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Abstract—Non-orthogonal multiple access (NOMA) enabled
fog radio access networks (NOMA-F-RANs) have been taken as a
promising enabler to release network congestion, reduce delivery
latency, and improve fog user equipments’ (F-UEs’) quality of
services (QoS). Nevertheless, the effectiveness of NOMA-F-RANs
highly relies on the charted feature information (preference
distribution, positions, mobilities, etc.) of F-UEs as well as the ef-
fective caching, computing, and resource allocation strategies. In
this article, we explore how artificial intelligence (AI) techniques
are utilized to solve foregoing tremendous challenges. Specifically,
we first elaborate on the NOMA-F-RANs architecture, shedding
light on the key modules, namely, cooperative caching and
cache-aided mobile edge computing (MEC). Then, the potentially
applicable AI-driven techniques in solving the principal issues of
NOMA-F-RANs are reviewed. Through case studies, we show
the efficacy of AI-enabled methods in terms of F-UEs’ latent
feature extraction and cooperative caching. Finally, future trends
of AI-driven NOMA-F-RANs, including open research issues and
challenges, are identified.

I. INTRODUCTION

The past years have witnessed an explosive growth of in-

telligent mobile services, including augmented reality, virtual

reality, holographic telepresence, industry 4.0, and robotics,

benefiting from the rapid upgrades of terminal/wireless com-

munication techniques as well as the emerging artificial in-

telligent (AI) technologies. These innovative applications are

in general latency-sensitive and massive data-driven, which

impose great pressure to the conventional cloud radio access

networks (C-RANs) due to its centralized processing mode

and limited fronthaul capacity. To address these issues, the

focus of the research community is shifting towards the system

design of fog radio access networks (F-RANs) [1, 2]. In F-

RANs, two significant changes are made compared to C-

RANs, i.e., proactive caching and computing capabilities are

enabled at the fog access points (F-APs), which bring a two-

fold benefit. On one hand, the frequently requested contents

of F-UEs can be pre-fetched and cached at F-APs during

off-peak time, resulting in a decreased delivery latency of

F-UEs. On the other hand, the computational-intensive and

latency-sensitive tasks of F-UEs can be executed at F-APs
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via task offloading, which significantly decrease the energy

consumption of mobile F-UEs. Moreover, the tasks’ results

can be cached at F-APs, and are downloaded by other F-

UEs directly for further enhancing the computing performance.

The foregoing aspects, in turn, release the heavy transmission

workload of both backhaul and frounthaul links.

Meanwhile, non-orthogonal multiple access (NOMA) is

being considered as another promising enabler for next-

generation wireless networks due to its high spectrum effi-

ciency and ultra-high connectivity. Different from traditional

orthogonal multiple access (OMA) techniques that serving dif-

ferent users in orthogonal resource blocks, NOMA techniques

have shown great potential for circumventing the limitation of

massive connectivity. It is anticipated that the unprecedented

high access speed and low latency requirements in F-RANs

could be well solved by the NOMA techniques. The integra-

tion of NOMA and F-RANs has given rise to a new research

area, namely, “NOMA-F-RANs”. In NOMA-F-RANs, NOMA

techniques are conducted for the content delivering from the

base station (BS) to mobile users and task offloading when

mobile user request for the computational tasks.

A. Related Work

Considering the potential advantages of NOMA-F-RANs

in next-generation wireless networks, NOMA-F-RANs have

received widespread attention for addressing the challeng-

ing data rate and latency requirements of F-UEs. From the

transmission perspective, in contrast to conventional OMA

techniques, applying the NOMA technique in F-RANs is

capable of better utilizing the communication capacity for

content delivering and computational tasks offloading. From

the computation perspective, tasks’ offloaded computing and

content caching are efficient approaches to reduce energy con-

sumption and computing latency for F-UEs. Previous studies

on NOMA-F-RANs focus on problems, such as, task offload-

ing decision, computing resources allocation, user clustering,

and power allocation. Conventional optimization approaches,

such as branch-and-bound (BnB) algorithm, heuristic algo-

rithm, and matching game algorithm have been applied to

solve the aforementioned problems. However, optimization

based techniques in general requires a large number of it-

erations to find a satisfying solution, which is unaffordable

for achieving a real-time optimization in fast-fading wireless

communication systems. The recent advances in AI offer

http://arxiv.org/abs/2112.01325v1
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Fig. 1. Network structure of NOMA-F-RANs

promising approaches to tackle the aforementioned challenges.

For instance, deep learning (DL) algorithms have strong fitting

capability, which can be applied to extract complex hidden

information from big data collected from the network [3].

Furthermore, reinforcement learning (RL) algorithms can be

utilized for stochastic optimization problems of task offloading

and computing resources allocation, which may not computa-

tionally feasible for conventional optimization approaches. For

brevity, a summary of some recent research contributions of

the AI-based algorithms on NOMA-F-RANs is provided in

Table I with the highlights of the adopted AI solutions as well

as the objectives.

B. Motivation

Clearly, for stochastic optimization problems in NOMA-F-

RANs, the certainty and availability of prior feature infor-

mation such as user mobility and content popularity highly

affect system’s effectiveness. While some AI-enabled solutions

have been developed for solving cache decision or resource

management problems, the F-UEs’ feature information are

stipulated to be known as prior [4–10]. In real systems, the

spatial-temporal information is difficult to track and obtain,

especially when the number of F-UEs is large. Moreover,

the potential gain of cooperative caching and cache-enabled

computing in NOMA-F-RANs are not well revealed by ex-

isting work, which calls for new research to provide an

overarching perspective towards AI-driven NOMA-F-RANs,

as proposed by this article. Different form existing paper on

NOMA-FRANs [11], in this article, we propose an AI-driven

NOMA-F-RANs architecture that sheds light on how novel

AI techniques can be exploited for addressing the principle

issues and enhancing the performance of key modules, namely,

cooperative caching and cache-aided mobile edge computing

(MEC) in NOMA-FRANs. Specifically, we first present the

system structure of the NOMA-F-RANs in Section II, high-

lighting the key modules. Then, we explain how AI-based

solutions can be applied to address the principle issues in the

considered structure. Two case studies are provided in Section

IV, to show the performance of our versatile AI solutions.

Finally, we conclude this paper and point out future research

trends in Section V.

II. NOMA-F-RANS SYSTEM STRUCTURE

In this section, we first present the NOMA-F-RANs archi-

tecture. Then, we discuss the associated key modules.

A. Network Structure for NOMA-F-RANs

Fig. 1 illustrates the network structure of NOMA-F-RANs.

Therein, NOMA technique is adopted for content deliver-

ing and task offloading between F-APs and F-UEs. In the

meanwhile, fronthaul links connect the baseband units (BBU)

pools and F-APs. Morover, fronthaul links also connect BBU

pools and the macro remote radio head (MRRH), which has

centralized computing and storage capabilities. In F-RANs, the

F-APs works from three aspects, namely remote transmission,

radio resources management and task offloaded computing

for F-UEs. Furthermore, the rapid development of terminal

technologies, such as high-performance workstations, has en-

abled F-APs and the F-UEs in F-RANs much stronger caching

and computing capabilities. Thanks to device-to-device (D2D)

techniques, F-UEs can request contents/tasks results from

both F-APs and nearby F-UEs directly. As a consequence,

duplicated task offloaded computing and content delivering

from BBU to F-APs can be saved. Both backhaul and fronthaul

burden is alleviated accordingly. As can be seen from the Fig.

1, network data is first obtained from the core network for

latent feature extraction. Then, the extracted latent features,

such as user mobility and content popularity are utilized for

resource allocation in cooperative caching and cache-aided

MEC modules. Hereinafter, we discuss the principal modules

of NOMA-F-RANs.

B. Key Modules in NOMA-F-RANs

1) Latent Feature Extraction: In NOMA-F-RANs, the joint

communication and computing resources allocation requires

some prior information of the networks, such as user mobility

and task popularity. These latent features need to be extracted

according to the history data. However, the task popularity

is often assumed following a generalized Zipf law, which

is a experience distribution and lacks theoretical guarantee.

Advanced AI approaches and social media platforms have

attracted more attention in the field of latent feature extraction,

by exploiting latent issues in the regions and the interactions

among the public, the networks are capable of better predicting
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TABLE I
ARTIFICIAL INTELLIGENT SOLUTIONS FOR NOMA-F-RANS

References Networks or framework Objectives Employed AI solutions

[4] Blockchain-based MEC Task offloading Double-dueling DQN

[5] IoT edge computing Computing allocation DQN with multiple replay memories

[6] Content caching networks Content placement Echo liquid state machine learning

[7] Content caching networks Fetch-caching decision Modified online solver based Q-learning

[8] NOMA downlink networks Power allocation Hotbooting Q-learning

[9] NOMA downlink networks Channel assignment Attention-based NN enabled DRL

[10] Cache-aided NOMA downlink Power allocation Dual-networks enabled DRL

[12] Caching in NOMA-FRANs User Access Mode Selection Evolutionary game

DQN represents deep Q-network; IoT represents Internet of Things; NN is the acronym for neural network. DRL represents deep reinforcement learning;
D2D is short for device-to-device; IL represents independent learners.
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Fig. 2. Task computing in NOMA-F-RANs

the latent features, to reinforce the quality of the wireless

network service.

2) Cooperative Caching: Recent research advances on AI-

driven content caching focused on non-cooperative caching [6,

7]. Although caching at the edge side can be regarded as an

efficient manner to alleviate the data traffic and the energy

cost of the backhaul links in NOMA-F-RANs, designing the

content placement policy for all F-APs independently may

insufficiently utilize the caching resources of all the F-APs,

because all F-APs attempt to cache the most popular contents.

In order to further boost the benefits of caching in NOMA-F-

RANs, cooperation among cache storages of different F-APs

is of high necessity to be considered. The main ideology of

cooperative caching is to place contents collaboratively at all

APs, which is capable of increasing the content diversity in

the networks. In addition, when considering proactive cache

optimizations for F-APs, the similarity among users’ content

preferences and mobilities should also be taken into account.

Since F-UEs from the same social networks or keen on the

similar social activities tend to generate the same downlink

data streaming. Nevertheless, these prior information (e.g.,

users’ mobilities, users’ content preferences, etc) cannot be

obtained via conventional optimization based methods.

3) Cache-aided MEC: MEC is a powerful implement for

wireless networks to process the computationally-intensive and

latency-sensitive tasks for resource limited mobile terminals.

Fig. 2 shows the task computing in NOMA-F-RANs. In

Fig. 2(a) and (b), the computational tasks of F-UEs can

be computed at the F-UEs side and the cloud, respectively.

Moreover, caching task computing results at the MEC server is

capable of avoiding duplicate and redundant data transmission,

thus streamlining the task offloading decision, reducing the

computing latency and saving the task computing energy.

The cache-aided MEC for F-UEs in NOMA-F-RANs can

be divided into four phases, i.e., task offloading, data pro-

cessing, task results caching and downloading, as illustrated

in Fig. 2(d), wherein, the computing results are cached in

the MEC server. When the same task computing request

is arriving, the cached results can be delivered to the F-

UEs directly. The computation capability of F-APs is limited.

Imaging that the F-APs cannot satisfy the computation re-

quirements, the offloaded tasks will be further sent to BBU

pools (cloud) through fronthaul link since in general the cloud

server has much greater data processing power than that of the

F-APs. After completing all computations, the cloud servers

first push back the outcomes to F-APs. Subsequently, F-APs

transmit the computational results to their associated F-UEs,

as demonstrated in Fig. 2(c). So far, the hierarchical fog-

cloud computing is implemented in NOMA-F-RANs. Fig. 2

outlines the possible computing schemes in NOMA-F-RANs,

in which T1, T2, T3, T4, represents the latency requirement of

each F-UE. Moreover, since user side has weaker computing

capability than the cloud and the F-AP, task computing at

the user side should takes more time. If the channel quality

is poor, local computing could be the best manner among

all. Although the fog-cloud computing saves computational

energy at F-UEs, there are additional transmission latency (or

fronthaul latency given that cloud computing is adopted) and

transmission energy consumption. Therefore, to fully unleash

the potential of cache-aided MEC in terms of computation and

caching, the optimization of joint offloading decision, caching

decision, and the associated radio and computing resources

allocation for F-UEs should be well designed. Existing papers

applied conventional optimization approaches [13] in cache-

aided MEC networks to obtain static optimal solution, which

is, however, computationally unfeasible when considering

long-term caching decisions. Because conventional optimiza-

tion approaches need to be executed for each time slot. To

overcome this drawback, in this article, RL based solutions

are proposed for cache-aided MEC networks, which is capable

of obtaining a long-term offline policy for task offloading and

caching decision. In other words, RL based solution only need

to be executed one time, then a long-term policy is obtained

for multiple time slots.
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C. Standardization of NOMA-FRANs

With the swift deployment of 5G wireless networks, there

exist some standardization and application efforts on NOMA-

FRANs to the envisioned B5G/6G wireless networks from

academia, industry, and government agencies. Firstly, NOMA

has been included in the 3rd generation partnership project

long-term evolution advanced (3GPP-LTE-A) standard, term

multiuser superposition transmission (MUST) at 2016. NOMA

is also included in the next general digital TV standard (ATSC

3.0), and the 5G new radio (NR) standard. For F-RANs, two

service requirements are defined by 3GPP for Release 17 at

2019. Meanwhile, European Telecommunications Standards

Institute (ETSI) launched the standardization of F-RANs at

2014. Moreover, although NOMA is exclusive from 5G wire-

less networks, NOMA-FRANs can be applied for satisfying

and enhancing the Quality of Service (QoS) of users, which

plays critical effect on novel application envisioned, such as

augmented reality (AR), real-time online gaming and high-

speed video streaming in B5G/6G wireless networks.

III. ARTIFICIAL INTELLIGENT DRIVEN NOMA-F-RANS

In this section, we explore how AI can be used to fully

obtain the gains of NOMA-F-RANs, which is expanded from

two perspectives: latent feature extraction and resource man-

agement. The reason for considering latent feature extraction

is that massive data collected from social media and network

operators stimulate the utilization of novel AI techniques for

extracting accurate latent features. Regarding the resource

management, RL algorithms have manifest advantages in

terms of network optimization and decisions, which can be

adopted for resource management in NOMA-F-RANs. Re-

garding on other perspectives of utilizing AI in NOMA-

FRANs, such as user association, and mobility estimation, we

will consider them in the future works, employing advanced

AI techniques to obtain notable performance enhancement.

A. Latent Feature Extraction in NOMA-F-RANs

To efficiently allocate computing and caching resources in

NOMA-F-RANs, prior information, e.g., F-UEs’ mobility and

contents’ popularity in the future is required. These latent fea-

tures cannot be mathematically expressed using conventional

approaches, therefore, we advocate to leverage DL to enable

NOMA-F-RANs to predict the just-in-time demands of the

networks, which is capable of efficiently allocating caching

and computing resources, including bandwidth, storage capac-

ity and computing speed.

Although RNNs have been proposed in previous paper [14],

the investigating on adopting novel RNNs for predicting user

mobility and content popularity still require great efforts,

especially when a large amount of social media data and

network data is generated every day. Because the explosive

growth of wireless and social media data is a key driver

that boosts AI development and application. With the benefit

of massive data collected from social media and network

operators, we adopt RNNs and LSTM networks to predict

F-UEs’ mobility and contents’ popularity, respectively, since

they are capable of processing time-sequential data due to their

internal memory units [3]. The flow chart of using RNNs and

LSTM networks for F-UEs’ mobility and contents’ popularity

prediction is given in Fig. 3(a).

1) RNNs for User Mobility Prediction: The mobility of F-

UEs plays a critical effect on the performance of cooperative

caching and cache-aided MEC in NOMA-F-RANs, because F-

UEs with similar social activities tend to produce approximate

data flows. Since the mobility of F-UEs can be reshaped as

a time series, we use RNNs to predict F-UEs’ positions due

to its high processing capability for time-sequential data. Uni-

versal approximation theorems demonstrate that deep neural

networks (DNNs) are capable of fitting complicated func-

tions. Among which, RNNs have been proposed as efficient

approaches for solving time series prediction problems [3].

Henceforth, we invoke RNNs for user position prediction.

In particular, the inputs of the RNNs are users’ positions in

history time slots, while the outputs of the RNNs are the

positions of users in the future time slots, which can be used

for network resources configuration.
2) LSTM Networks for Task Popularity Prediction: To

sufficiently provide computing and caching resources for the

F-UEs, it is key to obtain the task popularity therein. We obtain

the prosperous historical task popularity data from network

monitoring with standard manipulation rules or from network

operators. Using the obtained dataset, we predict the task

popularity by LSTM networks. LSTM networks are widely

adopted for time series prediction problems due to the fact

that LSTM networks store representations of history input

information in form of activations by series connected multiple

cells in the networks. The advantages of LSTM networks make

them potentially significant for many applications.

In the task popularity prediction problem, a great amount

of history data (i.e., the task popularity in the history) is

collected as a training dataset. As shown in Fig. 3(a), the F-

UEs’ task popularity is treated as a time series. Therefore, time

series prediction algorithms such as RNNs can be utilized for

forecast the F-UEs’ task popularity in the future. The inputs of

the networks are historical data in multiple time slots, and the

outputs of the networks are task popularity in the near future.

After training, the LSTM networks are adopted to predict

the task popularity, which serves as prior information for the

resource allocation in the next subsection.

B. AI-driven Joint Resource Allocation in NOMA-F-RANs

Based on the predicted networks’ traffic demands, the

prosperity of AI algorithms provide effective and low-cost

solutions for NOMA-F-RANs that are capable of fulfilling

the stringent requirements adaptive to the F-UEs’ mobility

and radio environment. We adopt RL in NOMA-F-RANs

because the mechanical of RL approaches is obtain a long-

term offline policy that maximize the sum weighted reward

by balancing exploration and exploitation, which is capable

of solving a stochastic optimization problem of joint resources

allocation [7, 9]. Since the task offloading decision is a discrete

variant in NOMA-FRANs. Therefore, we choose tabular Q-

learning and DQN algorithms instead of actor critic, deep

deterministic policy gradient (DDPG), or asynchronous advan-

tage actor-critic (A3C) based DRL algorithms, which work
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for continuous action space and state space. The resource

allocation policy is defined by the optimization parameters

in NOMA-FRANs, such as content caching decision, task of-

floading decision, computing resource allocation, and commu-

nication resource allocation. As in Fig. 3(b), the state space of

RL is defined by the optimization parameters in the considered

networks. The action space is the change of the parameters

in the state space, which enables state space to cover all the

possible combinations of optimization parameters. According

to Fig. 3(b), through three learning steps, the RL is capable of

given the optimal action for every given state, thus determines

the resource allocation policy. Moreover, the structure of LA is

simple, thus it is easy to be implemented for action selection

of RL. The detail of LA-based action selection is given in

Fig. 3(b). Noting that the action selection of LA can only be

increased or fixed, which increases the learning speed. The

output of LA is action selection probability vector, which is

used for updating the Q-table in Q-learning.

1) Tabular Q-learning in NOMA-F-RANs: In NOMA-F-

RANs, we focus on the joint computing and caching problem.

Moreover, we formulate a long-term stochastic optimization

problem that entails a joint optimization of both commu-

nication and computing resources for F-UEs. The solution

of considered stochastic optimization problem is a long-term

offline policy that can be obtained by tabular Q-learning.

Tabular Q-learning is one of the model-free RL algorithms

that aim to select suitable action to maximize the weighted

sum reward in a particular situation by training the Q-table.

The reward function of the tabular Q-learning in NOMA-F-

RANs is defined by the objective functions in the networks,

e.g., energy consumption minimization, summation data rate

maximization, computation latency minimization, etc.

2) Deep Q network (DQN) in NOMA-F-RANs: It is widely

recognized that conventional value-based RL algorithms suffer

from the curse of dimensionality. Especially, in NOMA-F-

RANs, the dimensions of state space and action space are

settled by the number of network parameters, e.g., number

of channels, F-UEs and F-APs. To overcome this drawback,

we adopt DQN for the optimization problem in NOMA-F-

RANs. In DQN, the optimal policy of the intelligent agent is

obtained by updating Q values in NNs. The inputs of the NNs

are the current states and the outputs are the probabilities of all

the actions in the action space. By utilizing the fitting ability

of the NNs, a high-dimension state input and low-dimension

action output pattern is implemented to deal with the curse

of dimensionality in conventional RL algorithms, especially

when the number of network parameters in NOMA-F-RANs

are large.
3) Learning automata based Q-learning in NOMA-F-

RANs: The aim of learning automata (LA) is to learn the

optimal action from the action space for the given network

environment. Different from RL algorithms that learn optimal

actions for every states, LA is used for an intelligent agent that

has only one state. In NOMA-F-RANs, the resource allocation

problem entails joint optimization of multiple parameters that

are coupled together, which makes it challenge to use RL

algorithms for the joint optimization, because it is challenging

for intelligent agent to specify reward functions as well as the

large variances. To overcome abovementioned challenges, we

use LA-enabled Q-learning for joint computing and caching

resources allocation problem in NOMA-F-RANs. In the pro-

posed LA based Q-learning algorithm, LA based action selec-

tion scheme is proposed for enabling every state to select the

optimal action with arbitrary high probability if Q-learning

is able to converge to the optimal Q value eventually. The

performance of the proposed LA-based Q-learning algorithm

compared to conventional Q-learning algorithm in NOMA-F-

RANs is shown in next section.

IV. CASE STUDY: COOPERATIVE CACHING AND

CACHE-AIDED NOMA-MEC IN NOMA-F-RANS

In this section, two case studies of AI-driven feature extrac-

tion and cooperative caching in NOMA-F-RANs are presented

to show the validity of our devised AI solutions.

A. AI-driven Latent Feature Extraction in NOMA-F-RANs

In this subsection, we first evaluate the performance of

our proposed LSTM solution for F-UEs’ task popularity



A MANUSCRIPT SUBMITTED TO THE IEEE WIRELESS COMMUNICATIONS 6

0 5 10 15 20 25 30 35 40 45 50

Time slots

0

0.2

0.4

0.6

0.8

1

1.2

P
ro

b
ab

il
it

y

goal = 0.01

Real data

LSTM prediction

RNN prediction

(a) Task popularity prediction (goal equals to 0.01).

0 5 10 15 20 25 30 35 40 45 50

Time slots

0

0.2

0.4

0.6

0.8

1

1.2

P
ro

b
ab

il
it

y

goal = 0.001

Real data

LSTM prediction

RNN prediction

(b) Task popularity prediction (goal equals to 0.001).

Fig. 4. Simulation results of task popularity prediction using LSTMs and RNNs.

prediction. More specifically, we formulate task popularity as

a time series and treat the history task popularity and future

popularity as the input time series and output time series of

LSTM network, respectively.

Figure 4 demonstrates the performance of LSTM solution

for task popularity prediction. The training dataset of task

popularity are generated in a random walk model. The length

of the generated task popularity is 500, which is corresponding

to 500 time slots. The value of the task popularity in each time

slot is between 0 and 1. The input length of the LSTM is set

as 5, therefore, we have 455 pairs of data that can be used

for training the LSTM networks. Moreover, we randomize the

order to improve the generalization ability of the network.

The inputs are task popularity data within 5 time slots and

the labels are the task popularity in 6th time slot. 70% of the

task popularity data are utilized for the training process and

30% of the task popularity data are applied for the testing

process. In Fig. 4, the “real data” is the task popularity

we generated with the random model, and the “predicted

data” is the predicted task popularity from LSTM networks.

The goal in Fig. 4 is defined by mean square error (mse)

between the target output and the network prediction result.

The value of goal is selected according to experience. Higher

goal brings more accuracy for content popularity prediction,

yet may results in overfitting. According to Fig. 4, we observe

that the prediction error is marginal, which demonstrates that

the proposed LSTM-based prediction framework can well

estimate tasks’ popularity. Moreover, the proposed LSTM

solution outperforms conventional RNNs. In addition, a better

performance can be obtained when we reduce the value of the

goal.

B. AI-driven Cooperative Caching in NOMA-F-RANs

In the considered cooperative caching networks, there is

a circle cooperative area composed of multiple BSs, F-UEs

and massive wireless contents. Each BS contains limited

caching capacity. The cooperative caching policy is to de-

termine “which” contents should be cached in “which” BS.

During the content delivery process, NOMA technique is

utilized for sending the contents to the F-UEs simultaneously,

thus improve the quality-of-experience (QoE) of F-UEs. In

the considered simulation environment, the length of the

cooperative region is 4km. There are multiple F-APs and

F-UEs in the considered cooperative region. The F-UEs are

randomly distributed in this cooperative region. For the whole

network, there are 10 contents that the users may request. The

workstation for the simulation has an Intel Core i7-7700 3.6

GHz CPU and 16 GB memory. The details of the network

setting can be found in [15].

In this subsection, a LAQL algorithm is proposed for

cooperative caching, where the state space and action space

are discrete. The details of the LAQL solution for cooperative

caching in NOMA-F-RANs are given in [15]. The schematic

diagram of LA-based Q-learning for NOMA-F-RANs is given

in Fig. 3(b) that consists of three steps. In Step 1, an action

probability vector is maintained. The action of the intelligent

is chosen utilizing the probability distribution of the action

space. Then, a feedback is calculated after taking this action.

Then, according to the calculated reward/penalty, we estimate

the maximum likelihood reward probability and choose the

optimal action for the current training process. After the

training process, the action probability vector can converge

to a stable optimal vector, and then the optimal action reveals

itself simultaneously in Step 3.

Fig. 5 shows the mean opinion score (MOS), which is

utilized for measuring the QoE of F-UEs in NOMA-F-RANs.

Firstly, to avoid the significant influence of the learning rate

α and the discount factor γ on the convergence performance

of the proposed LAQL, we regulate α and γ for Q-learning.

Then, after several adjustments, we set α as 0.75 and γ as

0.6. Thereinafter, the learning rate and the discount factor

of LAQL are set to be the same as that in conventional Q-

learning, which is capable of eliminating the learning rate

and the discount factor affect. It can be seen that LAQL

based cooperative caching outperforms considered benchmark

schemes, including conventional Q-learning, non-cooperative

caching scheme and random caching scheme. The reason for

this observation is that the designed action selection scheme

of LAQL enables the intelligent agent to filter the optimal

action for each given state, while the action selection strategies
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Fig. 5. The MOS of different cache schemes vs. transmit power in AI-driven
NOMA-F-RANs.

for conventional RL algorithms are designed by stochastic

mechanisms, such as ǫ-greedy. Fig. 5 also demonstrate that

the proposed cooperative caching framework outperforms con-

ventional Q-learning based solution and random caching by

0.94% and 4.72%, respectively, corroborating that the designed

cooperative caching scheme is capable of better balancing the

caching capacities for all F-APs compared to conventional

non-cooperative caching.

V. CONCLUSION REMARKS AND FUTURE CHALLENGES

In this article, the application of NOMA technique in F-

RANs has been exploited. The network structure of NOMA-

F-RANs is demonstrated where the NOMA technique is

adopted to accommodate multiple F-UEs in a single resource

block. Then, key modules in NOMA-F-RANs, named latent

feature prediction, cooperative caching and cache-aided MEC

have been studied in detail. The AI solutions for resources

allocation problems in NOMA-FRANs have been identified,

followed by two case studies, using LSTM for task popularity

prediction and LAQL for content placement in cooperative

caching, respectively. There are still many open research

problems in this area, which are outlined as follows:

• Privacy and security preserving: The advantages of

AI algorithms in NOMA-F-RANs rely on the data that

can be subject to F-UEs’ privacy and security. The data

of the F-UEs is maintained for the intelligent agent to

implement the AI algorithms. If the data is leaked by

a data breacher, then both the privacy and security of

F-UEs are compromised.

• Network edge caching reaping: The thriving of mobile

F-UEs create a large amount of caching capacity. Reap-

ing the benefits of caching resources across many F-UEs

as a whole has significant impact on the performance of

NOMA-F-RANs. Some initial research contributions on

D2D communication have been conducted to transmit

the data between different F-UEs, which leads to the

more practical but challenging data cooperative caching.

Such cooperative caching designs still constitute an open

area.

• Other proactive schemes to boost the gain: The

caching efficiency of the AI enabled cooperative caching

scheme is reduced when the F-UEs’ content request

probabilities are highly heterogeneous. To overcome

this shortage, some other proactive caching schemes

have been proposed to improve the diversity of content

popularity. By recommending some popular contents,

the recommendation system can reshape F-UEs’ content

request distributions, resulting in boosted cache hit ratio.

Proactive schemes should be jointly designed to further

enhance the performance gains of NOMA-F-RANs.

• Other key challenges when applying AI to NOMA-

FRANs: There are other critical challenges when ap-

plying AI to NOMA-F-RANs, such as the change in

network size and long convergence time, which still need

great effort. Fortunately, some progresses have been

made, such as meta-transfer learning (MTL) approaches

which are capable of adapting DNNs for few shot learn-

ing models. The key point of MTL is to train multiple

tasks, and learn scaling and shifting functions of network

weights for each model. In addition, federated learning

approaches are proposed for improving the convergence

of DNNs, by training multiple local models and updating

global model using well-trained local models.
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