
Benchmarking the Variational Quantum Eigensolver
using different quantum hardware

Amine Bentellis†∗, Andrea Matic-Flierl∗, Christian B. Mendl†‡, Jeanette Miriam Lorenz∗
∗Fraunhofer Institute for Cognitive Systems IKS, Munich, Germany

†Technical University of Munich, CIT, Department of Computer Science, Garching, Germany
‡Technical University of Munich, Institute for Advanced Study, Garching, Germany
{amine.bentellis, andrea.matic-flierl, jeanette.miriam.lorenz}@iks.fraunhofer.de

christian.mendl@tum.de

Abstract—The Variational Quantum Eigensolver (VQE) is
a promising quantum algorithm for applications in chemistry
within the Noisy Intermediate-Scale Quantum (NISQ) era. The
ability for a quantum computer to simulate electronic structures
with high accuracy would have a profound impact on material
and biochemical science with potential applications e.g., to the
development of new drugs. However, considering the variety
of quantum hardware architectures, it is still uncertain which
hardware concept is most suited to execute the VQE for e.g.,
the simulation of molecules. Aspects to consider here are the
required connectivity of the quantum circuit used, the size and
the depth and thus the susceptibility to noise effects. Besides theo-
retical considerations, empirical studies using available quantum
hardware may help to clarify the question of which hardware
technology might be better suited for a certain given application
and algorithm. Going one step into this direction, within this
work, we present results using the VQE for the simulation of
the hydrogen molecule, comparing superconducting and ion trap
quantum computers. The experiments are carried out with a
standardized setup of ansatz and optimizer, selected to reduce
the number of required iterations. The findings are analyzed
considering different quantum processor types, calibration data
as well as the depth and gate counts of the circuits required for
the different hardware concepts after transpilation.

Index Terms—Quantum Computing, Variational Quantum
Eigensolver, Quantum Hardware Comparison, Ion Trap Quan-
tum Computers, Superconducting Quantum Computers

I. INTRODUCTION

One of the primary applications being explored for quan-
tum computers is quantum chemistry. It has the potential
to simulate weakly and strongly correlated molecules and
materials [1, 2], which fall under the category of simulation
problems [3, 4]. Numerous algorithms have been suggested
for this purpose. Some of them rely on fault-tolerant quantum
hardware computation, such as the Quantum Phase Estimation
(QPE) algorithm, which is currently not feasible. Thus, big
parts of the research effort is put into Noisy Intermediate-Scale
Quantum (NISQ) compatible algorithms, such as Variational
Quantum Algorithms (VQA). The Variational Quantum Eigen-
solver (VQE) [5] is an exemplary VQA, which estimates the
eigenvalues and low-lying eigenstates of a given Hamiltonian.

This research is part of the Munich Quantum Valley, which is supported by
the Bavarian state government with funds from the Hightech Agenda Bayern
Plus.

Its application is not restricted to ground state energy evalu-
ations but it can also be used to determine optimal molecule
geometries [6]. It also finds its uses outside of quantum
chemistry, and can be employed in a variety of problems that
can be formulated as a Hamiltonian [7].

Despite the vast amount of potential applications of the
VQE, it is currently a question for which particular appli-
cations the VQE will show benefits in practice. A quantum
advantage in general has only be shown in theory so far, such
as e.g., in Grover’s and Shor’s algorithms, and in academic ex-
amples like in Google’s Sycamore experiment [8]. A practical
quantum advantage, i.e., an advantage of quantum computation
over classical computation in an industrially relevant problem
has however not yet been demonstrated. To eventually reach
such a practical quantum advantage, it has to be demonstrated
for the complete computation workflow which includes both
parts of quantum and classical computation. In particular,
NISQ algorithms require the use of classical optimizers, which
need to work in tandem with the quantum computation part.
Noise presents an additional problem within the NISQ era
and may imply that a result of a quantum computation is
diluted, if the quantum circuits contained within the calculation
are too wide and deep (i.e., require too many qubits and
gates). Currently, techniques such as error mitigation and
postselection are being utilized to counteract noise. It can
also create barren plateaus, which act as obstacles in the loss
landscape and hinder the optimization process of variational
algorithms [9]. Therefore, it is mandatory within the NISQ era
to only consider shallower circuits.

Considering in this context different quantum hardware
concepts, these may be better or less well suited to execute
a given quantum circuit. However, which kind of quantum
algorithm and noise level is acceptable for a given application
in dependence on specific quantum hardware concepts is a
largely unanswered question. We therefore argue that a system-
atic application-driven benchmarking procedure is required,
that considers all computation steps - may it be classical
or quantum computation, and their integration - as well as
different quantum hardware technologies and noise levels. The
benchmarking procedure is consequently multi-layered, begin-
ning with the definition of the problem, detailing the steps of
quantum and classical computation, transpilation to quantum

This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be
accessible.

ar
X

iv
:2

30
5.

07
09

2v
1

 [
qu

an
t-

ph
]

 1
1

M
ay

 2
02

3

hardware and eventually extends to a specific quantum device
on which the algorithm is executed. Additionally, the selection
of the optimizer, the ansatz design and the problem mapping
needs to be considered.

This complete benchmarking procedure being a complicated
collection of individual steps, we focus in this study here on
the step of selecting the quantum hardware suited for a specific
application of the VQE. Therefore, the objective here is to
evaluate and assess the solutions of a VQE implementation
provided by both superconducting and ion trap hardware, con-
sidering both qualitative and quantitative aspects. The findings
may help in understanding if a certain hardware concept is
more suited than the other for a specific application and may
give indications into which directions quantum algorithms, the
interplay of quantum and classical computation and quantum
hardware need to be developed.

In the particular study within this paper, we concentrate on
simulating the H2 molecule as a basic use case for comparing
superconducting and ion trap quantum hardware. Choosing the
H2 molecule provides an example, where the ground state
can exactly be calculated theoretically and which has been
extensively investigated in the scientific literature. Therefore,
despite its relatively simple nature, it provides an adequate
foundation for evaluating the quality of the solutions. Our
work does not include an analysis of the scaling capabilities
of the quantum hardware.

II. HARDWARE

For this study we opted to choose two different quantum
processors, one processor of Alpine Quantum Technologies
(AQT) [10] and one of IBM Q [11]. The main decisive factor
in selecting these two were that they were easily available to
us. This however also implies that for the selection of the IBM
Q processor, we could not choose the most recent processor
with improved error mitigation, as prohibitively long waiting
times in the queue made extended tests by us impossible.
Equally, in perspective, we will include further quantum
hardware of different technologies into our studies, such as
e.g. neutral atom systems, which had not been available to us
pursuing the work presented in this paper.

A. AQT trapped ion quantum computer

The processor aqt marmot hosted by AQT [10] is based
on trapped 40Ca+ ions. The aqt marmot system supports a
register size of up to 16 qubits featuring all-to-all connectivity.
The native gate set comprises single-qubit gates with arbitrary
rotation angles and axis. The entangling operation is a two-
qubit gate with arbitrary rotation angle around the x-axis that
can be implemented between any qubit pair. The hardware
supports all major software development kits, where we use
IBM Qiskit [12] to implement the presented measurements.
Furthermore, we choose [rx, rz, rxx] as the basis gate set in
Qiskit, since it closely resembles the native gate set of the
aqt marmot system. The error rates of single-qubit gates (rx
error) are approximately 3 · 10−4 on average, whereas the
error rate of the two-qubit gate (rxx error) is around 1 · 10−2

on average. The typical gate times are 15µs for single-qubit
gates and 200µs for two-qubit gates. T1 and T2 times are
respectively 1.14± 0.06 seconds and 0.452± 0.068 seconds,
making the coherence/gate time ratio 103 [13].

B. IBM superconducting computer
IBM is a primary supplier of superconducting devices for

quantum computing [11], and their machines can be readily
operated via their cloud services and Qiskit [12]. All runs
are performed on the ibmq manila hardware, with minimal
time intervals between them, so that the calibration of the
hardware is similar for each run. The specific backend is a
Falcon processor Falcon r.11L version 1.1.4. Other available
IBM Q processors feature improved coherence properties, but
show similar readout (with the exception of ibm sherbrooke),
single and double-gate errors (Table I shows the calibration
data at the time of the study). Average T1 and T2 across the
whole chip are 169 µs and 76 µs.

TABLE I
ibmq manila CALIBRATION DATA SHOWING 1 AND 2-QUBITS GATE ERROR

RATES AS WELL AS THE GATE TIME.

Qubit ID error
√
x (sx) error Pauli-X error CNOT error Gate time (ns)

0 2.057e-4 2.057e-4 2.057e-4 0 1: 5.621e-3 0 1: 277.3

1 2.236e-4 2.236e-4 2.236e-4 1 2: 1.544e-2
1 0: 5.62e-3

1 2: 469.3
1 0: 312.8

2 1.795e-3 1.795e-3 1.795e-3 2 3: 8.233e-3
2 1: 1.544e-2

2 3: 355.6
2 1: 504.8

3 2.025e-4 2.025e-4 2.025e-4 3 4: 5.0636e-3
3 2: 8.233e-3

3 4: 334.2
3 2: 391.1

4 3.341e-4 3.341e-4 3.341e-4 4 3: 5.063e-3 4 3: 298.7

III. EXPERIMENTS AND RESULTS

A. The VQE algorithm
The Variational Quantum Eigensolver (VQE) is a popular

quantum chemistry algorithm for near-term quantum comput-
ers [5, 14]. The VQE leverages the Rayleigh-Ritz variational
principle, whereby a quantum algorithm is trained to find the
ground state of a particular molecule. VQE is aimed at finding
the energy EG of a Hamiltonian H ,

H |ψi〉 = Ei |ψi〉 ,with i = G, 1, 2,

EG ≤ E1 ≤ ..., 〈ψi|ψj〉 = δij
(1)

Using the Born-Oppenheimer approximation [15], H is repre-
sented in second quantization as:

H =
∑
pq

hpqa
†
paq +

1

2

∑
pqrs

hpqrsa
†
pa
†
qaras, (2)

with a and a† are respectively the fermionic annihilation and
creation operators. Subsequently, this Hamiltonian is mapped
using Jordan-Wigner transformation to the qubit space [16].
After mapping it can be expressed in terms of Pauli strings
σi as H =

∑
i ciσ

i with the coefficients ci ∈ R. The cost
function can then be formulated as the expectation value of H
over a trial state |ψ(θ)〉 = U(θ) |ψ0〉, where U(θ) is an ansatz
and |ψ0〉 is an initial state. The objective is to minimize the
cost function, which is achieved by adjusting the parameters
θ of the ansatz U(θ).

C(θ) = 〈ψ(θ)|H |ψ(θ)〉 (3)

Therefore, the cost function C(θ) is obtained from a linear
combination of expectation values of σi. The Rayleigh-Ritz
variational principle states that the cost function C(θ) is both
accurate and significant, where C(θ) > EG and when |ψ(θ)〉
represents the ground state |ψG〉 of H , equality holds true.

B. Ansatz and Optimizer

Two ansatzes were considered: the hardware-efficient ansatz
(Figure 1) and the unitary coupled-cluster ansatz (UCC), which
is chemically inspired. More specifically for the UCC ansatz,
a variant based on single and double electron excitations
(UCCSD) [5] was considered. While the UCCSD ansatz is
a viable candidate, it suffers from several limitations that
render it unsuitable for benchmarking purposes. Specifically, it
exhibits poor scalability in terms of gate requirements, leading
to increasingly deeper circuits as the molecule size increases.
For the H2 molecule the circuit is already relatively deep
(circuit depth of 92 for ibmq manila), and if moving to more
complicated molecules like LiH, it becomes impossible to
run on real hardware without simplifying the problem. For
the purposes of this work, we therefore employed the RY-
CNOT ansatz. Figure 1 illustrates that the circuit is composed
of only four RY gates, which are parameterized, and an
entangling layer that consists of CNOT gates arranged in a
circular manner. This all-purpose ansatz not only simplifies
the implementation on various quantum hardware with their
unique gate sets but also results in a significantly faster
optimization process.

|0〉 Ry(θ1)

|0〉 Ry(θ2)

|0〉 Ry(θ3)

|0〉 Ry(θ4)

Fig. 1. RY-CNOT ansatz using rotations around the Y axis

After transpilation on aqt marmot and ibmq manila (resp.
Figure 3 and 4), both circuits significantly increase in size.
For both circuits, Qiskit’s optimization level 3 is used. Op-
timization level 3 spends the most computational effort to
optimize the circuit out of the four available levels. Figure
5 details the difference in terms of gate count and depth. We
see circuits of similar depth (16 for ibmq manila and 14 for
aqt marmot), however, the two transpiled circuits differ in the
number of non-local gates or 2-qubit gates (8 for ibmq manila
and 4 for aqt marmot). This discrepancy can be explained
by the addition of two swapping operations for the IBM Q
hardware since SWAP gates are, when transpiled, transformed
into two consecutive and opposite CNOT gates. The use
of SWAP gates is necessary depending on the architecture
of a superconducting chip as these chips show a limited

connectivity and can only directly entangle qubits with a
direct connection on the chip (Figure 2 shows ibmq manila’s
topology).

0 1 2 3

Fig. 2. Chip topology for ibmq manila comprising of five superconducting
qubits.

Global Phase:

q0

q1

q2

q3

theta[0]
RY

theta[1]
RY

theta[2]
RY

theta[3]
RY

/2
RY 0

1
/2

RXX
/2

RX

/2
RX

/2
RY

/2
RY 0

1
/2

RXX
/2

RX

/2
RX

/2
RY

/2
RY 0

1
/2

RXX
/2

RX

/2
RX

/2
RY

/2
RY 0

1

/2

RXX

/2
RX

/2
RX

/2
RY

Fig. 3. RY-CNOT circuit after transpilation on aqt marmot.

Global Phase: 3 /4

ancilla0 0

q0 1

q1 2

q2 3

q3 4

X

X

X

X

theta[0] +
RZ

theta[1] +
RZ

theta[2] +
RZ

theta[3] +
RZ

X

X

X

RZ

3
RZ

3
RZ

3
RZ

X

RZ X RZ
/2

RZ

X
/2

RZ X

/2
RZ

/2
RZ X

/2
RZ

Fig. 4. RY-CNOT circuit after transpilation on ibmq manila.

ibmq_manila aqt_marmot
backend

0

5

10

15

de
pt

h

ibmq_manila aqt_marmot
backend

0

10

20

30

nu
m

be
r o

f g
at

es

number of circuit operations
number of non-local gates

Fig. 5. Depth and gate counts of post transpilation circuits.

The selection of an appropriate optimizer is a more nuanced
decision that requires thorough testing. A comparison of
several popular optimizers such as Nakanishi-Fuji-Todo (NFT)
[17], Nelder-Mead [18] and SPSA [19] for VQE algorithms
in this context is presented in the Appendix (Figure 9). All
three optimizers evaluated avoid the need for computing the
derivative of the circuit, which can be costly for large circuits,

but instead rely on certain strategies to navigate the loss
landscape. It is notable to say that gradient-based methods
like Adam perform poorly on such tasks [20]. Our results
are consistent with [20] and suggest that the NFT optimizer
outperforms the other optimizers by a significant margin.
Indeed, Figure 9 suggests that NFT achieves convergence in
an average of four iterations on this problem.

C. Experiments

For the simulations of the H2 molecule we use the 4-qubit
Hamiltonian:

H = c1I0

+ c2Z0Z2

+ c3Z1Z3

+ c4(Z3 + Z1)

+ c5(Z2 + Z0)

+ c6(Z2Z3 + Z0Z1)

+ c7(Z0Z3 + Z1Z2)

+ c8(Y0Y1Y2Y3 +X0X1Y2Y3 + Y0Y1X2X3 +X0X1X2X3)

using prefactors ci at a distance between atoms of 0.735
Å, where the specific values of ci can be found in the
appendix. The Hamiltonian is represented using the minimal
STO-3g basis set [21]. The exact ground state energy of the
problem, calculated classically, is EFCI = −1.136189454088
Ha. Despite the generic hardware-efficient ansatz utilized, a
shot-based simulator (qasm simulator) can achieve relatively
accurate energies (|EVQE−EFCI|= 0.00365 Ha), indicating that
the ansatz is capable of finding the solution. The experimental
settings chosen for all the runs in this study are:
• Circuit: RY-CNOT (c.f. Figure 1)
• Optimizer: NFT
• Framework: Qiskit
• Number of shots: 200
• No error mitigation
• Number of iterations: 15

Error mitigation has emerged as a one of the key ways to
deal with noise in NISQ era devices [14]. However, AQT’s
hardware currently does not support the native use of error
mitigation techniques. Therefore, results for aqt marmot are
provided without error mitigation.

This comparison is based upon nine different parameter
seeds (i.e. parameters drawn from a uniform distribution of
[π,−π]). We see that the processor ibmq manila takes an
average of 7 iterations to find the ground state, whereas the
aqt marmot requires approximately 4 iterations (Figure 6). In
both cases, the choice of the seed can impact the optimization
process, as seen with the two outliers (dotted lines in Figure
6). Furthermore, the effect of noise on the optimization process
is demonstrated by the varying sizes of the uncertainty bands.
These bands in Figure 6, which exclude the outliers, represent
one standard deviation from the mean of the seven runs.
Moreover, a mean energy difference of 0.094 between the two
processors (or 9.34%) is observed when considering all runs

(Figure 6). The precise reason for this discrepancy in accuracy
is not fully understood, as factors such as gate fidelity and
connectivity may not fully account for the observed difference
in result precision.

0 2 4 6 8 10 12 14
iterations

0.0

-0.2

-0.4

-0.6

-0.8

-1.0

-1.136

en
er

gy
 (H

a)

ibmq_manila
aqt ion trap
exact ground state

Fig. 6. Comparison of the optimization process between the processors
aqt marmot and ibmq manila.

Figure 7 and table II show the energy difference between
the last steps of the optimization and the theoretically known
ground state energy. This plot is generated from the last four
iterations of respective hardware runs. This plot also shows
that the unmitigated results are relatively close to the exact
ground state.

1 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 9
repetitions

0.00

0.05

0.10

0.15

0.20

0.25

en
er

gy
 d

iff
er

en
ce

 (H
a)

ibmq_manila
aqt ion trap
chemical accuracy

Fig. 7. Energy difference between the theroretically known ground state and
the last four iterations of the optimization process for all 9 runs (repetitions).

One significant other parameter to take into consideration is
the amount of time required for each hardware run. Over 15
iterations, one run on aqt marmot takes on average 3 hours
and 40 minutes, while ibmq manila takes up to 5 minutes
to get the results (Table II). We only consider here the time
required to evaluate the quantum circuit, and exclude the
classical computation parts. It is however unclear how this
runtime scales with increasing problem size.

TABLE II
QUANTITATIVE COMPARISON OF THE TWO TESTED QUANTUM PROCESSORS

Final energy (Ha) Minimum energy (Ha) |EVQE − EFCI| (Ha) Time taken (quantum) (seconds)
ibmq manila −0.975± 0.032 −1.006± 0.019 0.130± 0.019 334± 40
aqt marmot −1.059± 0.028 −1.100± 0.010 0.036± 0.010 13297± 625

The internuclear distance plot shown in Figure 8 determines
the molecular geometry, which serves as the foundation for
many molecular property simulations. The zoomed part of
the plot corresponds to the global minimum located at 0.735
Å where ibmq manila is compared to aqt marmot. We also
compare here the use of measurement error mitigation for
the ibmq manila hardware (green marker), which reveals an
improvement in accuracy.

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
interatomic distance (Å)

1.00

0.75

0.50

0.25

0.00

0.25

0.50

en
er

gy
 (H

a)

aqt ion trap
ibmq_manila
ibmq_manila EM
exact
ground state 0.735Å
chemical accuracy

0.73 0.74

1.10

1.05

1.00

Fig. 8. Ground state energy for different interatomic distances in Ångström.
The minimum of the VQE optimization is taken for this plot.

IV. DISCUSSION

Quantum computation in the near future has restrictions
regarding the overall number of operations that can be exe-
cuted. Reducing circuit complexity is one of the motivations
for benchmarking and application-based comparison, as we
can identify the optimal software/hardware pairing. Comparing
different quantum hardware processors, but also quantum
algorithms, encompasses multiple interconnected aspects. The
accuracy of quantum gate operations, the number of available
qubits, the speed of primitive gates, and the duration of
coherence times are all crucial fundamental measures for
quantum computing hardware at a larger scale. Still, it remains
challenging to predict how an algorithm will perform on a
particular hardware concept based solely on hardware-close
benchmarks.

Here we have proposed the VQE in the context of quantum
chemistry as a comparison basis. The ansatz used is problem-
agnostic, so we can anticipate comparable performance for
other minimization problems involving a sum of expectation
values (such as Ising models). Our results demonstrate that
all-to-all connectivity as present in ion trap hardware can

significantly decrease the number of non-local gates required.
We hypothesize that the optimized energy difference may be
due to the impact of SWAP gates (which require 2-qubits
gates) on the VQE’s performance. Indeed, the cost of 2-qubit
gates is much higher, both in terms of fidelity and execution
time.

One other important aspect of benchmarking to consider
is the time taken by the algorithm. When using variational
algorithms we need to consider both the classical and the
quantum execution times. The way the user interfaces with the
different quantum hardware platforms can vary. The quantum
systems of IBM Q can be accessed via cloud, which is not the
case yet for aqt marmot. Running algorithms through cloud
services inherently introduces additional time overhead, but
also makes the systems widely available. Besides the access
time, the time that the quantum algorithm itself requires is
more of interest to the study presented here. Here, a notable
difference is observed between the two backends. Based on
calibration data, it is known that ibmq manila gate times
are approximately 103 times faster than aqt marmot, which
naturally results in a difference in quantum runtime. Another
important factor to take into account is the coherence to gate
time ratio. This metric not only quantifies the number of
operations a quantum system can perform, but also reflects the
number of gates that can be execute before the quantum state
decays. The aqt marmot backend, with its extended coherence
time, can still execute meaningful operations despite having
slower gate times.

It is worth noting that this study primarily focused on
assessing the quality of the solution and did not delve into
evaluating the scalability of the hardware. However, increasing
the size of the molecule would directly increase the number
of qubits required for the simulation, itself linearly increasing
the number of SWAP operations required to connect the first
and last qubit in superconducting hardware.

V. CONCLUSION

In conclusion, this study aimed to compare two specific
quantum processors in the context of an example application
from quantum chemistry using VQE. We have demonstrated
that the VQE serves as a suitable benchmark for evaluating
application-centered hardware performance. Specifically, we
focused on assessing the solution quality achieved by two
specific quantum processors, ibmq manila and aqt marmot.
Results reported in this paper exclusivly apply to these two
specific processor types and the specific quantum algorithm
considered, and cannot directly be generalized to other quan-
tum processors. Nevertheless, the findings contribute to the
understanding of the capabilities and limitations of different

quantum processors for executing variational algorithms. We
hope that this study triggers further investigations into how
different quantum hardware technology concepts perform for
different quantum algorithms and application examples.

VI. ACKNOWLEDGEMENTS

We would like to thank Alexander Erhard and Christian
Sommer for their help running the algorithms on the AQT
processor aqt marmot and providing the details of the back-
end. We acknowledge the use of IBM Quantum services for
this work. The views expressed are those of the authors, and
do not reflect the official policy or position of neither IBM
nor AQT. The results of this work can also not be used as
recommendation to use the one or the other quantum hardware
technology, as the results are processor specific, calibration
specific and depend on the precise quantum algorithm used,
as well as depend on the precise classical optimizer.

VII. APPENDIX

A. Optimizers

In the following, we briefly introduce the three optimizers
being tested and a plot of the optimization process using the
qasm simulator.
• Nelder-Mead is a widely used gradient-free optimizer

for classical optimization problems. It evaluates the loss
function at the vertices of a simplex, updates the simplex
based on the results, and continues iterating until it
converges to the minimum of the loss function.

• The NFT algorithm optimizes parameters one at a time
by utilizing the sine curve behavior of the loss function
for each parameter. It requires two to three evaluations
per iteration, based on a hyperparameter.

• Simultaneous Perturbation Stochastic Approximation
(SPSA) is a gradient descent approximation.The gradient
of a function is approximated by perturbing the param-
eters in a random way and using the resulting function
evaluations to update the parameter estimates.

0 2 4 6 8 10 12 14
iterations

-0.2

-0.4

-0.6

-0.8

-1.0

-1.136
-1.2

en
er

gy
 (H

a)

NFT
SPSA
Nelder-Mead
exact ground state

Fig. 9. Popular optimizer comparison, the choice of these 3 optimizers is
motivated by the work in [20].

B. Hamiltonian Prefactors
The Hamiltonian is generated using Qiskit’s PySCF exten-

sion [12].
c1 = −0.81054
c2 = 0.16614

c3 = 0.16892

c4 = 0.17218

c5 = −0.22573
c6 = 0.12091

c7 = 0.166145

c8 = 0.04523

REFERENCES

[1] Ryan Babbush, Nathan Wiebe, Jarrod McClean, James McClain, Hart-
mut Neven, and Garnet Kin-Lic Chan. Low-depth quantum simulation
of materials. Phys. Rev. X, 8:011044, Mar 2018.

[2] He Ma, Marco Govoni, and Giulia Galli. Quantum simulations of ma-
terials on near-term quantum computers. npj Computational Materials,
6(1):85, Jul 2020.

[3] Sam McArdle, Suguru Endo, Alán Aspuru-Guzik, Simon C. Benjamin,
and Xiao Yuan. Quantum computational chemistry. Rev. Mod. Phys.,
92:015003, Mar 2020.

[4] John Preskill. Quantum Computing in the NISQ era and beyond.
Quantum, 2:79, August 2018.

[5] Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung,
Xiao-Qi Zhou, Peter J. Love, et al. A variational eigenvalue solver
on a photonic quantum processor. Nature Communications, 5(1):4213,
Jul 2014.

[6] Alain Delgado, Juan Miguel Arrazola, Soran Jahangiri, Zeyue Niu, Josh
Izaac, et al. Variational quantum algorithm for molecular geometry
optimization. Phys. Rev. A, 104:052402, Nov 2021.

[7] Nishikanta Mohanty, Bikash K. Behera, and Christopher Ferrie. Analysis
of the vehicle routing problem solved via hybrid quantum algorithms in
presence of noisy channels, 2023. arXiv:2205.07630.

[8] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C. Bardin,
et al. Quantum supremacy using a programmable superconducting
processor. Nature, 574(7779):505–510, Oct 2019.

[9] Samson Wang, Enrico Fontana, M. Cerezo, Kunal Sharma, Akira Sone,
et al. Noise-induced barren plateaus in variational quantum algorithms.
Nature Communications, 12(1):6961, Nov 2021.

[10] Alpine Quantum Technologies, AQT. https://www.aqt.eu, 2023.
[11] IBM Quantum. https://quantum-computing.ibm.com/, 2021.
[12] Qiskit contributors. Qiskit: An open-source framework for quantum

computing, 2023.
[13] AQT coherence time. https://www.aqt.eu/quantum-memory-lifetime/,

2023.
[14] Jules Tilly, Hongxiang Chen, Shuxiang Cao, Dario Picozzi, Kanav Setia,

Ying Li, et al. The variational quantum eigensolver: A review of methods
and best practices. Physics Reports, 986:1–128, 2022.

[15] M. Born and R. Oppenheimer. Zur Quantentheorie der Molekeln.
Annalen der Physik, 389(20):457–484, 1927.

[16] P. Jordan and E. Wigner. Über das Paulische Äquivalenzverbot.
Zeitschrift für Physik, 47(9):631–651, Sep 1928.

[17] Ken M. Nakanishi, Keisuke Fujii, and Synge Todo. Sequential minimal
optimization for quantum-classical hybrid algorithms. Phys. Rev. Res.,
2:043158, Oct 2020.

[18] J. A. Nelder and R. Mead. A Simplex Method for Function Minimiza-
tion. The Computer Journal, 7(4):308–313, 01 1965.

[19] Spall, J. C. Implementation of the simultaneous perturbation algo-
rithm for stochastic optimization. IEEE Trans. Aerosp. Electron. Syst.,
34(3):817–823, 1998.

[20] Marita Oliv, Andrea Matic, Thomas Messerer, and Jeanette Miriam
Lorenz. Evaluating the impact of noise on the performance of the
variational quantum eigensolver, 2022. arXiv:2209.12803.

[21] W. J. Hehre, R. F. Stewart, and J. A. Pople. Self-Consistent Molecular-
Orbital Methods. I. Use of Gaussian Expansions of Slater-Type Atomic
Orbitals. The Journal of Chemical Physics, 51(6):2657–2664, 09 2003.

	I Introduction
	II Hardware
	II-A AQT trapped ion quantum computer
	II-B IBM superconducting computer

	III Experiments and Results
	III-A The VQE algorithm
	III-B Ansatz and Optimizer
	III-C Experiments

	IV Discussion
	V Conclusion
	VI Acknowledgements
	VII Appendix
	VII-A Optimizers
	VII-B Hamiltonian Prefactors

	References

