.45 CI: [–0.28, –0.62] and (L) –0.60 CI: [–0.43, –
0.77]. Hence, M-CCA achieves higher consistency on spatial activation region and also the
time courses show a higher correlation with the task paradigm. The agreement of the spatial
and temporal features suggests that default mode network is a common feature across all
subjects that is driven by both the left and right visuomotor task.

DISCUSSION
We have presented two CCA-based approaches for data fusion and group analysis of
biomedical imaging data and demonstrated their utility on fMRI, sMRI, and EEG data. The
results show that CCA and M-CCA are powerful tools that naturally allow the analysis of
multiple data sets. The data fusion and group analysis methods presented are completely
data driven, and use simple linear mixing models to decompose the data into their latent
components. Since CCA and M-CCA are based on second-order statistics they provide a
relatively less constrained solution as compared to methods based on higher-order statistics
such as ICA. While this can be advantageous, the flexibility also tends to lead to solutions
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that are less sparse than those obtained using assumptions of non-Gaussianity—in particular
super-Gaussianity—at times making the results more difficult to interpret. Thus, it is
important to note that both approaches provide complementary perspectives, and hence it is
beneficial to study the data using different analysis techniques.

Though, in general, the tendency in data analysis is to try to minimize the assumptions on
the nature of data, certain assumptions may be suited to the data being studied, and strong
assumptions such as independence or sparsity might help improve robustness of the
solutions. Thus, the performance of a method should be judged on the overall properties
rather than a simple optimality criterion, while taking the underlying assumptions into
account. Especially in the case of the study of brain structure and function, since the ground
truth is seldom available, the assumptions in most cases cannot be verified. Thus, fully
exploiting the complementary nature of different methods becomes especially important, as
now noted in most neuroimaging literature. As we demonstrate in this article, CCA- and M-
CCA-based methods provide attractive solutions to data fusion and group analysis, and their
true power might be realized when they are used in conjunction with other methods that are
complementary in nature. Also, their extensions to incorporate sparsity and higher-order
statistical information can help improve their utility.
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FIG1.
Generative models for fusion and source separation are shown in (a) and (b). To avoid
overfitting, typically dimension reduced data matrices are used instead of the original high-
dimensioned data X, X1, and X2 For data fusion, the spatial or temporal dimension is
reduced. For group analysis, the temporal dimension is reduced.
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FIG2.
Implementation steps for CCA-based fusion.
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FIG3.
The fMRI component, sMRI component, and scatter plots of profiles for pair of components
identified by CCA as maximally correlated. The profiles for both fMRI and sMRI are
significantly different (α ≤ 0.05) between patients and controls. Patients with schizophrenia
show more functional activity in motor areas and less activity in temporal areas associated
with less gray matter as compared to healthy controls. The activation maps are scaled to Z
values and thresholded at Z = 3.5.
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FIG4.
Joint components estimated by jICA corresponding to common profile demonstrating
significant difference between patients and controls. The activation maps are scaled to Z
values and thresholded at Z = 3.5.
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FIG5.
Data model for fusion of brain structure and function.
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FIG6.
Set of associated components estimated by M-CCA that showed significantly different
loading for patients versus controls.
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FIG7.
Estimated mean activation maps (top left), source correlation between subjects (top), and
time course (bottom) of the default mode by (a) M-CCA and (b) group ICA. The right
(green circle) and left (red block) visuomotor task paradigm is overlaid onto the estimated
time courses for reference.
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TABLE 1

COMPARISON OF t-TESTS FOR THREE MODALITY (fMRI, sMRI, AND EEG) VERSUS TWO
MODALITY (fMRI AND sMRI) ANALYSES FOR COMPONENT. THE t-TESTS ARE PERFORMED ON
THE LOADINGS FROM THE MODULATION PROFILES OF HEALTHY AND SCHIZOPHRENIC
SUBJECTS.

MODALITIES THREE MODALITIES TWO MODALITIES

t α t α

fMRI 3.45 0.002 2.17 0.038

sMRI 2.86 0.001 2.20 0.034

EEG 3.61 0.007 – –
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