
PShare: Position Sharing for Location Privacy based on Multi-Secret Sharing

Marius Wernke, Frank Dürr, Kurt Rothermel

Institute of Parallel and Distributed Systems, University of Stuttgart
Universitätsstraße 38, 70569 Stuttgart, Germany

<marius.wernke|frank.duerr|kurt.rothermel>@ipvs.uni-stuttgart.de

Abstract—Location-based applications such as Facebook
Places, Foursquare, or Loopt attract millions of users by
implementing point of interest finders, friend finders, geosocial
networking, etc. Typically, these applications act as clients to a
location service such as Google Latitude or Yahoo Fire Eagle,
which manage mobile object positions and ensure the scalability
to provide various clients with mobile object positions.

However, exposing precise user positions raises user privacy
concerns, especially if location service providers are not fully
trusted, and private position information could be “lost”,
leaked, stolen, etc. To enable the secure management of private
user positions on non-trusted location servers (LSs), we present
novel position sharing approaches based on the concept of
multi-secret sharing. Our approaches split up a precise user
position into position shares, which are distributed to different
LSs of different providers such that a compromised provider
only reveals user positions with degraded precision. On the
other hand, clients can combine several shares queried from
different LSs to increase their provided precision without the
need to store precise information at a single LS.

We propose two position sharing approaches: PShare-SLM
is the first position sharing approach presented so far for
symbolic location models. For geometric location models,
we present PShare-GLM, which improves existing geometric
position sharing approaches [1] by considering continuous
position updates and by increasing the robustness against
various attacks.

Keywords-Location-based applications, privacy, position
sharing, location management.

I. INTRODUCTION

Driven by the rapid spread of mobile devices integrating

positioning sensors, so-called location-based applications

(LBAs) attract millions of users today. Typical examples

of those applications include point of interest finders (e.g.,

Qype), friend finders (e.g., Loopt), or pay as you drive

insurances (e.g., PAYD). Another prominent class of LBA is

geosocial networking, such as Facebook Places, Foursquare,

or Gowalla, allowing users for “checking in” at different

locations to share their current position with friends.

LBAs typically make use of so-called location services,

which manage mobile object positions and allow for position

sharing between the users of one or more applications.

Mobile objects inform the corresponding location service

about their current position, while clients of this service

can query location information, e.g., by means of position,

range or nearest neighbor queries. An efficient and effective

location service is a prerequisite for most of today’s LBAs,

which might be either an “LBA internal” or a public location

service as already offered today in the Internet, such as

Google Latitude, Yahoo Fire Eagle, or Trace4You.

While sharing of location information is a highly desirable

feature from an application’s point of view, it gives rise to se-

vere privacy concerns. Therefore, location services typically

provide access control mechanisms allowing users whose

location information is managed by the service to define who

can access their location information in which granularity.

Most of these mechanisms assume that the location service is

fully trusted, and hence will ensure that location information

is only exposed to legitimate users. Unfortunately, many

cases in the past have shown [2] that private user information

has been “lost” or leaked by service providers that were

supposed to be trustworthy. As a consequence, assuming a

location service to be fully trusted is at least questionable

since in case of a leak location information is exposed in a

totally uncontrolled manner.

Therefore, several approaches for the protection of po-

sition information in the absence of trusted parties have

been proposed. The simplest approach is to encrypt position

information before sending it from the mobile object to the

location service. However, this approach prevents server-

side processing of position information, which is needed

for most queries, such as range or nearest neighbor queries.

Another rather simple but limited approach is called position
obfuscation. Here, the position information is deliberately

degraded before it is sent to the location service. Therefore,

an attacker (including a compromised location service) will

only see the degraded position rather than the precise user

position. The obvious limitation of this approach is that

the trustworthiness of the location service determines the

precision of the location data provided to the application,

i.e., it may reduce both the spectrum of possible applications

and the quality of applications substantially. To overcome

this problem, we proposed in [1] a scheme that combines

obfuscation with position sharing. The basic idea of this

scheme is to let the mobile object split its precise position

into multiple position shares of strictly limited precision.

Shares are distributed to multiple location services offered

by different providers. Therefore, as in the pure obfuscation

approach described above, a compromised location service

can only reveal information of limited precision. However,

the precision of position information can be incrementally

Published in Proceedings of the 10th IEEE International Conference on Pervasive Computing
and Communications (PerCom 2012), pp. 153-161. Lugano, Switzerland, March 2012.
© IEEE 2012

increased by combining shares. In fact, the obfuscation

can be undone by combining all shares, i.e., the original

precision as captured by the position system can be restored.

By allowing mobile objects to control the set of shares

accessible by a particular client, different precision levels

can be provided to different clients, ranging from the lowest

level up to the original precision. Another advantage of this

scheme is that it provides graceful degradation of privacy

in the presence of compromised location services: The

precision of the revealed position information only increases

with the number of compromised location services.

While the position sharing method sketched above ap-

plies geometric transformations for obfuscation, the scheme

presented in this paper is based on the concept of multi-

secret sharing [3]. This novel scheme improves our pre-

vious scheme in several ways: First, it can be applied

not only to geometric positions (longitude, latitude values)

but also to symbolic locations, such as cities, buildings,

or restaurants, which are important for a wide range of

applications. Second, by using multi-secret sharing, which

is based on modular arithmetic rather than probabilistic

geometric transformations, we improve the robustness of

the scheme significantly. Our previous scheme is subject

to probabilistic attacks, where an attacker tries to compute

the probability distribution function of positions to increase

the precision. Finally, the novel scheme not only considers

isolated position check-ins, but also subsequent position up-

dates of the same mobile object, which might unintentionally

increase precision if performed in an uncontrolled manner.

The rest of this paper is structured as follows. Next,

we present related work in Section II. In Section III, we

introduce our system model. The two variants of our scheme

for geometric and symbolic locations are described in Sec-

tions IV and V. Then, we analyze the robustness against

various attacks in Section VI. In Section VII we present an

evaluation using real world traces to show the applicability

of our approaches. A performance evaluation is presented in

Section VIII, and finally, we conclude with a summary and

outlook on future work.

II. RELATED WORK

The most prominent location privacy concept is k-
anonymity [4], which protects user identities by guaranteeing

that the user is indistinguishable from at least k − 1 other

users. However, k-anonymity approaches and extensions

such as l-diversity [5] or t-closeness [6] usually require

a trusted third party anonymizer. In contrast, we aim for

approaches protecting privacy without a trusted third party.

Spatial obfuscation protects user positions by decreasing

their precision [7], [8]. As already pointed out, these ap-

proaches can be implemented without a trusted third party.

However, the precision offered to clients is limited by the

precision of positions stored at the location service. In

contrast, we allow for different precision levels for clients.

ClientA

Share generation &
Share distribution

Mobile object

ClientB

LS3LS2LS1

Access control

Share combination

Credentials
to access
LS2 & LS3

Figure 1. System components

Dummy approaches send the true user position together

with several false positions to the location service [9]. How-

ever, dummy identification can reduce their effectiveness.

Thus, more advanced approaches like [10] make dummy

identification more difficult using databases of movement

trajectories. However, this leads to the problem of collecting

trajectories without raising privacy concerns, and of operat-

ing such a database without a trusted third party so it cannot

be manipulated.

Our previous position sharing approach can be used

without a trusted third party [1]. It splits up a precise user

position into several position shares of limited precision

that are distributed to different location services. Clients

can reconstruct the position in different granularities by

combining several shares from different services. As already

pointed out, our new approach uses a different technique

(multi-secret sharing) to improve our previous approach

w.r.t. supported location models (geometric & symbolic),

robustness, and by considering position updates.

An approach based on (single) secret sharing was pre-

sented in [11]. It divides the user position into several shares

so that only a predefined number of shares can reconstruct

the user position. This approach provides user privacy, how-

ever, it reveals the precise user position to each client. Our

approaches ensure graceful degradation of privacy instead

of implementing an “all-or-nothing” approach. Therefore,

clients can be assigned different precision levels without

revealing the precise user position.

III. SYSTEM MODEL AND REQUIREMENTS

The system model consists of three different components as

presented in Fig. 1:

The mobile object (MO) uses an integrated positioning

system, such as GPS, to determine the precise current MO’s

position π. We assume that the MO is not compromised and

no malicious software component can access π. Existing mo-

bile trusted computing approaches such as [12] can be used

for that. A detailed discussion is therefore beyond the scope

of this paper. The MO executes a local software component

for share generation that splits up π into a master share

mπ , denoted as m-share, and set Sπ = {rπ,1, . . . , rπ,n} of

n refinement shares, denoted as r-shares, by calculating

generate(π, lmax, n) = (mπ, Sπ).

Parameter lmax defines the number of different precision
levels, i.e., positions of different well-defined precisions

that can be offered to clients. We use the notation p(π, l)
to denote a position on precision level l derived from

the precise position π. p(π, 0) represents the least precise

position on level 0, and p(π, lmax) the position of highest

precision on level lmax. The concrete definition of precision

is dependent on the type of location model (geometric or

symbolic), and is introduced later for each model.
The m-share mπ consists of position p(π, 0) and addi-

tional information required to reconstruct positions of higher

precision levels greater 0. mπ is public, i.e., everyone knows

the least precise position p(π, 0). r-shares contain further

secret information to refine p(π, 0) to precise positions of

higher levels (see below). After share generation, the r-

shares are distributed to different location servers such that

each server receives one r-share.
Location servers (LSs) store and manage r-shares. Each

LS implements an access control mechanism for r-shares.

The access rights are defined by the MO and provided to

the clients of the LS, for instance, as credentials to access a

certain number of r-shares, where the number of accessible

shares defines the intended precision offered to a client.
Clients receive permissions to access a well-defined set

S′
π ⊆ Sπ of r-shares from the MO and perform the share

combination on the public m-share and these r-shares:

combine(mπ, S
′
π) = p(π, l)

Combining the m-share mπ and the set S′
π of r-shares yields

position p(π, l) of precision level l.
The goal is now to design secure share generation and

combination algorithms such that an attacker—either (ma-

licious) client or LS—knowing a set S′
π of shares refining

p(π, l) to precision level l cannot derive a position of higher

precision than p(π, l). Formally, the condition

precision(p(π, l)) ≥ precision(πattack)

must hold, where precision(πattack) defines the known

precision of position πattack calculated by the attacker. This

is the essential requirement for our approach. Otherwise,

the MO could not control the precision offered to LSs and

clients by granting access to a certain number of shares.

IV. PShare-GLM: GEOMETRIC POSITION SHARING

We start the description of our position sharing approaches

with PShare-GLM, the approach for geometric location mod-

els. First, we introduce our geometric location model, which

is used to define positions on different precision levels, and

give an overview on how to apply multi-secret sharing to

position sharing. Then, we describe the algorithmic details

of share generation and combination.

21 22 2320

�������

������� ��	��	�

��
��
�

������

������

����	�

����
�

Figure 2. Geometric area of p(π, l) for b = 2 and lmax = 3

A. Geometric Location Model

In PShare-GLM, the precise MO position π and obfuscated

positions p(π, l) are defined as geometric locations based

on a Cartesian coordinate system. We use a common map

projection, e.g., Universal Transverse Mercator (UTM) pro-

jection, to map ellipsoidal coordinates (longitude, latitude)

to Cartesian coordinates. Position π is a point coordinate.

A position p(π, l) of precision level l is defined as square

area p(π, l) = ((xl, yl), b
lmax−l), where (xl, yl) defines the

coordinates of the south-west corner of the square, and

blmax−l the side length. Hence, the precision corresponds

to the side length of the square. Parameter b defines the

granularity of the precision levels, where an increase of the

precision level by 1 increases the precision by a factor of b
and partitions the area of p(π, l) into b2 squares. For b = 2
the result is a quadtree as depicted in Fig. 2, where each

position of level l is refined into 4 positions of level l + 1.

To encode a position on level l, we specify the x and y
coordinates of p(π, l) as n digits with base b:

π.x =

n−1∑

k=0

αkb
k = (αn−1 · · ·α1α0)b

π.y =

n−1∑

k=0

βkb
k = (βn−1 · · ·β1β0)b

Position π is degraded to p(π, l) by setting the lmax− l least

significant digits to 0, meaning the actual digit values are

unknown. For instance, for b = 2 and lmax = 3, p(π, 0) can

be written as follows, where underlined digits are unknown:

p(π, 0).x = 00010101011101110011000

p(π, 0).y = 11100100110001000101000

B. Overview

PShare-GLM utilizes multi-secret sharing algorithms for

share generation and combination. Therefore, we first give a

brief introduction to multi-secret sharing, before we describe

the basic relation between multi-secret and position sharing.

Multi-secret sharing is an extension of secret sharing.

A widely known secret sharing scheme is Shamir’s (t, n)-
threshold scheme [13]. The general idea of this scheme is

to split up a secret, say K, into a set of n shares that can

be distributed to different participants. The so-called dealer,

which initiates secret sharing, defines a threshold value t,
which defines the required number of shares to reconstruct

K, and distributes the shares to the participants, where each

participant owns one share. Any t out of the n participants

putting their shares together can reconstruct secret K. If less

than t shares are available, K cannot be reconstructed.

The general idea of multi-secret sharing is that a dealer

splits up m secrets K1, . . . ,Km into a set of n shares so

that each secret Ki can be reconstructed by any set of at

least ti ≤ n shares. The number ti of required shares to

reconstruct each secret Ki is again defined by the dealer.

For less than ti shares, no information about Ki is exposed.

We apply the idea of multi-secret sharing as follows to

our position sharing approach PShare-GLM. We use the

positions p(π, 1), . . . , p(π, lmax) as secrets K1, . . . ,Klmax

of the multi-secret sharing scheme. The MO corresponds

to the “dealer”, which creates n r-shares using function

generate(π, lmax, n) as presented in the next subsection in

detail. We assign each precision level l the threshold value

tl = l, i.e., l shares are required to reveal p(π, l). However,

our approach provides the flexibility to use any number tl
for level l, where greater values increase robustness at the

price of a greater overhead as discussed later.

The r-shares are then distributed among n LSs by the MO.

The role of “participants” is split up between LSs and clients.

Whereas participants of the original multi-secret sharing

scheme manage and combine shares, LSs only manage at

most one share per position, and clients combine multiple

shares queried from different LSs. This role split allows for

providing different precision levels to different clients, and

limits the precision known by a single LS.

The m-share contains, similar to traditional multi-secret

sharing, public data necessary for share combination (see

next subsection). However, in contrast to multi-secret shar-

ing, the m-share additionally contains coarse-grained posi-

tion information serving as origin for the refinements.

C. Share Generation

The following description of share generation is based on the

multi-secret sharing approach of Chan et al. [3]. However,

also other multi-secret sharing approaches could be applied.

Fig. 3 visualizes the whole process of share generation and

combination. Alg. 1 defines the process of share generation,

which is entirely performed by the MO. After sensing

π, the MO first calculates p(π, 0) (position of minimal

precision) by simply setting the least lmax significant dig-

its to zero as described in Section IV-A using function

floorDigits(π, lmax, b). p(π, 0) is part of the public m-

share, which is denoted as mπ .

Then, the MO calculates the r-shares for each precision

level greater zero. As already mentioned in the previous

subsection, the basic idea is to create one secret of the

...

calculate
ClientShare()

combine()

p(�,2)

K1 ... Klmax

generate(�, lmax, n) MO

LS1

Client A

LSn

calculate
ClientShare()

combine()

p(�,3)
Client B

m�

public

getSecret(�, lmax, b, l)

floorDigits(�, lmax ,b)

sr1
�

Multi-Secret Sharing

srn
�

cr1
�,2 cr1

�,3 cr4
�,3

...

crn
�,2 crn

�,3

Share
generation
executed on
the MO
(Algorithm 1)

Client r-share
calculation
executed on
the LSs
(Algorithm 2)

Share
combination
executed on
the clients
(Algorithm 3)

Figure 3. PShare-GLM process overview

multi-secret scheme for each position p(π, l) with l > 0.

Therefore, we first have to translate each position p(π, l)
into secret Kl using function getSecret(π, lmax, b, l). Since

Kl is a single integer number, x and y values are to be

encoded as a single number. This is done by interleaving

the digits of x and y values. In more detail, function

getSecret(π, lmax, b, l) calculates each secret Kl as differ-

ence of the interleaved digit values of p(π, lmax) and p(π, 0)
with the 2 ∗ (lmax − l) least significant digits set to 0.

After the translation of p(π, l) to secret Kl, Chan’s multi-

secret sharing scheme is applied to the calculated secrets

K1, . . . ,Klmax . To protect a secret, a secret polynomial

fl(X) of degree tl − 1 is calculated by the MO for each

secret Kl:

fl(X) = a′0 + a′1X + · · ·+ a′tl−1X
tl−1

The constant term a′0 corresponds to the protected secret Kl.

The polynomial and therefore the secret can be reconstructed

by polynomial interpolation using modular arithmetic if tl
distinct points of it are known. Therefore, each r-share

contains information to determine a single distinct point

(x, y) of the secret polynomial as shown below.

According to the multi-secret scheme, the secret poly-

nomials f1(X), . . . , flmax
(X) of all secrets are packed to-

gether using the Chinese Remainder Theorem into one single

secret polynomial f(X):

f(X) = a0 + a1X + · · ·+ atlmax−1X
tlmax−1

f(X) is defined, such that fl(X) ≡ f(X) mod pl. That is,

we can calculate fl(X) by calculating f(X) modulo pl for

Algorithm 1 PShare-GLM: Share generation (MO)

Function: generate(π, lmax, n)
1: p(π, 0) ← floorDigits(π, lmax, b)
2: for l = 1 to lmax do
3: Kl ← getSecret(π, lmax, b, l)
4: end for
5: P, f(X) ← calculatePolynomial(K)
6: X ← n distinct integer

7: for all xi ∈ X do
8: y′i ← f(xi)
9: sriπ ← (xi, y

′
i)

10: end for
11: mπ ← P, p(π, 0)
12: return mπ, {sr1π, . . . , srnπ}

Algorithm 2 PShare-GLM: Client r-share calculation (LS)

Function: calculateClientShare(l)
1: crLS

π,l .x ← srLS
π .x

2: crLS
π,l .y ← srLS

π .y′ mod mπ.pl
3: return crLS

π,l

a prime pl defining the field Zpl
[X] of fl(X). fl(X) is a

uniquely defined polynomial of degree equal to or less than

tl − 1 over Zpl
[X] with aj ≡ 0mod pk for all coefficients

aj with j ≥ tl and k = 1, 2, . . . , l − 1. The set of primes

P = {p1, . . . , plmax
}, which is required together with the

r-shares to reconstruct the secrets, is part of the m-share.

It remains the question, which information is contained

in an r-share in detail. As pointed out above, each r-

share should contain information about a single distinct

point (x, y) of a certain polynomial fl(X). Using multi-

secret sharing, we actually have to distinguish between the

information of the r-shares generated by the MO, which is

sent to and stored by the LSs (called server r-share srLS
π),

and the information sent from the LSs to the clients (called

client r-share crLS
π,l). Each server r-share contains a distinct

point (x, y′) of the secret polynomial f(X). Each client

r-share contains a distinct point (x, y) of fl(X), which is

required for share combination. crLS
π,l is calculated by the LS

from srLS
π as y = y′ mod pl upon a request of the client

for crLS
π,l (cf. Alg. 2). Note that different client r-shares of

different levels can be calculated from one server r-share

using the specific prime of level l. In the next subsection,

we describe the details of share combination.

D. Share Combination

In order to calculate p(π, l), a client retrieves the

publicly available m-share mπ and tl client r-shares

crLS1

π,l , . . . , cr
LStl

π,l from tl different LSs. As described in the

previous subsection, mπ contains the set of prime numbers

(P) and the least precise position p(π, 0) of the MO; each

client r-share crLSi

π,l defines a distinct point (xi, yi) in fl(X).

Algorithm 3 PShare-GLM: Share combination (client)

Function: combine(mπ, {crLS1

π,l , . . . , cr
LStl

π,l }, l)
1: fl(X) ← Lagrange({crLS1

π,l , . . . , cr
LStl

π,l },mπ.pl)
2: Kl ← fl(0)
3: p(π, l) ← split(interleave(mπ.p(π, 0)) +Kl)
4: return p(π, l)

Share combination (Alg. 3) uses the Lagrange interpola-
tion over the field Zpl

[X] (line 1). It reconstructs polynomial

fl(X) by interpolating the tl distinct points of the client r-

shares, which uniquely define fl(X). Secret Kl is the con-

stant term of fl(X) and is calculated as fl(0) ≡ Kl mod pl.
Position p(π, l) is calculated by adding the reconstructed

secret Kl to the interleaved representation of p(π, 0) and

splitting up the sum into the x and y values of p(π, l) (line 3).

Each polynomial fl(X) ∈ Zpl
[X] has a degree of at most

tl−1 and fulfills the condition fl(xi) = yi. Because at least

tl distinct points are required to interpolate a polynomial

of degree tl − 1, it is guaranteed that p(π, l) cannot be

reconstructed with less than tl client r-shares.

E. Multiple Position Updates

Up to now, we only considered share generation for single

position updates. However, in the worst case a compromised

LS or client could reveal a complete history of positions for

a certain precision level (either precision level 1 for an LS

with access to a single server r-share, or a certain level l
in case of a client that was granted access to the client r-

shares of level l). From the literature, it is well known that

the knowledge of multiple obfuscated positions might enable

attackers to further refine the precision beyond the intended

precision [8]. To avoid this, we now present an extension.

We assume that the MO has a known maximum

velocity vmax, which is also known by an attacker.

Moreover, we consider the fact that in the worst

case an attacker knows the complete history U =
{(p(πfirst, l), tfirst), . . . , (p(πlast, l), tlast)} of position up-

dates for a certain precision level l. Here, tfirst denotes the

time of the first update, and tlast the time of the last update

up to the present time. Level l depends on the available

shares accessible by the attacker. Then, we have to guarantee

that for all t ∈ [tfirst, tlast] the attacker cannot derive a

position of higher precision than the precision of p(πt, l).
Before describing our counter measure, we have to con-

sider the so-called maximum velocity attack [8] in more

detail. For this attack, the attacker considers two succeeding

positions (p(πi, l), ti) and (p(πi+1, l), ti+1) with the obfus-

cated areas A = p(πi, l) and B = p(πi+1, l) at times tA = ti
and tB = ti+1. In [8] it has been shown that a sequence

of position updates resist a maximum velocity attack, if

each pair of succeeding updates resists a maximum velocity

attack. Therefore, it is sufficient to only consider two directly

succeeding positions. With this information, the attacker tries

to remove areas from B that are not reachable from A
in time δt = |tB − tA| for an MO traveling with speed

vmax. Furthermore, the attacker tries to remove areas from

A without reachable point in B considering δt and vmax. By

removing unreachable parts of A or B, the obfuscation area

is decreased and the precision of the attacker is increased.
To prevent such attacks, we first only consider position

updates for level 0. Later we will show that protecting

the position updates of level 0 against maximum velocity

attacks also protects the position updates for every level

0 ≤ l ≤ lmax. Let dpp(p(πi, 0), p(πi+1, 0)) be the point

pairwise distance of two succeeding MO positions p(πi, 0)
and p(πi+1, 0). The point pairwise distance of two rectan-

gular areas is defined as the maximum Euclidean distance

between any point in the first area to any point in the second

area. Furthermore, let δt = |ti+1 − ti| be the time between

the two updates. Then the MO only sends an update for

p(πi+1, 0) at time ti+1, if the following condition is fulfilled:

δt ≥ dpp(p(πi, 0), p(πi+1, 0))

vmax
. (1)

If this condition is fulfilled, every point in p(πi+1, 0) is

reachable from p(πi, 0) in time δt. Otherwise, p(πi+1, 0)
has to be delayed until this condition is fulfilled.

For precision levels greater than zero, the point pairwise

distance is always smaller than or equal to the point pairwise

distance of level 0. Thus, if Equ. 1 is fulfilled for level 0, it

is also fulfilled for levels greater than 0.
The maximum delay time Δt between two updates de-

pends on the values of b and lmax and is defined as:

Δt =
2 ∗ (√2 ∗ blmax)

vmax
. (2)

Intuitively, Δt describes the maximum time that is required

to travel a distance of two times the diagonal of the area

of p(π, 0) with vmax. Therefore, the MO can trade-off the

maximum delay time against the minimal revealed precision

(p(π, 0)) by adjusting the size of p(π, 0).

F. Influence of Movement Restrictions
In this paper, we assume a free-space mobility model

where MOs can move without restrictions. However, we

deliberately chose an approach based on multi-secret sharing

since it can be extended to scenarios where MO movement

is restricted to streets, places, buildings, etc. In fact, maps

defining movement restrictions could be used by an attacker

to decrease the effective size of obfuscation area p(π, l). A

possible solution could be to adapt p(π, l) to the map such

that the effective size of p(π, l) is guaranteed also under

movement restrictions. It is important to see that this would

not affect the multi-secret sharing scheme as presented in

this paper because area adaptation could be performed as

additional function before mapping obfuscation areas to

secrets. Such extensions are part of our future work.

New York

Palmetto_ station

California Florida

Gainesville Orlando Tampa

Miami_i_airportMiami_art_museum

USA

Miami

Texas

Babcock_Park

Level 0

Level 1

Level 2

Level 3

Figure 4. Simplified location hierarchy example

V. PShare-SLM: SYMBOLIC POSITION SHARING

Next, we present PShare-SLM, the symbolic counterpart to

the position sharing algorithm PShare-GLM. The general

idea of PShare-SLM is similar to PShare-GLM: We apply the

multi-secret sharing scheme [3] to share the MO’s position

in different precision levels with different clients. Since the

symbolic location definition differs from the geometric defi-

nition, we start with an explanation of our symbolic location

model, before we present the specific share generation and

combination algorithms.

A. Symbolic Location Model

Our symbolic location model consists of a location hierarchy

based on the spatial contains relationship. Each location is

represented as a vertex v in the hierarchy, and has a level

l defining the length of the path from the root to v (cf.

Fig. 4). The root location is on level 0, and we assume that

all leaf vertices have the same level lmax. Each location has

a unique location name in the context of its parent location,

for instance, “Florida” for the location representing the State

of Florida as child of the location representing the country

USA. The concatenation of names on the path from the

root to a location defines a unique label for each location,

such as usa/florida/miami/miami_i_airport for

the location representing the Miami International Airport.

Each location label can be mapped to a unique identifier

represented as integer, which serves as input to the secret

sharing scheme as presented below.

Using a hierarchical model makes it easy to define posi-

tions of different precisions. Each hierarchy level defines

a precision level, where level lmax defines the highest

precision where the MO is located. Again, p(π, l) denotes a

position of precision level l similar to the geometric model.

However, p(π, l) is now represented as symbolic location

identifier rather than geometric coordinates. The sequence

of ancestor vertices of a position p(π, l) is denoted as

ancestors(p(π, l)) = (p(π, 0), . . . , p(π, l)).

B. Share Generation and Share Combination

We now apply the idea of multi-secret sharing to our

symbolic position sharing approach PShare-SLM. The share

generation executed by the MO is shown in Alg. 4.

Algorithm 4 PShare-SLM: Share generation (MO)

Function: generate(π, lmax, n)
1: p(π, 0), . . . , p(π, lmax) ← ancestors(p(π, lmax))
2: K ← p(π, 1).id, . . . , p(π, lmax).id
3: P, f(X) ← calculatePolynomial(K)
4: X ← n distinct integer

5: for all xi ∈ X do
6: y′i ← f(xi)
7: sriπ ← (xi, y

′
i)

8: end for
9: mπ ← P, p(π, 0).id

10: return mπ, {sr1π, . . . , srnπ}

Algorithm 5 PShare-SLM: Share combination (client)

Function: combine(mπ, {crLS1

π,l , . . . , cr
LStl

π,l }, l)
1: fl(X) ← Lagrange({crLS1

π,l , . . . , cr
LStl

π,l },mπ.pl)
2: p(π, l).id ← fl(0)
3: return p(π, l)

First, the MO calculates ancestors(p(π, lmax)) to deter-

mine (p(π, 0), p(π, 1), . . . , p(π, lmax)) (line 1). The iden-

tifier of p(π, 0) defines the root of the hierarchy and is

stored in the m-share. The identifiers of p(π, 1) to p(π, lmax)
are used as the secrets K1, . . . ,Klmax

for the multi-secret

sharing scheme. The remaining part of the algorithm is

similar to the share generation of PShare-GLM. That is, we

apply the multi-secret sharing algorithm by calculating the

server r-shares, and distribute them to the LSs.

Similarly, the share combination algorithm as depicted

in Alg. 5 uses again the Lagrange interpolation over the

field Zpl
[X] to reconstruct the secret polynomial fl(X) for

a given level l. The constant term of fl(X) is the identifier

of p(π, l), which can be mapped to the label of p(π, l).

C. Multiple Position Updates

Next, we analyze PShare-SLM with regard to multiple

symbolic position updates. As pointed out above, an

attacker knowing the complete position history U =
{(p(πfirst, l), tfirst), . . . , (p(πlast, l), tlast)} of a certain

level l could try to use a maximum velocity attack to

increase precision. Note that although the location hierarchy

itself does not define the distance information necessary for

such attacks, an attacker can determine this information by

matching symbolic locations to available topographic maps.

The basic idea to counter such attacks is similar to the

geometric case: A new update p(πi+1, l) is only permitted if

any position within p(πi+1, 0) is reachable from any position

within p(πi, 0) considering δt = |ti+1 − ti| and the MO’s

maximum velocity vmax. Although theoretically this would

be an effective counter measure, it impacts the minimal

update time between two succeeding updates as specified

in Equ. 1. In contrast to the geometric case, where the

precision of p(πi, 0) can be specified by the MO, level 0

is now defined by the root location of the given symbolic

location model. Therefore, it is worthwhile to have a closer

look at the influence on the minimal update time.

For instance, assume a model where the root location cov-

ers a whole country like Germany. In this case, the maximum

distance between two positions within the hierarchy would

be about 1 000 km. For a MO walking with vmax = 6 km/h
this results in a maximum delay of 6.94 days, whereas a

maximum velocity of vmax = 200 km/h of a car decreases

the minimum time between two updates to 5 hours. For an

inner city scenario with a maximum distance of 10 km and

an MO walking with at most vmax = 6 km/h, the minimum

delay between two updates would be 1.66 hours.

These examples show that there are scenarios where the

minimum update time would be hours rather than days. This

would be sufficient for many “check-in” applications, as our

evaluations based on real-world traces show in Section VII.

For applications with shorter update intervals, the geometric

approach would be better suited.

VI. SECURITY ANALYSIS

In this section, we present the security analysis for PShare-
GLM and PShare-SLM. We start with a description of the

attacker model and an overview of the analyzed attacks,

which are then discussed in detail.

A. Attacker Model

As attackers we consider malicious LSs and malicious

clients. Each attacker has access to the public m-shares.

Each malicious LS additionally knows one server r-share

for each position. Each malicious client with access to a

position of precision level l additionally knows l client r-

shares (cf. Section IV). We both consider single attackers (a

single malicious LS or client), as well as colluding attackers

(multiple malicious LSs or clients). We structure the follow-

ing analysis according to different attacks. First, we consider

single attackers who analyze a single (current) position, or

even the complete history of positions. Second, we analyze

the effect of colluding attackers who put their compromised

shares together. Since PShare-GLM and PShare-SLM are

based on the same multi-secret sharing scheme, we do not

distinguish between them unless the difference is relevant.

B. Single Attacker

First, we consider a malicious client having access to tl
client r-shares of a single position that can be used to

reconstruct p(π, l). Thus, the client knows secret Kl refining

p(π, 0) to p(π, l) from these shares. As shown by Chan

et al. [3], their multi-secret sharing scheme ensures that

different secrets are independently protected by different

polynomials. Thus, the information from Kl cannot be used

to reconstruct other secrets and positions of levels greater l.

A single malicious LS has access to the m-share and one

server r-share, i.e., it knows one distinct point of the secret

polynomial f(X). Therefore, the malicious LS can calculate

for each precision level l with 0 < l ≤ lmax exactly one

point of the polynomial fl(X). Thus, the malicious LS can

reconstruct the MO’s position p(π, 1) of level 1, while the

positions of all levels greater 1, which require at least 2

r-shares, cannot be reconstructed.

Next, we consider further attackers knowing for

a certain level l the complete position history

U = {(p(πfirst, l), tfirst), . . . , (p(πlast, l), tlast)}. Our

algorithms create position shares of different positions

independently from each other. Therefore, shares generated

for (p(πi, l), ti) cannot be combined with shares for

(p(πi+1, l), ti+1). However, the reconstructed positions

p(πfirst, l), . . . , p(πlast, l) could be used for a maximum

velocity attack (cf. Section IV-E). Since we use delayed

updates as counter measure, these attacks are also futile.

C. Colluding Attackers

Next, we analyze multiple colluding clients or LSs sharing

their r-shares. First, we consider colluding clients. Assume,

for instance, three malicious clients cA, cB , and cC . Assume

that cA and cB own tl client r-shares of the same precision

level l so that both can calculate p(π, l). cC owns tl+1 shares

of the next precision level l + 1 to reconstruct p(π, l + 1).
It is easy to see that the collusion of cA and cB does

not reveal anything new to cA and cB , as they were both

already allowed to reconstruct p(π, l), and their client r-

shares reveal nothing about the polynomial fl+1(X) to

reconstruct p(π, l + 1). Even the collusion of cA and cC
does not reveal any new information, because p(π, l+ 1) is

also reconstructible for cC without collusion. The additional

client r-shares of cA carry no information about fl+2(X) of

the next precision level l + 2.

Second, we consider multiple malicious LSs. Let m be

the number of colluding LSs. These LSs can use their stored

server r-shares to calculate m different client r-shares for

each level l. Since we defined the threshold values as tl = l,
l client r-shares are required to get a position p(π, l) of

precision level l. Therefore, m colluding LSs can reveal

positions up to level l = m. This shows the desired graceful

degradation of privacy property of our approach. The re-

vealed precision increases with the number of compromised

LSs. We could even increase the robustness by setting tl
to values greater than l. Then more LSs are required to

calculate a position of a certain level, which increases the

overhead on the one hand, but also increases the robustness

of our approach on the other hand. Therefore, our scheme

allows for trading off overhead against robustness.

The collusion of malicious LSs and malicious clients is

a special case of the collusion of malicious LSs. In this

case, either the client with the highest precision level or the

number of colluding LSs defines the revealed precision level.

VII. REAL WORLD TRACE EVALUATION

As defined in Equ. 1, the minimum time between two

updates is restricted by the MO’s maximum speed and

size of the level 0 position to guarantee protection against

maximum velocity attacks. To analyze the practical impact

of this restriction, we analyzed real datasets of position

check-ins from existing location-based applications to see

how they comply with this restriction. If many updates were

violating the restriction, this would be an indication that our

approach is not applicable to these applications since the

user could not perform many desired updates.
The analyzed dataset, which was collected by [14]

between September 2010 and January 2011, contains

22 387 922 user position check-ins of 224 803 users from

different location-based applications all over the world.

Since this dataset only contains geometric coordinates, we

focus this evaluation on PShare-GLM. For our purpose, we

processed the dataset as follows. We classified each position

update based on the traveled distance and the average speed

between two succeeding updates as follows:

Category Pedestrian Ground vehicle Plane

Dist. (d)
and avg.
speed (v)

d ≤ 10 km
and
v ≤ 6 km

h

(d ≤ 10 km and
6 km

h
< v ≤ 200 km

h
) or

(10 km < d ≤ 10 000 km
and v ≤ 200 km

h
)

d > 10 000 km
or
v > 200 km

h

vmax 6 km
h

200 km
h

1 000 km
h

#updates 15 895 691 6 079 316 412 915

This table also shows the assumed maximum speed for

PShare-GLM and the resulting number of updates per cat-

egory. For each category, we calculated the percentage of

updates that can be performed without violating the restric-

tion. Fig. 5 depicts the results for the categories and different

sizes of level 0 positions ranging from 1m (20) square side

length to 32 768m (215). As we can see, in the worst case

for an obfuscation area side length of 32 768m, 55.19% of

the pedestrian updates are possible. For a side length of

1 024m, which provides sufficient privacy for pedestrians in

an innercity scenario for example, 88.09% of the updates are

possible. For ground vehicles, 83.59% of the updates are

possible using even the coarsest obfuscation of 32 768m.

If we consider all traces from all categories together for

a level 0 size of 1 024m, 90.08% of all updates can be

published. Thus, we can state that the minimum update time

restriction only affects a small number of updates.

VIII. RUNTIME PERFORMANCE EVALUATION

Besides security, the efficiency of share generation is im-

portant for the practical application of our approaches. The

share generation is performed on the MO’s mobile device,

which typically has low performance in terms of compu-

tational speed. Also on such resource-poor devices, share

generation must be possible in short time. An efficient share

generation also leads to small overhead in terms of energy,

which is desirable for battery-operated mobile devices.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Su
cc

es
sf

ul
 u

pd
at

es
 [%

]

Obfuscation area precision i

Pedestrian
Ground vehicle

Plane

Figure 5. Successful updates for obfuscation areas of precision 2i[m]

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Ti
m

e
[s

]

Number of generated r-shares

PShare-GLM

Figure 6. Share generation for n = lmax shares, b=2

We measured the overall time for share generation of

PShare-GLM on a state of the art mobile device (HTC Desire

HD). As the share generation of PShare-GLM is of the same

complexity as PShare-SLM, the findings can be also applied

to PShare-SLM. We measured the time to create one m-share

and a varying number of n = lmax r-shares. The results are

shown in Fig. 6. The depicted results are measured for b = 2
only since other b values led to almost identical results. The

plotted values are the average over several runs per share

number using Google’s micro-benchmarking tool Caliper.

As it can be seen, the runtime stays well below 1 s even

for larger share numbers. Therefore, we can state that the

share generation algorithm is efficient and suitable even for

resource-poor devices.

IX. SUMMARY

In this paper, we presented a novel position sharing approach

to manage private position information in non-trusted sys-

tems of third-party location services and clients. The basic

idea is to split up the precise user position into position

shares of limited precision, which are distributed to multiple

location servers of different providers. Therefore, a single

compromised provider does only reveal a position of strictly

limited precision. Clients are granted access to multiple

shares from different servers, which can be combined to a

position of higher precision to satisfy the individual quality

requirements of different clients.

Our approach makes use of the concept of multi-secret

sharing to calculate position shares. We have shown how to

generate shares for geometric as well as symbolic positions,

which demonstrates the versatility of the approach. More-

over, we included defense mechanisms against maximum

velocity attacks, which are a serious threat to obfuscation-

based mechanisms. Finally, we showed the robustness, ap-

plicability, and runtime performance of the approach.

In future work, we will consider the influence of map

knowledge on our approach. As discussed in Section IV-F,

maps could be used to decrease the effective obfuscation area

size. A possible solution could be to adapt the obfuscation

area to the map, before mapping areas to secrets.

REFERENCES

[1] F. Dürr, P. Skvortsov, and K. Rothermel, “Position sharing
for location privacy in non-trusted systems,” in Proc. of the
9th IEEE Int. Conf. on Pervasive Computing and Communi-
cations (PerCom 2011), Mar. 2011.

[2] DATALOSSDB, http://www.datalossdb.org/, Jul. 2011.

[3] C.-W. Chan and C.-C. Chang, “A scheme for threshold multi-
secret sharing,” Applied Mathematics and Computation, vol.
166, no. 1, 2005.

[4] P. Kalnis, G. Ghinita, K. Mouratidis, and D. Papadias,
“Preventing location-based identity inference in anonymous
spatial queries,” IEEE Transactions on Knowledge and Data
Engineering, vol. 19, no. 12, 2007.

[5] A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasub-
ramaniam, “L-diversity: Privacy beyond k-anonymity,” ACM
Trans. on Knowledge Discovery from Data, Mar. 2007.

[6] N. Li, T. Li, and S. Venkatasubramanian, “t-closeness: Privacy
beyond k-anonymity and l-diversity,” in IEEE 23rd Int. Conf.
on Data Engineering (ICDE 2007), Apr. 2007.

[7] M. Duckham and L. Kulik, “A formal model of obfuscation
and negotiation for location privacy,” in Pervasive Computing,
ser. LNCS, 2005, vol. 3468.

[8] G. Ghinita, M. L. Damiani, C. Silvestri, and E. Bertino,
“Preventing velocity-based linkage attacks in location-aware
applications,” in Proc. of the 17th ACM SIGSPATIAL Int.
Conf. on Advances in Geographic Information Systems, 2009.

[9] H. Kido, Y. Yanagisawa, and T. Satoh, “An anonymous
communication technique using dummies for location-based
services,” in Proc. of the Int. Conf. on Pervasive Services
(ICPS 2005), Jul. 2005.

[10] P. Shankar, V. Ganapathy, and L. Iftode, “Privately querying
location-based services with sybilquery,” in Proc. of the 11th
Int. Conf. on Ubiquitous computing (Ubicomp 2009), 2009.

[11] G. F. Marias, C. Delakouridis, L. Kazatzopoulos, and P. Geor-
giadis, “Location privacy through secret sharing techniques,”
in Proc. of the 1st Int. IEEE WoWMoM Workshop on Trust,
Security and Privacy for Ubiquitous Computing, June 2005.

[12] P. Gilbert, L. P. Cox, J. Jung, and D. Wetherall, “Toward
trustworthy mobile sensing,” in Proc. of the 11th Workshop
on Mobile Computing Systems & Applications (HotMobile
2010), Feb. 2010.

[13] A. Shamir, “How to share a secret,” Communications of the
ACM, vol. 22, no. 11, 1979.

[14] Z. Cheng, J. Caverlee, K. Lee, and D. Z. Sui, “Exploring
millions of footprints in location sharing services,” in Proc.
of the 5th Int. AAAI Conf. on Weblogs and Social Media
(ICWSM 2011), Jul. 2011.

