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T
 he importance of learning 
and adaptation in statistical 
signal processing creates a 
symbiotic relationship with 
machine learning. However, 

the two disciplines possess different 
momentum and emphasis, which makes 
it attractive to periodically review trends 
and new developments in their overlap-
ping spheres of influence. Looking at the 
recent trends in machine learning, 
we see increasing interest in kernel 
methods, Bayesian reasoning, causal-
ity, information theoretic learning, rein-
forcement learning, and nonnumeric 
data processing, just to name a few. 
While some of the machine-learning 
community trends are clearly visible in 
signal processing, such as the increased 
popularity of the Bayesian methods and 
graphical models, others such as kernel 
approaches are still less prominent. 
However, kernel methods offer a number 
of unique advantages for signal process-
ing, and this special issue aims to review 
some of those. 

KerneL-BASed LeArnIng: 
BAcKground
The application of reproducing kernel 
Hilbert space (RKHS) methodology in 
statistical signal processing was pro-
posed by Emmanuel Parzen in the late 
1950s, who provided for the first time a 
functional analysis perspective of ran-
dom processes defined by second-order 
moments [1]. Parzen clearly illustrated 
that the RKHS approach offers an ele-
gant general framework for minimum 
variance unbiased estimation of regres-
sion coefficients, least squares estima-
tion of random variables, detection of 

known signals in Gaussian noise, among 
others. Although these problems involve 
random variables, they can be solved 
algebraically in the RKHS associated 
with their covariance functions with all 
the geometric advantages of the inner 
product defined in such spaces. In the 
early 1970s, Kailath presented a series of 
detailed papers on the RKHS approach 
for detection and estimation to demon-
strate its usefulness in computing likeli-
hood ratios, testing for nonsingularity, 
bounding signal detectability, and deter-
mining detection stability [2]–[4]. 
Figueiredo [5] took a different approach 

to apply RKHS in a nonlinear system and 
signal analysis by building the RKHS 
bottom-up using arbitrarily weighted 
Fock spaces. The spaces are defined by 
Hilbert–Schmidt polynomials or power 
series in either scalar or multidimen-
sional variables. But this interest was 
short lived. 

In machine learning, kernel-based 
learning has become a state-of-the-art 
technology within the last two decades. 
In particular, kernel methods have 
enriched the spectrum of machine 
learning and statistical methods with a 
vast new set of nonlinear algorithms. 
After the advent of support vector 
machines [6] some 19 years ago, kernel 
principal component analysis (kPCA) [7] 
was established as a blueprint for “ker-
nelizing” linear scalar product-based 

algorithms, given that a conditionally 
positive-definite kernel is used [8]. The 
so-called empirical kernel map [9] 
allows preprocessing of data by project-
ing it onto the leading kPCA compo-
nents; thus, nonlinear variants of 
algorithms could be constructed via a 
nonlinear transformation. By virtue of 
the application of the kernel trick [10], a 
scale of nonlinearity can be imposed 
that reflects the nature or our prior 
knowledge in learning [8]. 

KerneL-BASed LeArnIng 
And SIgnAL ProceSSIng
The initial activity in the field included 
the introduction of a number of novel 
kernels as well as novel nonlinear 
algorithm variants. More recent devel-
opments, however, emphasized extend-
ing the use of kernel-based learning 
beyond mere classification and regres-
sion settings towards more complex sce-
narios motivated by important signal 
processing and learning scenarios: anal-
ysis of structured data, ranking, the 
blending of Bayesian methods and ker-
nel methods, semisupervised settings, 
testing, and causality, just to name a 
few. A further important direction was 
the development of large-scale learning 
methods for establishing fast solvers for 
the respective optimization problems. 
An overarching motivation for the fast 
development in kernel-based learning 
has primarily come from the application 
side. On one side, the sciences (e.g., 
neuroscience, computational biology, 
natural language processing, and phys-
ics) have motivated the work and these 
fields largely benefited from the novel 
set of tools. On the other side, kernel-
based learning enabled the addressing of 
emerging industrial problems including 
social networks, text mining, and the 
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general urge to better understand large 
and complex corpora of data. Thus, the 
blending of signal processing and ker-
nel-based learning has become more 
and more seamless and evident over 
recent years. 

conTrIBuTIonS To 
ThIS SPecIAL ISSue
While it is impossible to span the whole 
space outlined above of the interesting 
advancements of kernel-based methods 
for signal processing, this special issue of 
IEEE Signal Processing Magazine (SPM) 
has focused on a number of timely and 
interesting topical contributions with 
review character. 

Arenas-García et al. consider kernel-
based methods for multivariate feature 
extraction, while Jenssen outlines the 
interplay of Renyi entropy and nonlinear 
dimensionality reduction. Pérez-Cruz 
et al. discuss Gaussian processes, their 
use and implementation introducing 
gently and relating to Wiener filtering, 
and their use in signal processing. 
Särkkä et al. present methods, using the 
Kalman filter formalism, for converting 
spatiotemporal Gaussian process regres-
sion into infinite dimensional state-
space models, which makes Gaussian 
processes computationally feasible and 
opens one more door to combine 
machine-learning and signal processing 
methodologies. Nonlinear kernel meth-
ods are difficult to interpret and analyze, 
thus, Montavon et al. provide a compre-
hensive framework to quantify the effec-
tive dimensionality, signal-to-noise 
ratio, and local error bars for a learning 
problem; in addition, techniques to pro-
vide a local explanation of the nonlinear 
model are reviewed. 

Along a related line of thought 
describing the manifold characteristics 
of learning, Talmon et al. present the 
concept of diffusion maps for signal pro-
cessing and relate it to kPCA and nonlin-
ear filtering. A recent and very active 
field has been the use of kernel-based 
methods for hypothesis testing. Harcha-
oui et al. describe RKHS embeddings of 
probability distributions; then tests are 
merely divergences between these 
embedded distributions. Song et al. 

discuss a novel RKHS-embedding 
approach to inference with graphical 
modeling, including belief propagation 
and general Bayes’ rule. Bazerque and 
Giannakis also take the RKHS view, how-
ever, taking the slant of sparse modeling 
in conjunction with nonparametrics. 
Equipped in this manner, sparse kernel-
based learning becomes a powerful tool 
in a number of signal processing applica-
tions, such as cognitive radio. 

Focusing in particular on the open 
issues in cognitive radio networks, Ding 
et al. demonstrate effective signal 
processing solutions by kernel-based 
learning. Zhao et al. present two effec-
tive models for kernel-based extension 
of tensor decompositions, which enable 
investigation of multiway nonlinear 
dependencies in structured data. Appli-
cations examples include reconstruction 
of three-dimensional movement trajec-
tories from electrocorticography signals 

recorded from a monkey’s brain and 
human action classification based on 
video sequences. The application of 
RKHS methodology to neural signal 
processing is addressed by Park et al. 
This application exemplifies how the 
footprint of statistical signal processing 
can be enlarged to include the spike 
train space, where an algebra cannot be 
defined. The approach defines an injec-
tive mapping from this space to a RKHS 
by means of kernels, which allows the 
conventional signal processing algo-
rithms of optimal filtering to be readily 
applied to multiple spike trains, preserv-
ing the structure of event timing. 

Finally, we would like to note that 
the articles in this special issue have 
undergone a very careful reviewing 
process; most of them going through 
multiple revisions. We would like to 

cordially thank the many reviewers, 
who have helped us improve the quality 
of the final articles, as well as Special 
Issues Area Editor Fulvio Gini and 
Coordinator for Society Publications 
Rebecca Wollman for their great 
support. We hope that the readers of 
IEEE Signal Processing Magazine will 
find this collection of review articles 
useful, interesting, and stimulating. 
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