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Abstract

In this paper, we describe an information agent, that re-
sides on a mobile computer or personal digital assistant
(PDA), that can autonomously acquire sensor readings from
pervasive sensor networks (deciding when and which sen-
sor to acquire readings from at any time). Moreover, it can
perform a range of information processing tasks including
modelling the accuracy of the sensor readings, predicting
the value of missing sensor readings, and predicting how
the monitored environmental parameters will evolve into the
future. Our motivating scenario is the need to provide sit-
uational awareness support to first responders at the scene
of a large scale incident, and we describe how we use an
iterative formulation of a multi-output Gaussian process to
build a probabilistic model of the environmental parameters
being measured by local sensors, and the correlations and
delays that exist between them. We validate our approach
using data collected from a network of weather sensors lo-
cated on the south coast of England.

1 Introduction

Sensor networks have recently generated a great deal of re-
search interest within the computer and physical sciences,
and their use for the scientific monitoring of remote and
hostile environments is increasingly common-place (see [5]
for a review of such environmental sensor networks). More
recently, the notion of pervasive sensor systems has gained
ground, and trial deployments of such networks are now
taking place (the CitySense project of Harvard University is
a good example [7]). In these systems, sensors owned by
multiple stakeholders are ubiquitously deployed within ur-
ban environments and make their information available to
multiple users directly through standard web interfaces.
Such open systems have many applications in-
cluding traffic and pollution monitoring and local
weather forecasting. =~ Within the ALADDIN project
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(www.aladdinproject.org) we are seeking to use
such networks to provide situational awareness support to
first responders at the scene of a large scale incident. We
envisage providing these first responders with a mobile
computer or personal digital assistant (PDA) that is capable
of collecting information from local sensors, compiling
a coherent world view, and then assisting in decision
making. An example application would be to provide fire
fighters with local weather information, and to predict wind
changes using observations from nearby sensors.

Using pervasive sensor networks within such applica-
tions presents many novel challenges; not least the need
for low-power wireless communication standards, self-
describing data formats, and standard protocols such that
sensors can advertise their existence and capabilities to po-
tential users of the network. However, more significantly
for us, many of the information processing tasks that would
previously have been performed by the owner or single
user of an environmental sensor network (such as detect-
ing faulty sensors, fusing noisy measurements from several
sensors, and deciding how frequently readings should be
taken) are now delegated to the multiple different users of
the system, all of whom may have different goals and may
be using sensor readings for very different tasks. Further-
more, the open nature of the network (in which additional
sensors may be deployed at any time, and existing sensors
may be removed, repositioned or updated) means that these
users may have only limited knowledge of the precise loca-
tion, capabilities, reliability, and accuracy of each sensor.

Thus, there is a clear need for the mobile computers and
PDAs carried by our first responders to incorporate an in-
formation agent that is capable of autonomously perform-
ing the acquisition and processing of information from such
pervasive sensor networks. Given this, in this paper, we de-
scribe our work developing just such an agent. This agent
uses a novel iterative formulation of a multi-output Gaus-
sian process (described in more detail in [8]) to build a prob-
abilistic model of the environmental parameters being mea-
sured by local sensors, and then uses this model to perform
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Figure 1: The Bramble Bank weather station and associated
web site (see www . bramblemet.co.uk).

a number of information processing tasks including: mod-
elling the accuracy of the sensor readings, predicting the
value of missing sensor readings, predicting how the mon-
itored environmental parameters will evolve in the near fu-
ture, and performing active sampling by deciding when and
which sensor to acquire readings from.

In more detail, we describe how we have used a network
of weather sensors on the south coast of England to val-
idate this approach, and we illustrate its effectiveness by
benchmarking against the more conventional single-output
Gaussian processes that models each sensor independently.
Our results on this data set are promising, and indicate that
this approach will ultimately allow us to deploy information
agents with minimal domain knowledge, and use principled
machine learning techniques to autonomously acquire sen-
sor readings, and perform information processing tasks.

2 Information Processing Problem

As discussed above, we require that our information agent
be able to autonomously perform data acquisition and in-
formation processing despite having only limited specific
knowledge of each of the sensors in its local neighborhood
(e.g. their precise location, reliability, and accuracy). To
this end, we require that it explicitly represent:

1. The noise in the sensor readings, and hence, the uncer-
tainty in the environmental parameter being measured;
sensor readings will always incorporate some degree
of measurement noise, and thus there will always be
some uncertainty in the agent’s world picture.

2. The correlations or delays that exist between sensor
readings; sensors that are close to one another, or in
similar environments, will tend to make similar read-
ings, while many physical processes involving moving
fields (such as the movement of weather fronts) will
induce delays and correlations between sensors.

We then require that the information agent use this explicit
representation in order to:

1. Perform efficient active sampling by selecting when to
take a reading, and which sensor to read from, such

Figure 2: Java implementation of the information agent.

that the minimum number of sensor readings are used
to maintain an agent’s world uncertainty below a spec-
ified threshold (or similarly, minimising uncertainty
given a constrained number of sensor readings).

2. Perform regression and prediction of sensor readings;
that is, interpolate between sensor readings to predict
the value of missing sensors (i.e. sensors that have
failed or are unavailable through network outages), and
perform short term prediction of sensor readings into
the future in order to support decision making.

More precisely, we consider a multivariate regression prob-
lem in which we have m = 1... M environmental param-
eters of interest (such as air temperature, wind speed or di-
rection specified at different sensor locations) represented
by the space Y = RM. Given a set of N sensor readings,
D = {(t1,y1),.-.,(tn,yn)}, where y; may be fully or
partially specified (corresponding to observation of all, or
some subset of the environmental parameters), we attempt
to infer the value of y = {y',...,y*} € ) at any time ¢.

3 Gaussian Processes

Multivariate regression problems of the form described
above have often been addressed using multi-layer neural
networks. However, Gaussian processes (GPs) are increas-
ingly being applied in this area, since they represent a pow-
erful way to perform Bayesian inference about functions
[11]. When using a GP, we assign a multivariate Gaussian
prior distribution over the outputs of the regression prob-
lem and then produce analytic posterior distributions for
outputs of interest, conditional on whatever sensor readings
have been collected. Crucially, the posterior distributions
are also Gaussian, and thus we have a predictive mean, and
also a variance that explicitly represents uncertainty.
Gaussian process regression has a long history of use
within geophysics and geospatial statistics (where the pro-
cess is known as kriging [3]), but has only recently been
applied within sensor networks. Examples here include the
use of GPs to represent spatial correlations between sensors
in order that they may be positioned to maximise mutual
information [6], and the use of multi-variate Gaussians to
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represent correlations between different sensors and sensor
types for energy efficient querying of a sensor network [4].

Our work differs from this earlier work in that we use
a novel iterative formalism of a multi-output GP to repre-
sent both temporal correlations, and correlations and delays
between sensors. Space precludes a full description of this
algorithm (see [8] for the full details), however we describe
the intuition behind this algorithm here.

3.1 Covariance Functions

The covariance matrix of the GP informs it of how different
outputs are related to one another. To generate this matrix,
we use covariance functions. Fortunately, there exist a wide
variety of functions that can serve in this purpose [1], all of
which can then be combined and modified in a multitude of
ways. This gives us a great deal of flexibility in our mod-
elling of functions, and covariance functions can be found
to model periodicity, delay, noise and long-term drifts.

More specifically, we represent the covariance matrix by
the Hadamard product of a covariance function over time
alone, and a covariance function over environmental param-
eter labels alone, such that:

K([m,t],[m/,t']) = Clm,m" Kt — dm,t — dp) (1)

where d represent delays between environmental parame-
ters. Assuming no prior knowledge of what the correlations
over environmental parameters are, we use the completely
general spherical parameterisation, s, such that:

C(m,m’) = diag(1)s”'s diag(1) )

where 1 gives represents an intuitive length scale for each
environmental parameter, and s”'s is the correlation ma-
trix [9]. Similarly, we can represent correlations over time
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Figure 3: Prediction and regression of tide height data for (a) independent and (b) multi-output Gaussian processes.

with a wide variety of covariance functions, incorporating
as much domain knowledge as we have. However, in gen-
eral, we find that the additive combination of a periodic term
and a disturbance term performs well on a wide range of
data sets, and we represent both using the standard Matérn
class (with v = 5/2), given by:

2
K(t,t')=h? (1 + V5 + 5%) exp <f\/5r> 3)

’
where r = |&=4
w

for non-periodic terms, and r =

. — / . .
sin 7 [£=L |for periodic ones.

3.2 Marginalisation

In order to use the GP for regression or prediction, the cor-
relation hyperparameters (i.e. 1, s and d), along with oth-
ers such as the periods and amplitudes of each covariance
term (i.e. h and w), must be marginalised from our model.
To each we assign an independent Gaussian or log Gaus-
sian prior distribution (if the hyperparameter is strictly pos-
itive). We then use Bayesian Monte Carlo [10] in order to
numerically resolve the non-analytic marginalisation inte-
grals. This essentially involves the assignation of another
GP to the likelihood of the data as a function of the covari-
ance hyperparameters. We evaluate predictions for a set of
sample hyperparameters, and use this second GP to infer
what predictions for other possible hyperparameters, pro-
ducing a posterior for our marginalised predictions.

3.3 Iterative Formulation

Gaussian processes have traditionally been used largely for
regression, producing predictions for a fixed set of data.
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Figure 4: Prediction and regression of air temperature data for (a) independent and (b) multi-output Gaussian processes.

However, in our setting both the environmental parameters
of interest and the data available are constantly updated. In
order to manage this situation, we employ a novel iterative
formulation of a GP, which allows us to efficiently update
our predictions upon the receipt of new data.

Similarly, we allow the GP to discard old data once it
judges it sufficiently uninformative, hence reducing mem-
ory usage and computational requirements. In this, it is
guided by the uncertainty in its predictions; the GP will
retain only as much data as necessary to achieve a pre-
specified degree of accuracy (a principled form of ‘window-
ing’). These features give us an efficient on-line algorithm.

3.4 Active Data Selection

Our algorithm is also able to perform active data selection,
whereby the GP decides for itself which observations it
should take. In this, we use once again the uncertainty in our
predictions as a measure of utility. For a GP, this uncertainty
increases monotonically in the absence of new data — once
it grows to our pre-specified threshold, our algorithm takes
a sample in order to reduce it once again. The algorithm
can also decide which observation to make at this time, by
determining which sensor will allow it the longest period of
grace until it would be forced to observe again. Hence we
maintain our uncertainty below a specified threshold, while
taking as few observations as possible.

4 Empirical Evaluation

In order to empirically evaluate the GP formalism described
in the previous section, we have used a network of weather
sensors (see www . bramblemet . co.uk) located on the

south coast of England. This network consists of four sen-
sors (each measuring a range of environmental parameters
such as wind speed and direction, air temperature, sea tem-
perature, tide height, etc.) which make up-to-date sensor
measurements available through separate web pages (see
figure 1). This data is used by recreational sailors to monitor
local weather conditions, and by port authorities for decid-
ing on shipping movements within the Port of Southamp-
ton. The use of such weather sensors is attractive since they
have immediate application within our motivating disaster
response scenario, they exhibit challenging correlations and
delays, and they are subject to network outages that gener-
ate real instances of missing sensor readings on which we
can evaluate our information processing algorithms.

In order to simulate the pervasive sensor network that we
described in the introduction, we have supplemented each
sensor web site with machine readable RDF data, and have
implemented an information agent in Java (see figure 2) that
is able to acquire readings from the weather sensors, parse
and store the RDF data, and perform the information pro-
cessing tasks described here.

5 Results

In order to validate our multi-output GP formalism we have
applied it to real weather data (collected from the network
described above), and compare it against conventional in-
dependent GPs in which each environmental parameter is
modeled separately (i.e. correlations between these param-
eters are ignored). In this comparison, we present results
for two different sensor types: tide height and air tempera-
ture. Tide height was chosen since it demonstrates the abil-
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Figure 5: Comparison of active sampling of tide data using (a) independent and (b) multi-output Gaussian processes.

ity of the GP to learn and predict periodic behaviour, and
more importantly, because this particular data set contains
an interesting period in which extreme weather conditions
(a Northerly gale) cause both an unexpectedly low tide and
a failure of the wireless connection between the sensor and
the shore that prevents our information agent acquiring sen-
sor readings. Air temperature was chosen since it exhibits
very different noise and correlation to the tide height mea-
surements, and yet, our multi-output GP formalism is able
to provide reliable regression and prediction on both.

5.1 Regression and Prediction

Figures 3 and 4 illustrate the efficacy of our GP formalism
in this scenario. We plot the sensor readings acquired by
the information agent (shown as markers), the mean and
standard deviation of the GP prediction (shown as a solid
line with the standard deviation shown as shading), and the
true fine-grained sensor readings (shown as bold) that were
downloaded directly from the sensor (rather than through
the web site) after the event. Note that we present just two
sensors for reasons of space, but we use readings from all
four sensors in order to perform regression.

We consider the performance of our multi-output GP for-
malism when the Bramblemet sensor drops out at £ = 1.45
days. In this case, note that the independent GP predictions
quite reasonably predicts that the tide will continue to do

more or less what it has seen before, and predicts the same
periodicity it has observed in the past. However, the GP
can achieve better results if it is allowed to benefit from the
knowledge of the other sensor’s readings during this interval
of missing data. Thus, in the case of the multi-output GP, by
t = 1.45 days, the GP has successfully determined that the
sensors are all very strongly correlated. Hence, when it sees
an unexpected low tide in the Chimet sensor data (caused
by the strong Northerly wind), these correlations lead it to
infer a similarly low tide in the Bramblemet reading, and
produces significantly more accurate predictions.

Exactly the same effect is seen in the later predictions
of the Chimet tide height, where the multi-output GP pre-
dictions use observations from the other sensors to better
predict the high tide height at ¢ = 2.45 days. Furthermore,
figure 4 shows the air temperature sensor readings where
a similar effect is observed. Again, the multi-output GP is
able to better predict the missing air temperature readings
from the Chimet sensor having learnt the correlation with
other sensors, despite the fact that the data set is much nois-
ier and the correlations between sensors are much weaker.

5.2 Active Data Selection

We now demonstrate our active data selection algorithm.
Using the fine-grained data (downloaded directly from the
sensors), we can simulate how our GP would have chosen



Figure 6: Prototype information agent deployed on a PDA
and weather sensor incorporating a Wi-Fi access point.

its observations had it been in control. Results from the ac-
tive selection of observations from all the four tide sensors,
are displayed in figure 5. Again, these plots depict dynamic
choices; at time t, the GP must decide when next to ob-
serve, and from which sensor, given knowledge only of the
observations recorded prior to ¢, in an attempt to maintain
the uncertainty in tide height below 10cm.

Consider first the independent case shown in figure 5(a),
in which separate GPs are used to represent each sensor.
Note that a large number of observations are taken initially
as the dynamics of the sensor readings are learnt, and then
later, a low but constant rate of observation is chosen.

In contrast, for the independent case shown in figure
5(b), the GP is allowed to explicitly represent correlations
and delays between the sensors. This data set is notable
for the tide heights at the Chimet and Cambermet sensors,
which due to tidal flows in the area are slightly delayed rel-
ative to the Sotonmet and Bramblemet sensors. Note that
after an initial learning phase as the dynamics, correlations,
and delays are inferred, the GP chooses to sample predom-
inantly from the undelayed Sotonmet and Bramblemet sen-
sors'. Despite no observations at all subsequently being
made of the Chimet sensor, the resulting predictions remain
remarkably accurate. Consequently only 66 observations
are required to keep the uncertainty below the specified tol-
erance, whereas 127 observations were required in the in-
dependent case.

6 Conclusions and Future Work

In this paper we have demonstrated the use of a novel iter-
ative formalism of a multi-output Gaussian process to per-
form information processing on sensor readings acquired
from a pervasive sensor network, and shown that with mini-
mal domain knowledge we can perform effective prediction,
regression, and active sampling.

Our future work in this area consists of two main areas.
First, we intend to investigate the use of correlations be-
tween different sensor types (rather than between different

I'The dynamics of the tide height at the Sotonmet sensor are more com-
plex than the other sensors due to the existence of a ‘young flood stand’
and a ‘double high tide’ in Southampton. For this reason the GP selects
Sotonmet as the most informative sensor and samples it most often.

sensors of the same type as we have presented here) to per-
form regression and prediction, and also to use the proba-
bilistic model represented by the GP to automatically detect
sensor failures. Second, to investigate the practical issues
of using such information agents within pervasive sensor
networks, we are developing prototype stand-alone weather
sensors (to be deployed at the University of Southampton)
that make their sensor readings available in RDF format and
form ad-hoc Wi-Fi connections with information agents de-
ployed on PDA (see figure 6).
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