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Abstract. Many data sets, crucial for today’s applications, consist es-
sentially of enormous networks, containing millions or even billions of ele-
ments. Having the possibility of visualizing such networks is of paramount
importance. We propose an algorithmic framework and a visual metaphor,
dubbed treebar map, to provide schematic representations of huge net-
works. Our goal is to convey the main features of the network’s inner
structure in a straightforward, two-dimensional, one-page drawing. This
drawing effectively captures the essential quantitative information about
the network’s main components. Our experiments show that we are able to
create such representations in a few hundreds of seconds. We demonstrate
the metaphor’s efficacy through visual examination of extensive graphs,
highlighting how their diverse structures are instantly comprehensible via
their representations.

Keywords: Schematic representations · Core-connectivity tree · Coreness
· Connected components

1 Introduction

Many data sets, crucial for today’s applications, consist essentially of enormous
networks, containing millions or even billions of elements. Hence, having the
possibility of visualizing such networks is of paramount importance. However,
drawing all the details of such huge networks using node-link representations
is obviously unpractical (see also [19]) even if the layout could be efficiently
computed in a distributed environment [3]. This originated a research strain
devoted to finding methods that produce drawings where either the graph is only
partially represented or it is schematically visualized.

Proxy drawings, such as those described in [9,10,11,16], fall under the category
of the first type. In a proxy drawing, a graph is depicted using a smaller graph
drawing that retains certain characteristics of the original graph.

Several types of schematic representations have been proposed. See, e.g.,
[1,8,18,20]. In [8] algorithms are presented for constructing schematic represen-
tations of graphs that can be decomposed using a set of separating vertices. In
graph thumbnails [18], every connected component of a graph is depicted as a
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disk, while biconnected components are represented by disks nested within the
disk of the connected component they belong to. Each biconnected component
comprises a stack of disks, with each disk representing a set of vertices with the
same “coreness”. The size of each disk is proportional to the number of vertices
in the set. The approach of [20] uses a 3-dimensional representation of a tree-map,
where the tree is given by the inclusion relationships between sets of vertices
having certain scalar attributes. In [1] the proposed metaphor for the schematic
representation is inspired to the map of a city. An approach that is somehow in
between proxy drawings and schematic representation is proposed in [6], where,
for graphs with up to two million edges, groups of vertices belonging to the same
cluster are represented by clouds and only inter-cloud edges are shown.

A vertex of a graph G has coreness k (see Fig. 1a) if it belongs to the maximal
induced subgraph of G such that each vertex has degree at least k, but it does not
belong to the maximal induced subgraph of G such that each vertex has degree
at least k + 1 [17]. Intuitively, the higher the node coreness the more the node
belongs to the denser innermost kernel of the graph. Each connected component
of the set of vertices with coreness at least k is called a k-core. Hence, a k-core is
a maximal induced connected subgraph such that each node has degree at least
k [17]. Equivalently, a k-core is a connected component of the graph obtained
from G by repeatedly deleting all vertices of degree less than k [4].

k-cores have several applications in social networks, bioinformatics, and
neurosciences. A survey can be found in [13]. They have been also used for the
visualization of graphs within the node-link metaphor. In [2], vertices in the same
k-core are placed on the same circle of a sequence of concentric circles. However,
the drawing standard does not seem suitable for very large graphs. The authors of
[15] propose a concentric circle placement of the vertices, based on their coreness,
and a variation of a force-directed layout to effectively display the structure of
the graphs. The technique is tested on graphs with at most 200, 000 edges.

In this paper we consider the problem of succinctly conveying the inner
structure of the denser portions of massive graphs. To this aim, we represent the
number of k-cores, their sizes, and their containment relationship (simultaneously
for the whole range of values of k) with a two-dimensional, one-page diagram
that we call treebar map. The treebar map combines the ability of conveying
inclusion relationships of a nested treemap with the effectiveness of representing
scale-free quantities of a logarithmic bar-chart. In order to scale with respect
to the number of coreness values of the vertices of huge graphs, we allow for a
simplification of the treebar map analogous to the one that is used for contour
lines showing elevations in a geographic map. In order to scale also with respect
to computational times, we exploit a data structure that we call core-connectivity
tree. Such a tree is similar to the “scale tree” of [20] where the scalar attribute
assigned to each vertex is its coreness. We describe an algorithm to produce
core-connectivity trees in time O(n+mα(n)), where α(n) is the inverse of the
Ackermann function, meeting the efficiency bound that was envisaged in [20].

We show the effectiveness of treebar maps by presenting the first visual
analysis of several real-world graphs ranging from 10 million to about 2 billion



Treebar Maps 3

edges. Due to the size of the considered instances, we could not compare with
the alternative 3D visualization of [1,20], which admittedly have scalability
problems [20], and which need full 3D navigation to avoid occlusion [1,20]. On
the other hand, Thumbnails [18] does not represent the k-core of the network,
but only how the number of vertices of a biconnected component change with
the coreness value. Also, this metaphor has been tested on graphs with up to a
couple of million of edges.

2 Core-Connectivity Trees

To efficiently build treebar maps we exploit a data-structure that we call “core-
connectivity tree”. We only consider graphs that are undirected, without isolated
vertices, and without self-loops.

We denote by c(u) the coreness of a vertex u. According to the definition, the
1-cores of G are its connected components. Conventionally, we assume the 0-core
of G to contain all the vertices of G. Observe that if G is connected its unique
1-core and its 0-core coincide. We define c(G) as the maximum k such that G
has a non-empty k-core. Consider a k-core Gk and a (k + 1)-core Gk+1 of G. We
have the following property.

Property 1 ([17,4]). Either Gk and Gk+1 are vertex-disjoint or the set of vertices
of Gk+1 is a subset of the set of vertices of Gk.

The core-connectivity tree T of an n-vertex graph G is the rooted tree defined
as follows. The leaves of T are the vertices of G. The non-leaf nodes of T are the
k-cores of G, with k = 0, . . . , c(G). The root of T is its 0-core. Let u be a leaf of T ,
its parent is the k-core with maximum k containing u. A k-core Gk is the parent
of a (k + 1)-core Gk+1 if the set of vertices of Gk+1 is a subset (not necessarily
proper) of the set of vertices of Gk. The fact that T is a tree directly descends
from Property 1. Observe that a k-core and a (k+1)-core can have the same set of
vertices. Hence, T can have nodes with just one child. To save space we contract
the chains of nodes with one child into a single node. Namely, let µk, . . . , µk+h

be a maximal chain of nodes, corresponding to k-, (k + 1)-, . . . , (k + h)-cores,
respectively, and such that the only child of µi is µi+1 i = 1, . . . , k + h− 1, we
contract µk, . . . , µk+h into one node µ, corresponding to all the i-cores of the
nodes of the chain. Hence, we denote by minc(µ) = k and by maxc(µ) = k + h
the minimum and maximum corenesses associated with µ, respectively. More
generally, we label all nodes of T with their minimum and maximum coreness.

Theorem 1. Le G be a graph with n vertices and m edges. The core-connectivity
tree of G has O(n) nodes and can be computed in O(n + mα(n)) time, where
α(n) is the inverse of the Ackermann function.

Proof. According to the definition of core-connectivity tree we have that all the
non-leaf nodes of T have at least two children and, since the leaves of T are the
n vertices of G, the number of nodes of T is O(n). First observe that the value of
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Algorithm 1: Procedure InsertEdge(F, (u, v))

Input :A forest F whose leaves are the vertices of G, an edge (u, v) of G
Uses :Leaf(F, u): Returns the leaf of F corresponding to u

Root(µ): Returns the root of the tree containing µ in F
NewNodeWithChildren(µ1, µ2): Creates a new node for F

and adds children µ1 and µ2

AddChild(ρ, µ): Adds µ as a child of ρ in F
Side Effects :Updates F

1 µu ← Leaf(F, u);
2 µv ← Leaf(F, v);
3 ρu ← Root(µu);
4 ρv ← Root(µv);
5 if (ρu = µu) and (ρv = µv) then
6 ρ← NewNodeWithChildren(µu, µv);
7 ρ.maxcoreness← c(u, v);

8 else if (ρu ̸= µu) and (ρv = µv) then
9 if ρu.maxcoreness = c(u, v) then AddChild(ρu, µv) ;

10 else
11 /* Necessarily ρu.maxcoreness > c(u, v) */
12 ρ← NewNodeWithChildren(ρu, µv);
13 ρ.maxcoreness← c(u, v);

14 else if (ρu = µu) and (ρv ̸= µv) then
15 if ρv.maxcoreness = c(u, v) then AddChild(ρv, µu) ;
16 else
17 /* Necessarily ρv.maxcoreness > c(u, v) */
18 ρ← NewNodeWithChildren(µu, ρv);
19 ρ.maxcoreness← c(u, v);

20 else if (ρu = ρv) then return /* Nothing to do */ ;
21 else
22 /* (ρu ̸= µu) and (ρv ̸= µv) and (ρu ̸= ρv) */
23 if ρu.maxcoreness < ρv.maxcoreness then AddChild(ρv, ρu) ;
24 else
25 /* ρu.maxcoreness ≥ ρv.maxcoreness */
26 AddChild(ρu, ρv);

minc(µ) for a non-leaf node µ of T can be easily obtained as maxc(ν) + 1, where
ν is the parent of µ. Hence, in the following we only label each non-leaf node µ
of T with the value of maxc(µ). The value of minc(µ) is computed at the end of
the process. Second, observe that if some non-leaf node µ of T with maximum
coreness maxc(µ) and with children ν1, ν2, ..., νh is replaced with a subtree Tµ

such that: (i) all internal nodes of Tµ are labeled with maxc(µ); (ii) all internal
nodes of Tµ have degree at least two; and (iii) the leaves of Tµ are ν1, ν2, ..., νh,
then tree T ′ would also have O(n) nodes. Also, given T ′ we can construct in
linear time the core-connectivity tree T by contracting all edges that join a pair
of nodes µ1 and µ2 with maxc(µ1) = maxc(µ2). Based on the above consideration
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we focus on constructing a tree T ′. We first describe an O(nm)-time algorithm
for constructing T ′ and then we refine it to an O(n+mα(n))-time algorithm.

We label all vertices of G with their coreness in O(n + m) time with the
algorithm in [5,14]. Then, we label each edge (u, v) with its coreness c(u, v),
defined as the minimum between c(u) and c(v). Observe that c(u, v) is the higher
value of k for which (u, v) belongs to a k-core. We sort the edges in decreasing
order of their coreness. This can be done in O(m) time by using a bucket-sort.

Finally, we launch an iterative procedure that, for each edge in decreasing
order of coreness, updates a forest F that at the end of the process yields a
tree T ′. Forest F is initialized wiht one isolated node n(v) for each vertex v of
G. Each non-leaf node µ of F will be labeled with a maximum coreness value
maxc(µ). We launch Procedure InsertEdge(F, (u, v)) on the current edge (u, v)
(refer to Algorithm 1). The procedure first finds the roots ρu and ρv of the two
trees of F containing the leaves µu and µv corresponding to u and v, respectively
(lines 1–4). We have four cases:

Case 1: If ρu = µu and ρv = µv we create a parent ρ for µu and µv and set
maxc(ρ) = c(u, v) (lines 6–7). Case 2: If ρu ̸= µu and ρv = µv then we have two
cases. If c(u, v) = maxc(ρu) then we add µv as a child of ρu. Otherwise (i.e.,
c(u, v) < maxc(ρu)), we create a parent ρ for ρu and µv and set maxc(ρ) = c(u, v).
Case 3: If ρu = ρv, then necessarily c(u, v) = maxc(ρu) and we proceed with the
next edge. Case 4: If ρu ≠ µu, ρv ̸= muv, and ρu ̸= ρv then we have two cases.
If c(ρu) < maxc(ρv), then we set ρv as a child of ρv (observe that in this case
c(u, v) = maxc(ρv)). If maxc(ρu) = maxc(ρv), then we set an arbitrary chosen
root, say ρv, as a child of the other root, in this case ρu.

The above described algorithm has complexity O(nm). Indeed, we have m
iterations, one for each edge (u, v), and the search for the root of the trees u and
v belong to may take O(n) time, as the height of the trees of F may be O(n)
(recall that two adjacent nodes may have the same maximum coreness).

In order to refine the above algorithm to an O(n + mα(n))-time one, we
associate F with a Union-Find data structure [7]. This data structure represents
a collection of disjoint sets of elements and elects a representative element for each
set. It supports the O(1)-time operation of union of two sets and the O(α(n))-time
search for the representative element of the set a given element belongs to. We
use the Union-Find data-structure to allow us the efficient retrieval of the root of
the tree of F a node n(v) belongs to. Precisely, for each tree Tρ of F with root ρ
we associate a set Sρ containing the leaves of Tρ and we add a pointer from the
representative element of Sρ to ρ. When an edge (u, v) is processed, we find in
O(α(n))-time the representative elements of n(u) and n(v) and, therefore, the
roots ρ(n(u)) and ρ(n(v)). When two trees with roots ρ′ and ρ′′ of F are joined,
we merge the corresponding sets Sρ′ and Sρ′′ and point from the representative
element of the obtained set Sρ = Sρ′ ∪ Sρ′′ to the root ρ of the obtained tree
Tρ of F . Once a single tree T ′ has been obtained, we construct in linear time
the core-connectivity tree T by contracting all edges that join a pair of nodes µ1

and µ2 with maxc(µ1) = maxc(µ2). Finally, we compute the value of minc(µ) for
each internal node µ of T .
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3 From Core-Connectivity Trees to Treebar Maps

In the previous section, we discussed the efficient computation of a core-connecti-
vity tree, denoted as T , for a given graph G. Now, let’s remove from T the leaves
(representing the vertices of G) and let’s explore a possible method to construct
a schematic representation of G using a similar approach outlined in [18]. This
approach involves creating a tree-map representation of T , where each k-core
corresponds to a closed region whose area is proportional to the size of the k-core.
Additionally, the inclusion relationship between a k-core a and a (k + 1)-core
b is represented by the inclusion between the regions representing a and b. To
enhance visual perception of the relationship between coreness and density, we
can assign colors to the regions based on their coreness. For example, we can use
a color scheme where the color of b is darker than the color of a, indicating their
respective coreness levels.

However, this simple plan encounters two scalability challenges that must be
addressed in order to create a practical schematic representation of G. The first
challenge, referred to as Challenge CS, arises due to the varying cardinalities of the
k-cores involved in T . Sets with significantly different magnitudes of cardinalities
pose difficulties when attempting to represent them effectively within the tree-
map structure. The second challenge, that we call Challenge CT, is associated
with the size of T . As G increases in size or complexity, the corresponding tree T
also grows in size, and we will see in Sect. 4 that graphs with tens of millions of
edges can have connectivity-trees with thousands of internal nodes. Visualizing
large trees can be challenging in terms of the clarity of the representation.

When addressing Challenge CS, one potential solution would be to assign a
non-linear area to the region representing a k-core µ, with the aim of accommodat-
ing the varying cardinalities of the sets. For instance, a logarithmic dependency
on the size of µ could be considered. However, implementing such a solution
would conflict with the tree-map representation, specifically when dealing with
inclusion relationships. To illustrate this, let’s consider two k + 1-cores, µ1 and
µ2, both contained within a k-core µ. It is possible that the logarithm of the size
of µ1 added to the logarithm of the size of µ2 could be smaller than the logarithm
of the size of µ. This discrepancy can lead to misleading tree-map representations,
particularly when comparing the sizes of the involved sets. Therefore, utilizing a
logarithmic or non-linear area assignment, while attempting to address Challenge
CS, would introduce inconsistencies in accurately representing the set sizes within
the tree-map structure.

When considering Challenge CT, one possible solution could be to focus on
visualizing only the lower sections of T , that contain the k-cores with the largest
k values. This approach aims to highlight the most significant or interesting parts
of the graph’s structure while disregarding the rest. However, it is important to
note that this approach contradicts the intention of providing a comprehensive
and high-level overview of the entire graph G. While focusing solely on the highest
k-cores may be useful for specific analysis purposes, it may not fulfill the broader
goal of offering a comprehensive visual summary of the entire graph.
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Fig. 1: (a) A node-link representation of a graph. Vertices are labeled with their
coreness. (b) The treebar map of the graph in (a). The bar-chart is at the top
and the horizontal-treemap at the bottom.

To address the challenges of CS and CT, we introduce a novel visualization
paradigm called treebar map, which incorporates the following concepts (see in
Fig. 1a the node-link drawing of the graph whose treebar map in represented in
Fig. 1b). A treebar map combines a horizontal-treemap H to depict the inclusion
relationships between k-cores with a bar-chart B to display the sizes of k-cores.
The treemap H is horizontal so that each of its regions is topped by the bar of B
representing its size in logarithmic scale.

More formally, a treebar map is a pair ⟨H,B⟩, where H is a horizontal treemap
and B is a bar-chart, defined as follows. Let µ be a node of T . We have seen in
Sect. 2 that, in general, µ is associated with a range of coreness values. This
happens when it represents a k-core that does not change for several consecutive
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values of k. Let minc(µ) and by maxc(µ) be the minimum and maximum coreness
associated with µ, respectively. Let V (µ) the set of vertices of any of the k-cores
of G corresponding to µ. We define nµ = |V (µ)|. Further, suppose that µ has
at least one child and let µ1, . . . , µh (h ≥ 1) be the children of µ. Observe
that: (1) since we have removed from T all its leaves, T can contain nodes
with exactly one child and hence h may be equal to 1; (2) for each µi we have
minc(µi) = maxc(µ) + 1. We define V −(µ) as the subset of vertices of V (µ)
whose coreness is “not enough” to enter in any of V (µ1), . . . , V (µh). Formally, a
vertex v ∈ V (µ) belongs to V −(µ) if c(v) < minc(µ1). We define n−

µ = |V −(µ)|.
We have that n−

µ = nµ −
∑h

i=1 nµi
. We order the children of each node of T in

ascending order based on the height of their subtrees.

The horizontal tree-map H is recursively defined as an arrangements of
rectangles, as shown in Fig. 1b. Base case. If T consists of a single node µ, then
µ is represented with a unit square. Inductive case. Let µ be the root of T .
Since we are not in the base case, µ has at least one child. Let µ1, . . . , µk (k ≥ 1)
be the children of µ. Then µ is represented with a rectangle consisting of the
horizontal alignment of: a unit square representing V −(µ) plus the rectangles
representing µ1, . . . , µk, ordered according to the order of T . From this definition
it descends that the unit squares belonging to H either correspond to leaves of T
or correspond to sets V −(µ) for all non-leaf nodes µ of T . In Fig. 1b, the tree-map
represents a graph with two 1-cores. One of the 1-cores contains a 2-core, which
in turn contains three 3-cores. The second and third are also 4-cores. Further,
the third one contains a 5-core. The labels on the tree-map indicate the coreness
range of each set of vertices, and the rectangles are colored on a scale according
to their maximum coreness. Also, the rectangles are slightly resized to emphasize
the inclusion relationships.

We can now define the bar-chart B positioned above H. Each bar in B
corresponds to either a leaf µ of T or to a set V −(µ) for some non-leaf node µ
of T . In the first case, the height of the bar is logarithmic in nµ, while in the
second case the height is logarithmic in n−

µ . In the bar-chart of Fig. 1b we observe
that the first 1-core has 19 vertices. The second 1-core contains 2 vertices with
coreness 2, while all its other vertices are part of a 2-core. This 2-core has 4
vertices with coreness 2, and the remaining vertices contribute to deeper k-cores.
The deepest is a 5-core with 6 vertices. Note that in B, no logarithms of sums
are used. As a result, all the figures can be compared in a fair manner.

Observe that the width of H is directly proportional to the number of nodes
in the core-connectivity tree T , while its height remains fixed at one. This aspect
poses a challenge in creating one-page schematic representations for graphs that
have a core-connectivity tree T with a significant number of nodes, such as
exceeding 25-30 nodes. As the number of nodes increases beyond these thresholds,
the spatial constraints of fitting such a wide structure within a one-page drawing
become unsustainable and impractical. Considering the findings that will be
presented in Table 1, where the number of nodes in T can reach the order of
thousands within our range of interest, it becomes clear that the metaphor
presented thus far does not adequately address Challenge CT.
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(a) (b)

Fig. 2: (a) A treebar map of the graph shown in Fig. 1a. The contour lines span
two levels of coreness (coreness scale = 1 : 2). The label 4-4 under the third bar
indicates that there are no vertices of coreness 5 in the represented set. (b) A
treebar map of the same graph with coreness scale = 1 : 4.

In order to achieve a scalable representation, we employ a visual simplification
technique similar to what is used in geographic maps. This simplification becomes
evident when examining Fig. 1b. In this figure, the curves separating one set
from another can be interpreted as contour lines in a physical map, representing
changes in coreness height. To scale the representation, instead of drawing contour
lines at every change of 1 unit of coreness, we can use contour lines at larger
intervals, such as every 2 units. This is illustrated in Fig. 2a. In this simplified
representation, the transitions between coreness 0 and 1, 2 and 3, and 4 and 5 are
no longer visible. While the fine details of the first small hill with coreness 1 from
Fig. 1b are lost, the overall view and the structure of the graph are preserved.
Importantly, users are familiar with the concept of contour lines and understand
that their accuracy can vary depending on the scale of the map. This allows them
to interpret the simplified representation accordingly. By leveraging this analogy
to geographic maps, we strike a balance between scalability and preserving the
key insights of the graph’s structure. We call coreness scale (denote by 1 : t) the
inverse of the number of coreness units between consecutive contour lines of the
treemap. While the coreness scale of Fig. 2a is 1 : 2, Fig. 2b shows a treebar map
of the graph of Fig. 1a with coreness scale 1 : 4.

More formally, given a core-connectivity tree T and an integer t > 1,
representing the number of coreness units that we want to collapse in the
representation, we can process T as follows to obtain a new tree T ′ that
can be represented using the metaphor described above. To ensure clarity,
let us assume that all nodes µ of T satisfy minc(µ) = maxc(µ) (refer to
Fig. 3). If this is not the case (minc(µ) < maxc(µ)), just replace µ with
a chain µ1, . . . , µk consisting of k = minc(µ) − maxc(µ) + 1 nodes, where
minc(µi) = maxc(µi) = minc(µ) + i − 1 (i = 1, . . . , k). Next, we divide T
in layers. The first layer L1 includes nodes µ with 0 ≤ minc(µ) ≤ t − 1. The
second layer L2 includes nodes µ with t ≤ minc(µ) ≤ 2t− 1. In general, layer Li

includes nodes µ with (i − 1) · t ≤ minc(µ) ≤ i · t − 1, until i · t − 1 is greater
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Fig. 3: (a) Tree T for the graph depicted in Fig. 1a. (b) The same tree after
aggregation to generate the treebar map with coreness scale = 1 : 2.

or equal than the maximum coreness of T . Now, consider the subgraph Fi of T
induced by the nodes in layer Li. We observe that Fi is a forest (see Fig. 3a).
For each tree Tij ∈ Fi We collapse Tij into a single node νj (see Fig. 3b). The
parent of νj is the parent of the root of Tij in T , if it exists. The children
of νj are the children in T of all the leaves of Tij . Additionally, we have that
minc(νj) = (i − 1) · t = minν∈Tij

minc(ν) and maxc(νj) = maxν∈Tij
(maxc(ν)).

Once T ′ has been computed, we collapse chains of nodes with only one child into
a single node, updating its minimum and maximum coreness accordingly. Finally,
we represent T ′ with exactly the same metaphor described above.

4 Leveraging Treebar Maps for the Visual Analysis of
Large Graphs

In this section, we demonstrate the efficiency and the effectiveness of treebar
maps in providing a concise representation of the inner structure of graphs. We
conducted our experiments using a library of graphs provided by Konect [12].
Specifically, we created a sample set comprising graphs with the following charac-
teristics: (1) Number of edges ranging from ten million to two billion (we halted
at the MAXINT value of 2,147,483,647 for the C language, but it is possible to
surpass this limit through certain hacks). (2) Absence of multiple edges. (3) Non-
bipartite nature. Since the sample set contained a substantial number of graphs
(38) derived from Wikipedia hyperlink networks, we chose to include only eight
(roughly 20%) of them in our analysis.

Before computing a treebar map, all graphs underwent a preprocessing step in
which self-loops were removed. Additionally, some graphs in the sample set were
directed graphs, but we treated them as undirected graphs. In the preprocessing
phase, we replaced bidirectional edges with a single undirected edge.
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All computations were performed on a server equipped with Intel® Xeon™
Gold 6126 CPU and 768 GB of RAM.

Table 1 presents the following information for each graph G in the sample set:
the number n of vertices, the number m of edges, the number m′ of edges after
preprocessing, the maximum vertex degree, the computation time for computing
the core-connectivity tree, the maximum coreness c(G), and the number of
non-leaf nodes in the core-connectivity tree. Regarding the computation time,
it should be noted that once the core-connectivity tree is obtained, the time
required for generating the treebar map representation is negligible. Further,
the system that computes the treebar map automatically proposes to the user a
treebar map with a coreness scale 1 : t such that the bars of the bar-chart are
close to 30, so that the treemap fits a page. This is done by performing a binary
search on the value of t. The user can anyway change t to any possible value.

Table 1: Computation times and characteristics of the core-connectivity trees of
the graphs in the sample set.

Graph G n m

m′

after prepro-
cessing

Max
vertex
degree

Time
(s)

c(G) # non-
leaf
nodes

dimacs9-W 6,262,104 15,119,284 7,559,642 9 9.4 3 117

as-skitter 1,696,415 11,095,298 11,095,298 35,455 10.9 111 902

higgs-twitter-social 456,626 14,855,842 12,508,413 51,386 11.2 125 282

dimacs10-in-2004 1,382,867 13,591,473 13,591,473 21,869 11 488 4,647

petster-catdog-friend 623,754 13,991,746 13,991,746 80,634 13.4 419 823

zhishi-hudong-internallink 1,984,484 14,869,484 14,428,382 61,440 17.3 266 5,142

flickr-links 1,715,255 15,551,250 15,551,249 27,224 15.2 568 23,579

petster-carnivore 623,766 15,699,276 15,695,166 80,637 13.4 1159 8,997

dimacs-10-eu-2005 862,664 16,138,468 16,138,468 68,963 13 388 253

patentcite 3,774,768 16,518,947 16,518,947 793 22.9 64 4,142

dimacs9-CTR 14,081,816 33,866,826 16,933,413 8 21.3 3 325

libimseti 220,970 17,359,346 17,233,144 33,389 15.4 273 273

zhishi-hudong-relatedpages 2,452,715 18,854,882 18,690,759 204,277 20.3 16 12,553

wikipedia link ro 903,416 32,763,547 21,875,288 139,792 18.1 887 3,004

soc-pokec-relationships 1,632,803 30,622,564 22,301,964 14,854 26.5 47 53

flickr-growth 2,302,925 33,140,017 22,838,276 27,937 25.2 600 34,866

dimacs9-USA 23,947,347 57,708,624 28,854,312 9 40.4 3 538

wikipedia-growth 1,870,709 39,953,145 36,532,531 226,073 43.8 206 292

soc-LiveJournal1 4,846,609 68,475,391 42,851,237 20,333 53.9 372 2,956

livejournal-links 5,204,176 49,174,464 48,709,621 15,016 60.1 374 6,871

wikipedia link ja 1,767,268 83,202,622 65,495,572 274,537 72 887 506

wikipedia link de 3,603,726 96,865,851 77,546,982 434,234 89.1 837 1,409

wikipedia link it 2,148,791 104,719,994 77,875,131 286,585 75.7 899 520

wikipedia link sv 6,100,692 106,749,786 99,864,874 2,732,817 95.2 357 310

wikipedia link sr 3,175,009 139,586,199 103,310,837 369,566 80 1,869 718

orkut-links 3,072,441 117,184,899 117,184,899 33,313 138.3 253 253

dimacs10-uk-2002 18,483,186 261,787,258 261,787,258 194,955 235.1 943 39,551

wikipedia link en 13,593,032 437,217,424 334,591,525 1,052,326 381.2 1,114 1,215

twitter 41,652,230 1,468,365,182 1,202,513,046 2,997,487 1828.1 2,488 2,187

twitter-mpi 52,579,682 1,963,263,821 1,614,106,187 3,503,677 2412.8 2,647 32,202

friendster 68,349,466 2,586,147,869 1,811,849,342 5214 3147.9 304 329,745
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Fig. 4: Network wikipedia link ja, coreness scale = 1 : 20

We have computed the treebar maps for all the graphs listed in Table 1.
However, due to space limitations, some of them are included in the Appendix.
Here, we discuss the features of a few examples. Let’s consider Fig. 4 and Fig. 5 as
our first examples. Both graphs represent Wikipedia link networks. The treebar
maps reveal that both graphs exhibit a “telescopic” structure, where k-cores with
increasing values of k are nested inside each other. Additionally, both graphs
contain a component with a coreness of approximately 750-900, consisting of
about one thousand vertices. However, the graph in Figure 5 has a more complex
shape, featuring a large gap of coreness of more than 100 units where only four
vertices are present. This implies that the vertices with coreness greater than 600
compose a very dense set upon a connected component with much lower density.
A quite uniform telescopic structure is shown by the graph represented in Fig. 6.
At this level of detail, the vertices appear to be almost uniformly distributed
among the coreness levels. In all three cases, the comparability of the graphs is
enhanced by the chosen order of the core-connectivity tree.

A contrasting situation is in Fig. 7. It shows several k-cores with varying values
of k and different numbers of vertices. Specifically, there are 13 sets representing
components with coreness ranging from 81 to approx. 100, each consisting of
around 100 vertices. Further, there are two plateaus with higher coreness. Within
one of these plateaus, four components exhibit a somewhat telescopic shape.

A similar situation happens for the graph in Fig. 8. It has essentially many
distinct components of 10-100 vertices each, all having a value of coreness high
enough to overcome the inverse of the coreness scale. Also there are more than
two million of vertices not having enough coreness to enter such components.



Treebar Maps 13

Fig. 5: Network wikipedia link de, coreness scale = 1 : 25

Fig. 6: Network libimseti, coreness scale = 1 : 9

5 Conclusions and Open Problems

We have presented a metaphor, called treebar map and based on the concept of
coreness, for the schematic representation of huge graphs. Such representation
can be efficiently computed exploiting a data structure called core-connectivity
tree. We have shown the effectiveness of the metaphor presenting the schematic
representations of the graphs contained in a widely used graph library. Several
problems deserve further investigation.
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Fig. 7: Network livejournal-links, coreness scale = 1 : 81

Fig. 8: Network zhishi-hudong-relatedpages, coreness scale = 1 : 13

(a) (b)

Fig. 9: The treebar maps for dimacs9-W with coreness scale 1 : 3 (a) and 1 : 4 (b).

1. Theorem 1 shows that the core-connectivity tree of an n-vertex and m-edges
graph can be computed in O((n+m)α(n)) time. Can this upper bound be
lowered to O(n+m) time?

2. The proposed metaphor reaches its limits in the example of Fig. 9, dedicated
to a graph with a peculiar structure. Despite its extensive size, with over six
million vertices and seven million edges, the maximum vertex degree is merely
9, resulting in a maximum coreness of only 3. The corresponding treebar
map (Fig. 9a) becomes too large to be represented with coreness scale 1 : 3.
Conversely, employing a coreness scale of 1 : 4 (Fig. 9b) leads to the loss of
significant details, rendering it less informative. We have the same behaviour
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for graphs dimacs9-CTR and dimacs9-USA which are omitted. It would be
interesting to equip treebar maps with new features for these specific cases.
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A Treebar Maps Produced in Our Experiments

Fig. 10: Network as-skitter, coreness scale = 1 : 4

Fig. 11: Network higgs-twitter-social, coreness scale = 1 : 4
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Fig. 12: Network dimacs10-in-2004, coreness scale = 1 : 86

Fig. 13: Network petster-catdog-friend, coreness scale = 1 : 14



20 Di Battista et al.

Fig. 14: Network zhishi-hudong-internallink, coreness scale = 1 : 6

Fig. 15: Network flickr-links, coreness scale = 1 : 20
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Fig. 16: Network petster-carnivore, coreness scale = 1 : 34

Fig. 17: Network dimacs10-eu-2005, coreness scale = 1 : 12

Fig. 18: Network patentcite, coreness scale = 1 : 19
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Fig. 19: Network wikipedia link ro, coreness scale = 1 : 32

Fig. 20: Network soc-pokec-relationships, coreness scale = 1 : 2
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Fig. 21: Network flickr-growth, coreness scale = 1 : 20

Fig. 22: Network wikipedia-growth, coreness scale = 1 : 7
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Fig. 23: Network soc-LiveJournal1, coreness scale = 1 : 89

Fig. 24: Network wikipedia link it, coreness scale = 1 : 34
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Fig. 25: Network wikipedia link sv, coreness scale = 1 : 12

Fig. 26: Network wikipedia link sr, coreness scale = 1 : 53
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Fig. 27: Network orkut-links, coreness scale = 1 : 8

Fig. 28: Network dimacs10-uk-2002, coreness scale = 1 : 275
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Fig. 29: Network wikipedia link en, coreness scale = 1 : 34

Fig. 30: Network twitter, coreness scale = 1 : 100
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Fig. 31: Network twitter mpi, coreness scale = 1 : 100

Fig. 32: Network friendster, coreness scale = 1 : 18
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