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accordance with the electrode positioning. Afterwards, this 
2D grid was converted to a grayscale sEMG image. A 
computational model based on deep convolutional neural 
networks (ConvNet) [5] has been employed for sEMG image 
classification. However, the potential drawback is the 
classification method based on ConvNet, is computationally 
very expensive to be practical for real-world applications for 
neuromuscular activity recognition. Moreover, the studies 
conducted in [4] reported of attaining recognition rate as low 
as 20% using the conventional classifiers such as support 
vector machines (SVM). However, the conventional 
classifiers such as SVM can surpass ConvNet at producing 
optimal classification if well-behaved feature vectors are 
provided [6]. However, this aspect is totally overlooked in 
[4]. Therefore, developing computationally efficient 
distinctive feature extraction and classification algorithms for 
instantaneous sEMG image based neuromuscular activity 
recognition is highly demanded.  
For instantaneous sEMG image based neuromuscular activity 
recognition, the challenge remains open because very limited 
research has been done on it. This paper studies the histogram 
of oriented gradients (HOG) for the improved 
characterization of the instantaneous sEMG image. HOG is 
one of the state-of-the-art methods for object recognition [7]-
[9]. However, this important characterization method is 
ignored for sEMG signal classification. This paper proposed 
to use a HOG based feature extraction method for 
instantaneous sEMG image classification. According to our 
best knowledge, no one performed similar studies before for 
sEMG signal classification.  
The rest of the paper is organized as follows. Section 2 
provides the computational details of the proposed feature 
extraction method. Section 3 describes the testing database 
and the experimental validation. Section 4 offers some 
conclusive remarks. 

2. THE PROPOSED NEUROMUSCULAR FEATURE
EXTRACTION AND CLASSIFICATION ALGORITHM 

The proposed neuromuscular feature extraction and 
classification algorithm has three computational components: 
(i) preprocessing and sEMG image generation, (ii) feature
extraction, and (iii) classification. A schematic diagram of the 
proposed muscular activity recognition method by
instantaneous sEMG images are shown in Fig. 1. The
sketches of hand and gestures in Fig.1 are adapted from [4].

 

 

 

Abstract-  The concept of neuromuscular activity recognition 
using instantaneous high-density surface electromyography 
(HD-sEMG) image opens up new avenues for the development 
of more fl uid and natural muscle-computer interfaces. The 
state-of-the-art methods for instantaneous HD-sEMG image 
recognition achieve prominent performance using a 
computationally intensive deep convolutional networks 
(ConvNet) classifier, while very low performance is reported 
using th e conventional classifiers. However, the conventional 
classifiers such as Support Vector Machines (SVM) can surpass 
ConvNet at producing optimal classification if well-behaved 
feature vectors are provided. This paper studies the question of 
extracting distinctive feature sets, thus propose to use 
Histogram s of Oriented Gradient (HOG) as unique features for 
robust neuromuscular activity recognition, adopting pairwise 
SVMs as the classification scheme. The experimental results 
proved th at the HOG represents unique features inside the 
instantaneous HD-sEMG image and fine-tuning the hyper-
parameter  of the pairwise SVMs, the recognition accuracy 
comparable to the more complex state of the art methods can be 
achieved. 
Index Ter ms— Neuromuscular activity recognition, HOG, HD-
sEMG, Gesture recognition, SVM, Muscle-computer interface 

1. INTRODUCTION

The precise characterization and recognition of 
neuromus cular activities present a great challenge [1] The 
high-density sEMG (HD-sEMG) based methods have been 
proposed in  the recent years [2][3]. The HD-sEMG records 
myoelectric signals using two-dimensional (2D) electrode 
arrays that characterize the spatial distribution of myoelectric 
activity over the muscles that reside within the electrode pick-
up area [4]. The collected HD-sEMG data are spatially 
correlated  which enabled both temporal and spatial changes 
and robust against malfunction of the channels with respect 
to the pr evious counterparts [3]. However, the existing HD-
sEMG based neuromuscular activity recognition methods are 
still depending on the windowed sEMG which demands to 
find an optimal window length otherwise influence the 
classification accuracy. To overcome this problem and 
develop  a more fluid and natural muscle-computer interface, 
more recently, W. Geng et al. [4], explored the patterns inside 
the insta ntaneous sEMG images spatially composed from 
HD-sEMG enables neuromuscular based gesture recognition 
solely with the sEMG signals recorded at a specific instant. 
In their approach, the instantaneous values of HD-sEMG 
signals at each sampling instant were arranged in a 2D grid in 
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First, the acquired HD-sEMG signals at each sampling instant 
were arranged in a 2-D grid according to their electrode 
positioning. This grid was further transformed into an 
instantaneous sEMG image by linearly transforming the 
values of sEMG signals from �� to color intensity as �������	 �����
 to ������
. Thus, an instantaneous 
grayscale sEMG image was formed with the size of 
� � �. 
The gradient image ����	 �� is obtained by convolving an 
estimation filters over � and � axis of the instantaneous 
sEMG image ���	 ��. The magnitude �����	 ����and 
orientation ���	 �� for each pixel of the sEMG image are 
computed from the gradient image ����	 ��. The sEMG 
image is divided into a dense grid with a spatial � � � pixels 
cells. For each cell, a local 1-D histogram of gradient over all 
pixels in the cell are computed as features. This aggregated 
cell-level 1-D histogram builds the HOG feature vector for 
the unique representation of the instantaneous sEMG image. 
Finally, these HOG feature vectors are fed to a 
computationally effective learned pairwise SVM classifier 
for instantaneous gesture recognition. 
Section 2.1 presents the HOG feature extraction technique for 
sEMG image representation and Section 2.2 presents the 
classification schemes respectively. 
2.1.  Histogram of Oriented Gradients (HOG) Feature 

Extraction 
After generating the instantaneous sEMG image by linearly 
transforming the values of sEMG signals to color intensity as 
mentioned above, the crucial task is to extract distinctive 
features to represent the instantaneous sEMG image for 
robust classification of the performed hand gesture. However, 
the main research question is what makes the different 
gestures distinctive performed by the same or different 
subjects? For example, the hand gestures explained in 
Section 3 and shown in Table I can be differentiated by their 
shape and orientation features. The color might not be a 
reliable feature because the portrayed hand gestures have the 
same color. Therefore, any method that can precisely describe 
the shape and orientation information will solve the problem. 
Nevertheless, the problem in our hand is even more 
challenging because the instantaneous sEMG image is 
formed by linearly transforming the values of sEMG signals 
from �� to color intensity which reflects the intensity 
distributions of the performed hand gestures. The different 
hand gestures produce different spatial intensity distributions, 
thus also make the structure of the instantaneous sEMG 
image different. These discriminative attributes have been 
capitalized and used as features in this work.  
Both intuitive observation and preliminary experimental 
results indicate that the gradient of the intensity distributions 
or edge directions provides the discriminative features for 
instantaneous sEMG image classification. HOG precisely 
captures this notion. Therefore, we propose to use HOG as 
features for instantaneous sEMG image classification. HOG 
features are calculated by taking orientation histograms of 
intensity distributions from all locations of a dense grid on a 
sEMG image region and combined features are used for 
classification. HOG features are assumed to be designed for 

imitating the visual information processing of the brain and 
have robustness against local changes of position. This 
important property of HOG can be exploited to cope with the 
electrode shifting problem encountered between two different 
HD-sEMG recording sessions. HOG is like scale-invariant 
feature transform [11] in the sense that a local region is 
described by deriving gradient orientations from the 
orientation histogram.  
Consider the gradient estimation filters �� � ��
	 �	 

	 and �� � � ��
	 �	 

�. The gradient information of an 
instantaneous sEMG image can be obtained by 

����	 �� � !�!� !�!�"� �  ����	 �� # �������	 �� # ��� "�������������������������
�
where, # denotes an operation of a 1-dimensional (1-D) 
convolution. The � and � stand for height and width of the 
instantaneous sEMG image. The magnitude of a pixel is 
calculated by 

�����	 ��� � �$%!�!�&' (�%!�!�&' �������������������������������������� 

and the orientation of a pixel is calculated by 

���	 �� � � )*+,- %�!�!�� �!�!�. �&���������������������������������������/� 

These magnitude �����	 ��� and orientation ���	 �� at each 
pixel are then used for calculating HOG.  
The main intuition behind HOG feature extraction is that, 
while individual �����	 ��� and ���	 �� are highly variable 
and subject to significant variations across nearby ��	 �� 
locations, even for the sEMG images generated by the same 
hand gesture, the cumulative statistics of the spatial 
distribution of the gradient orientation and magnitudes over 
small region of the sEMG images derived from the same 
gesture provide quite robust descriptors of the instantaneous 
sEMG image. 
To compute orientation histograms, the obtained 
instantaneous sEMG image gradient is divided into��� � 0 �/� non-overlapping rectangular cells, and each cell is of size � � � pixels (� � �). Four � � � neighboring cells form a 
block of size 1� � �1 (1 � �). A schematic diagram of HOG 
extraction process is illustrated in Fig. 2. There are total 21� �

Fig. 1. Schematic illustration of the proposed muscular activity 
recognition by instantaneous sEMG images. 



��1 � �
	�overlapping blocks are formed over an 
instantaneous sEMG image (where 21 � 3 and �1 � /	 
denotes the number of vertical and horizontal block 
respectively). In each � � � cell, the orientation histogram 
has 4 bins (4 � 3), which correspond to orientations 5� �6 47 	 where 5 � �	
	 8 	 4. Thus, each of the block 
contains�1� � �1� � �4 � ���dimensional HOG feature vectors 
and each instantaneous sEMG image contains 21 � �1 ��1� � �1� � �4� � ��� dimensional HOG feature vectors. 
This 588-dimensional HOG feature vector is used to 
represent the instantaneous sEMG image. It is noteworthy 
that  �	 1 and 4 are parameters and selecting values of these 
parameter tradeoff with the overall instantaneous sEMG 
image classification performance. Therefore, it is significant 
to select the optimum values of these parameters for 
extracting most discriminant HOG features. 

Now, we calculate the 28-D HOG feature vector from a block 
of  1� � �1 cells. Consider �����	 ��� and ���	 �� in one block 
as shown in Fig. 2(a) and 2(b). In Fig. 2(b), the orientation of 
the arrow represents ���	 �� and the length of the arrow 
stands for �����	 ���. In the experiments, the gradient 
orientation is transformed from �6 9 � 9 6 to � 9 � 9 6 
and then evenly quantized into 4 bins. The HOG feature 
vector �- : �;< of the first cell (top left in Fig. 2(a)) can be 
calculated by voting �-�5� = �-�5� (� ����>���	 ���	���5 � 
	 8 	 4���������������������0� 
where ����>���	 ��� indicates the magnitude from the 
gradient and �> is the quantized orientation. In the same way 
as �-	 the three-feature vectors ��'	 �?�*+@��A� can be 
generated from three other cells of a same block. By 
combining these feature vectors, the HOG feature vectors of 
a block turn into � � � ��-�	 �'�	 �?�	 �A��
� � : �;<�A.   
It is to be noted that the equation (4) is a simplified form. 
However, in our implementation, the trilinear interpolation is 
used to calculate the HOG features [12]. The trilinear 
interpolation smoothly distributes the gradient to 1� � �1 cells 
of a block to reduce the aliasing effect caused by the pixels 
near to the cell boundaries. This technique can also be robust 
against small distortions between sEMG images derived from 
the same gesture.  

Moreover, the gradient strengths vary over an instantaneous 
sEMG image owing to local variations. Therefore, the 
overlapped blocks on sEMG image are normalized 
individually so that each scaler cell-response contributes 
several components to final HOG feature vector. The 
normalization is performed by  

� � �� BC�C'' ( D'E ��������������������������������������������������������������� 

where, D is a small normalization constant used to avoid 
divided by zero [12]. This normalized HOG representation is 
used for instantaneous sEMG image classification.  
2.2. Pairwise SVM Classifier 
After the HOG feature extraction for representing an 
instantaneous sEMG image, the most important task is to 
employ a computationally effective classifier which has the 
high generalization ability for solving a multi-class 
classification problem. SVM [13][15] is essentially a binary 
classifier, however, multi-class classification problem is 
solved by training several binary SVM classifiers and an 
optimal global decision function is obtained by fusing the 
outputs of each of these binary classifiers. In addition, the 
decision function of SVM's is fully determined by the number 
of support vectors (SVs) which is substantially lower than the 
actual number of samples used in training, makes SVM 
computationally very efficient. Moreover, SVM trained on 
HOG features has become a popular method for across many 
visual perception tasks due to the performance and robust 
theory [14]. Why do SVM's trained on HOG features perform 
so well is still an open research issue in the literature. 
However, it is pointed out in [14] that preserving second-
order statistics and locality of interactions are fundamental to 
achieve good performance. All these motivated us to use and 
train pairwise SVM's classifiers on HOG features extracted 
from the instantaneous sEMG image.  

3. EXPERIMENTS
We tested our feature characterization method on CapgMyo 
data sets [10] (this database is made available from following 
website http://zju-capg.org/myo/data/index.html). This 
dataset was developed for providing a standard benchmark 
database (DB) to explore new possibilities for studying next-
generation muscle-computer interfaces (MCIs). Table I 
illustrates gesture in DB-a and DB-b. The CapgMyo database 
comprises 3 sub-databases (referred as DB-a, DB-b and DB-
c). However, as followed by the [4], DB-a has been used in 
our preliminary experiments to evaluate the performance of 
our proposed methods. In DB-a, 8 isotonic and isometric hand 
gestures were obtained from 18 of the 23 subjects and each 
gesture was also recorded for 10 times. For each subject, the 
recorded HD-sEMG data is filtered, sampled and the 
instantaneous sEMG image is generated using the method 
mentioned in Section 3. More explicitly, 8 different hand 
gestures are performed by every subject and each hand 
gestures are recorded for 10 times with a 1000 Hz sampling 
rate, which in total generates  �� � 
� � 
��� � ������ 
instantaneous sEMG images. Then, our HOG-based proposed 
feature extraction technique elaborated in Section 2.1 is 
applied to each of the instantaneous sEMG images. Thus, an 

Fig. 2. HOG extraction process (a) An instantaneous sEMG 
image is partitioned by non-overlapping cells and overlapping 
blocks (each block has (2×2) four cells). (b) Gradients 
information are overlaid over an instantaneous sEMG image (c) 
HOG in each block. The horizontal axis represents angle 
information and the vertical axis bears weighted histogram.



����� � F dimension HOG feature vectors are obtained. 
The each of the HOG feature vectors dimension F depend on 
the different HOG parameters such as �	 1 and 4. However, 
considering the low resolution instantaneous sEMG image 
and based on our preliminary experiments, we select � � �, 1 � � and 4 � 3 respectively. Hence, we obtained 21 � �1 ��1� � �1� � �4� � ��� dimension HOG feature vectors of an 
instantaneous sEMG image.  
Now, for every subject in DB-a, a pairwise SVMs classifier 
is trained to predict the desired hand gestures for each 
incoming sEMG images. The pairwise SVMs framework is 
based on LIBSVM, a library for support vector machines 
[16].  To conduct the above-mentioned gesture classification 
task, the obtained ����� � F dimension HOG feature 
vectors are randomly divided into three subsets such as 
training, validation and testing set. In this preliminary 
investigation, 50% of the HOG feature vectors from the entire 
feature set are randomly selected and used as a training set. 
In the same way, the remaining 50% of the HOG feature 
vectors are divided into validation and testing set. The 
validation set is used for model/kernel and parameter 
selection for pairwise SVMs. Due to computationally 
effective and reducing searching space for parameter 
selection, the RBF kernel�GH�>	 �IJ � K,LM�N,�OMP	 Q R �� is
used to train the obtained HOG feature set. There are two 
parameters for an RBF kernel which is a cost parameter �S� 
and kernel parameter Q. It is not known in advance which S 
and Q are the best for a given problem. Therefore, the 
parameter selection is performed. We used a grid search 
along with this T-fold (T � /) cross-validation scheme to find 
the optimum �S	 Q� on the validation set. It is recommended 
in [17] to use the exponentially growing sequences of S and Q to identify the good parameters. Hence, we use S ����U	 �A	 �?	 8 	 �,-
 and Q � ��,V	 �,U	 �,A	 8 	 �'
. 
Therefore, we examined with 3 � W � �/ combinations of �S	 Q� pairs. Then, the whole training feature set is trained 
using the pair of �S	 Q� that achieves the best cross-validation 
accuracy. Finally, this trained classifier is used to predict the 
test feature set. 
Confusion matrix generated from the predicted classification 
results were used as a performance indicator. The correctly 
classified (%) gesture classes are listed along the diagonal 

line of the Confusion matrix as presented in Table II. The 
average classification accuracy of the proposed methods is 
86.63% which is comparable to the state of the art methods. 
Using instantaneous values of HD-sEMG and SVM 
classifier, the average classification accuracy as low as 20% 
was reported in [4]. However, the average classification 
accuracy increased to 86.63% using proposed HOG and 
optimized parameter of pairwise SVMs. In addition, the recall 
or true positive rate (TPR) and the precision or the positive 
predictive value (PPV) [18] of each gesture classes are also 
computed and mentioned in Table III. The 86.62% average 
precision and recall of each class also indicate the potentiality 
of the HOG and pairwise SVMs for neuromuscular activity 
recognition. Finally, the experimental results demonstrate 
that: (i) HOG are effective features for unique representations 
of instantaneous HD-sEMG images (ii) Provided 
discriminant features and fine-tuning the hyper-parameter of 
the conventional classifiers such as pairwise SVMs, the state 
of the art recognition rate can be achieved for muscular 
activity recognition based on instantaneous HD-sEMG 

images. 
4. CONCLUSIONS

In this paper, we propose to use Histogram of Oriented 
Gradients (HOGs) as distinctive features and pairwise SVMs 
for robust neuromuscular activity recognition using 
instantaneous HD-sEMG images. 80000 instantaneous HD-
sEMG image frames for 8 different gesture of each subject 
from CapgMyo database were examined. The experimental 
results demonstrate that HOG are effective features for 
unique representations of instantaneous HD-sEMG images. 
Also, provided discriminant features and fine-tuning the 
hyper-parameter of the conventional classifiers such as 
pairwise SVMs, the state of the art recognition rate can be 
achieved for neuromuscular activity recognition based on 
instantaneous HD-sEMG images. 
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Table II. Confusion Matrix of the Proposed Neuromuscular 
Activity Recognition Method. 

Table III. Precision and Recall of every gesture classes. 
Class CL01  CL02 CL03 CL04 CL05 CL06 CL07 CL08 

Precision 87.52 87.44 88.38 82.32 88.57 85.07 88.66 85.03 

Recall 87.35 86.03 89.24 82.84 89.99 83.76 89.02 84.79 

Table I. Gestures in DB-a and DB-b (8 isotonic and isometric 
hand configurations) [10] 
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