1502.06519v1 [cs.SE] 23 Feb 2015

arxXiv

Enhancing Programming Interface to Effectively Meet
Multiple Information Needs of Developers

Haipeng Cai!

Department of Computer Science and Engineering, University of Notre Dame
Notre Dame, IN, 46556, USA
hcai@nd.edu

Abstract. In the past decades, integrated development environments (IDEs) have
been largely advanced to facilitate common software engineering tasks. Yet, with
growing information needs driven by increasing complexity in developing modern
high-quality software, developers often need to switch among multiple user inter-
faces, even across different applications, in their development process, which breaks
their mental workflow thus tends to adversely affect their working efficiency and
productivity.

This position paper discusses challenges faced by current IDE designs mainly from
working context transitions of developers during the process of seeking multiple
information needs for their development tasks. It remarks the primary blockades
behind and initially explores some high-level design considerations for overcoming
such challenges in the next-generation IDEs. Specifically, a few design enhance-
ments on top of modern IDEs are envisioned, attempting to reduce the overheads of
frequent context switching commonly seen in the multitasking of developers.

Keywords: Information need, integrated development environment, context switch-
ing, automatic recommendation, programming interface, software visualization

1. Introduction

One merit with visual programming [3, 6, 13] is that its integrated interface empowers
smooth transitions among the workflow steps of developers—the interface provides all
programming elements (of visual forms) so that the developers involved in the interface
can easily maintain their mental workflow models by focusing on mostly just one type of
interface (i.e., visual).

With most existing IDEs (e.g., ECLIPSE [1]), however, developers often face challenges
from frequent transitions between coding (text interface) and visual aids (graphical inter-
face), or even between disparate applications (and their different interfaces) [12]. Since
traditional (textual) programming involves typically a demanding logic reasoning process,
such transitions and context switches can cause great inefficiency [5] in the development
activity, even greater risks to the quality of resulting software.

The reason underneath is that context switching tends to interrupt the workflow [S] of
developers. More important, this problem can be even exacerbated by the growing infor-
mation needs for developing modern software of increasing scale and complexity. Unfor-

tunately, on the other hand, modern IDEs tend to grow in the complexity of their interface
in a way that, seemingly facilitating developers to meet their needs for multiple sources of
information, actually compounds the problems with switching among increasingly more
contexts.

As it stands, research on easing programming tasks through interactive graphical environ-
ments exists [2] with most focusing on providing visual aids within IDEs. For instance,
Dragon [4] shows visual windows for program dependence, debugging information, data
structure state, memory layout and similar other visual gadgets during program analysis
tasks of developments, incorporated into the entire software development work flow.
However, this framework is limited to passively responding to user requests—it fails to
automatically push information to assist program-analysis tasks as if it were an integral
part of the full task pipeline. Thus, a more useful interactive programming environment
needs to deliver informative visual aids not only on demand but in a proactive manner, so
as to minimize context switches during the entire development workflow.

Another challenge to today’s IDE interfaces lies at their falling short of meeting the
growing amount and variety of information needs by developers. To finish a coding task,
for example, developers usually have to consult many information sources that are di-
verse and distributed across disparate interfaces even applications. Although modern IDEs
mostly have strong supports to integrate diverse functionalities by means of plug-ins or
extensions, information from those extraneous modules often has to be passively retrieved
under the requests of developers—the multiple sources of information are available, yet
not well integrated in synergy [15] with other elements of the IDEs such that developers
can concentrate on their holistic workflow.

To address these specific issues, this paper preliminarily explores several novel IDE fea-
tures that could effectively assist developers with handling multiple tasks while minimiz-
ing the costs of context switching during their development workflow. Specifically, three
features are proposed focusing on interface design: extending traditional coding view to
include co-worker views, offering automatic recommendation based information for API
usage and code examples, and providing in-situ mechanism for mostly common used
code-editing related operations driven by current the task context. And two major visual-
ization features are discussed, including multiple code visualization views and interactive
linked visualizations. By illustrating the needs and benefits of these instrumental features,
the paper demonstrates how the next-generation IDEs could be designed to offer better
aids to developers in ways that improve development efficiency and productivity.

In summary, this position paper highlights the context-switching issue in the design of
today’s IDEs that hinders the effectiveness of using them, and illustrate such issue using
example usage scenarios; it discusses three interface design features that potentially re-
duce developers’ overall cost of switching among multiple contexts in search of various
sources of information; it also envisions two interactive visualization features that enable
holistic integration of multiple information in synergy so as to reduce developers’ need of
switching contexts when searching for various information.

The rest of this paper is organized as follows. First, Section 2 gives a development scenario
regarding information foraging that motivates our programming interface design. Then,
Section 3 and Section 4 summarize the concrete features in the new programming environ-

ments, on interface and visualization design, respectively. Finally, Section 5 outlines the
next step, planning on the implementation and evaluation of the proposed design.

2. Motivating Example

During software development, programmers gain most of the information they need from
the source code they are working on. Yet, they also need information beyond that, such as
those produced by program analysis tools, to obtain better understanding of the software.
Examples of such additional information include call graphs, program dependencies, and
type hierarchies. While most present IDEs do provide functionalities to help develop-
ers obtain these information, they force developers to actively make requests for them.
However, responding to user requests may not be sufficient in many situations. Rather, a
more effective IDE should provide developers with a guiding interface instead of question
responder, as developers may not have prerequisite information for them to initiate those
requests or to do so in the most efficient way overall. In consequence, excessive context
switches ensue when developers have to resort to other contexts or even applications for
obtaining those missing information.

In a typical usage scenario, a developer wants to know the overall design of the
component-level architecture of a software for which he just finished the coding for one
of its many packages. With a program analysis tool integrated in the IDE he is using, the
developer has to choose a button or menu item relevant to the functionality on the call
graph of the entire program. Further, the developer proceeds by looking for all possible
interfaces compatible for a function call of interest. Thus the developer has to traverse
the call graph and hover mouse cursor over all relevant modules one by one.

However, without rich experiences with the very details of this software, it is infeasible
for the developer to know how to make the preceding requests. The key issue, which is
really the main obstacle here, is the requirement for the user to recognize which requests
to make without auxiliary information provided by the program analysis tool. As such, the
value of this visual-aid tool itself apparently diminishes. Arguably there exists a crucial
need of developers with an IDE that incorporates interactive program analysis tools is
a workflow-driven pipeline where the transitions from graphical to textual settings, and
of course the other way around, are as seamless as possible. We are motivated by such
an observation and the consequent requirement in the design of interactive programming
interfaces.

3. Interface Design

Developers spend most of their time on their code for adding new features, making
changes, debugging, and code comprehension [11]. When doing these tasks, developers
often need also external assistances integrated in their workflow (e.g., automatic code
completion [14]) which facilitate their development efficiency. To meet such needs, a
tentative framework could incorporate three interface design features to further reduce
workflow transitions of developers when they are working around their code.

Main code view Coworker view 1
class A{ class B{ |
public int getValue() { static int MAX_N; |

Integer nCounter = B.MAX_N; <57ha%> ------
nCounter 1

In-situ tool shortcuts

e‘s/) Coworker view 2
O

%gs Cc{
 public static void
sortlList(....) {

Context-driven APl/example view

int compareTo(object 0);

Private static final Integer x = 0;
x.compareTo(y);

Fig. 1 A new interface design that helps reduce context switches of developers between
coding and getting aids, and supports close collaborations among coworkers in software
development teams.

Figure 1 gives an overview of these design features. Aside the traditional coding view,
there are a few other co-worker views that assist with communication and collaboration
tasks typical in team development scenarios; at the bottom, the context-driven
API/example view attempts to provide code examples that are recommended based on
current coding context to assists programmers with using APIs of which usages are not
familiar to them; finally, the in-situ interface shown in the main code view illustrates the
design of porting convenience invocation shortcuts, which are mostly spread over
varying places in existing IDEs, to the current focus of editing.

3.1. Context-driven APl/example View

While coding, programmers often have questions about the usage of some third-party
functionalities or features [9]. And while implementing a feature, they face hard questions
concerning which functions or objects they should pick [10]. To some extent, these ques-
tions can be reduced to the needs for getting function usage information and, even further,
illustrations of that usage with example code. Active code completion [14] via API menus
already helps developers better than using separate API browsing views, yet it may not
be sufficient as developers have to navigate through possibly long API lists (and hovering
on each one to get the function prototype or API documentation on a floating window as
seen in ECLIPSE [1]), which could potentially break their mental model focusing on the
programming logic.

It is plausible to, optionally, put such assistance back into a separate view but closely
connected to the main code editing view (as shown at the bottom of Figure 1), where
usage information of relevant APIs is display on demand based on the current context of

object accesses or function calls. Importantly, all relevant APIs are ranked according to
their frequency of being used recently at the default mode. Similar solutions have actually
been explored previously in a more general sense from a perspective of the information
foraging theory, with respect to software engineering tasks such as programming and
debugging [12].

A more important reason for providing the option of moving API usage information to
a separate view is the need of combining code examples with the usage. While showing
function prototype and/or API documentation is helpful to developers to fill in arguments,
it is more beneficial to show them usage examples thereof with the usage synopsis.
In practice, programmers search code examples with respect to unfamiliar APIs very
often, by using Internet searches, for instance, even preferably over reading API docu-
ments.

In this regard, at least three sources of search for such code examples can be taken into
account. The first one is the examples coming with APIs in their documentation. Another
option is searching in the current code base for relevant examples using context similarity
measurement (e.g., calling context and/or type of the object from which the API would
be invoked). The code shown in the API/example view of Figure 1 illustrates the result
obtained from this source: When the cursor lies immediately after the Integer object
nCounter, the view shows candidate API lists applicable to objects of the Integer
type, with ones most frequently used recently listed at the top (compareTo here), and
followed by the code example found in the current code base. Such examples give an
instant and clear demonstration on how to use the relevant APIs. Finally, an automatic
web search, using open search engine programming interface (e.g., Google API), can be
initiated with queries concerning the function usage (e.g., “strtoul C++ example”). Then
relevant content can be extracted and put back to the API/example view for programmers’
reference.

3.2. Coworker Views

Another key interface design feature of our framework concerns about the information
needs of developers collaborating in a development team. Previous studies show that in
collaborative development one of the primary information sources for developers is their
co-workers [8]. In fact, it is very common that when developers have questions regarding
how a function or feature is implemented, they tend to first resort to their teammate
instead of software documentations [11]. To facilitate developers to take advantages of
having co-workers to consult as their information needs arise, it is potentially rewarding
to incorporate a set of coworker views aside the main code editing view (shown on the
right-hand side of Figure 1).

The rationale of introducing these additional views is two-fold. First, developers working
in the same team can easily share their source code in real-time when necessary. One
example case in which this sharing could be useful is when a senior developer coaches
a team member in familiarizing him with the team project. Another example can be
seen in agile development, where one developer could quickly prototype his function
according to the ongoing implementation of a function being written or debugged by

another developer. As shown in Figure 1, the current developer is coding the method
getValue () for class A, with a reference to the static variable MAX_N of class B that
is being coded by a coworker. Having the choice of checking the implementation of
a component, developed concurrently by a teammate, on which current coding task is
dependent will save a developer’s time seeking for the information about that component
in other more expensive ways.

Second, such views can enable close collaboration among physically distributed team-
mates. For instance, a developer who needs one of his teammates to demonstrate how to
write or debug a piece of code would readily get the help from such views without moving
to a different seat or office, or resorting to another instant messaging tools. Screen space
allowing, such benefits can be even augmented with multiple coworker views are opened
at the same time—allowing close collaborations among multiple developers.

At the first glance, the above interface designs seemingly conflict our goal of reducing
context switches by developers, because those extra views potentially end up with more
context switches. However, the overall cost of context switching will be mostly reduced
indeed as the total time developers would spent on getting the information from these
views can be much greater without these integrated views and information. Consider
finding the code example for an API again. Without the automatic code reference shown
within the IDE, a developer would have to search online or consult to other sources that are
available usually in different interfaces from the whole IDE (e.g., a different application
like web browser).

3.3. In-situ Interface Elements

Almost all IDEs today contain a main menu at the top of the entire interface, followed
by one or several rows of tool shortcuts shown as buttons or icons. Although usually
those menus or shortcuts can be situated differently, few of them is tightly incorporated
into the working area of developers where their functionalities will be applied to. For
example, there is always a considerable “visual distance” from the code being focused
on by developers and the shortcuts to functions developers need to utilize on that code.
While the context switches in such situations are not as large as those seen in cases where
developers seek coworker resources without coworker views, such distance could be much
reduced. Accordingly, two possible interface improvements to reduce the unnecessary
distance can be investigated.

First, in-situ tool shortcuts can be added to the main code editing view. The presence
of such gadgets is contingent on user actions of marking focus on (e.g., selecting) code
elements to which the shortcuts are applicable; and the composition of the gadgets is
determined by the characteristics of the code elements being focused on by developers.
As an example, Figure 1 shows, in the main coding view, an “in-situ tool shortcut bar”
aside the object nCounter when it is selected through double-click and the mouse cursor
hovers nearby—the gadget disappears once the selection is revoked or the cursor moves
away the focused object. This is akin to the in-situ formatting toolbar in Microsoft Office,
triggered by double-clicking on a word.

The more important part of this design is the demand-driven composition of the gadget.
To effectively reduce perceptual transitions within the IDE, the in-situ tool gadget should
contain most, if not all, shortcuts to functionalities that developers would possibly use
for the focused object. This decision can be made in reference to developers’ common
information needs with respect to that object, based on such criteria as the object type.
For instance, for a function identifier in its invocation statement, example shortcuts would
be “caller list”, “rename”, “declaration” and so on.

Second, the presence and layout of visual components should be demand-driven. As
developers usually work on multiple tasks during their development workflow [11], they
tend to switch among multiple sources of information. Yet, they can mostly focus on
one task or information at a time only. The IDE thus needs to optimize the size and
composition of the particular visual space where a developer has to concentrate on for
a particular task, while diminishing the presence or even phasing out visual components
irrelevant to the current task.

For example, when a developer is right in the process of typing code, visual components,
such as the top menu and main tool bar, side panels, and bottom debugging views, be-
comes irrelevant and thus should automatically disappear so that the main coding view
gets its maximal visual space. Some IDEs, such as Microsoft Visual Studio, has already
incorporated similar features (e.g., dockable gadgets), yet relies on user settings to apply
those features. Also, the overall design there does not support automatic adaptation of
interface layout and composition to user action and workflow contexts. The dockable
gadgets, for instance, can be set to hide when mouse cursor moves away from them, but
the layout and elements of the gadgets do not automatically accommodate developers’ in-
formation needs varying in the development workflow. In addition, all visual components
that are not applicable to the current developer action can phase out from the interface and
come back when they become applicable again. In contrast, most IDEs choose to disable
those components while leaving them in the visual space.

4. Visualization Design

During software development, programmers gain most of the information they need from
the source code they are working on [10, 11]. Yet, they also need information beyond
that [9], such as those produced by program analysis tools, to obtain better understand-
ing of the software [15]. Examples of such additional information include call graphs,
dependence graphs, and type hierarchies. While most present IDEs do provide func-
tionalities, via plug-ins for instance, to help developers obtain these information, they
force developers to switch among different visualizations of those information, potentially
leading to expensive workflow interruptions. An additional issue is that usually these
visualizations are separate from each other, without explicit links among them, forcing
developers to maintain an extra mental model linking those information in their mind
when manipulating them. In this context, it is reasonable to leverage multiple linked
visualizations of source code, along with the source code itself, to facilitate the code
understanding and navigation for developers.

Code Procedure dependence graph

cIass A{ R

pubI;c int getValue(){ _.--="~ N K/,,,\§ = ~-
Integer nCounter =B. MAX N; /{—\ (4 < (3
nCounter +=2; '\.\. e

CIass—Ie\>eI dependence graph .\"-_ Method Jevel dependence graph

‘ I

(n\ Q h getValue—» M1 ¥
(')\ /(')\ T)
u« N M2 -

Fig. 2 Multiple linked visualizations of source code to integrate multiple code information
in synergy.

4.1. Multiple Visualizations of Source Code

Not only can information visualization greatly aid data understanding, but also can multi-
ple forms of information of the same data set be even more helpful (e.g., [7]). During their
mental workflow for code understanding, which is their primary task [11], developers can
greatly benefit from multiple visualizations of the source code information besides the
textual source code itself.

A relevant proposal would be to utilize multiple visualizations of program source code,
which are interconnected underneath the source code, to enable more effective program
understanding. Figure 2 illustrates our visualization design feature for the next-generation
IDEs using dependence graphs as the example information representation of source code
(there are other forms of such information of code, such as call graphs and type hierar-
chies as mentioned above). Surrounding the traditional code editing view (upper left) that
provides the textual representation of source code only, three other satellite views show
the dependence graph of the source code at three levels of detail, namely the (statement-
level) procedure dependence graph (PDG) (bottom left), method-level dependence graph
(MDG) (bottom right), and class-level dependence graph (CDG) (upper right). Different
styles of arrows in the graphs illustrate different types of dependencies. The three dotted
lines across the views illustrate the links between the source code and each of these
graphs.

Optionally, these visualizations can be selectively or all added to the IDE. A more syner-
getic design is to seamless synthesize the four views in one. In the latter design, instead of
showing more than one or all views at the same time, only one view is visible at a time.
The motivation is that, again, while developers can be greatly benefited from multiple
visualizations, they could utilize one of them at one time only. The idea is to switch
among these visualizations by zooming in/out operations (shown by two wide arrows in

the figure). As with Google Maps, when developers zoom out from a statement, they
will first switch to the PDG visualization with central points automatically set to that
statement; then they can navigate on the PDG and zoom in from any node thereof back
to the source code view. If developers continue to zoom out when they are in the PDG
visualization, they switch to the MDG view where they can also navigate, at the method
level, and zoom in back to the lower levels of details. Switching between MDG and CDG
is similar. Alternatively, zooming in from a method declaration while in the source code
view can directly lead the developer to the MDG visualization, and similarly, zooming in
from a class declaration in the source code leads to the CDG directly.

4.2. Interactions across Linked Visualizations

The multiple visualizations of source code are also mutually linked, since they all rep-
resentation the same data (source code). An additional merit of the multiple linked vi-
sualization is more effective interaction. One simple example is that selecting all lines
of code of method can be more easily done by just selecting that method on the MDG
visualization view; selecting or deleting a whole class will see greater benefit in similar
ways. Moving code around through interactions on the dependence graph visualizations
would be even more beneficial. For example, a developer can quickly start writing a
method by cloning an existing one by copying the corresponding node on the MDG view.
When multiple visualizations are shown simultaneously, more interactions can be en-
abled, such as moving or copying a method from one class to another. Of course, feasible
interactions on the graphical visualizations are subject to feasible automatic source code
level operations.

5. Conclusion and Future Work

Today’s developers usually deal with multiple tasks simultaneously during their software
development process, seeking variously sources of information for interleaving tasks such
as coding, documenting, testing, and debugging. To help them meet such needs, modern
IDEs try to incorporate increasing number of interface elements to provide sources for
meeting those multiple information needs, yet mostly are inclined to actually aggravate
the problem of imposing on the developers the demands of frequently switching among
many different contexts.

This paper thus explores in this regard and envisions several interface and interactive
visualization design features for enhancing today’s IDEs in a way that helps developers
meet multiple information needs more efficiently. It illustrated the needs and benefits of
incorporating those features in next-generation IDEs with motivating examples.

Beyond what has been tentatively proposed in this paper, there are potentially much more
similar features than exemplified to be explored in the future, yet the discussions here
could enlighten new lines of research improving programming interfaces and environ-
ments.

An immediate next step would be to develop relevant prototypes of the proposed features
on the basis of a popular IDE such as ECLIPSE, and then to evaluate the feasibility and
usefulness of such features through user studies with professional developers.

References

—

10.

12.

13.

14.

15.

. Eclipse luna. https://eclipse.org/
. Benton, W.C., Fischer, C.N.: Interactive, scalable, declarative program analysis: From proto-

type to implementation. In: Proceedings of the 9th ACM SIGPLAN International Conference
on Principles and Practice of Declarative Programming. pp. 13-24. PPDP °07 (2007)

. Cai, H., Chen, J., Auchus, A.P., Laidlaw, D.H.: Composing dti visualizations with end-user

programming. CoRR abs/1310.2923 (2013)

. Chapman, B., Hernandez, O., Huang, L., Weng, T.h., Liu, Z., Adhianto, L., Wen, Y.: Dragon:

An open64-based interactive program analysis tool for large applications. In: International
Conference on Parallel and Distributed Computing, Applications and Technologies. pp. 792—
796 (2003)

. Czerwinski, M., Horvitz, E., Wilhite, S.: A diary study of task switching and interruptions. In:

Proceedings of the SIGCHI conference on Human factors in computing systems. pp. 175-182.
ACM (2004)

. Green, T.R.G., Petre, M.: Usability analysis of visual programming environments: a cognitive

dimensions framework. Journal of Visual Languages & Computing 7(2), 131-174 (1996)

. Hanciles, B., Shankararaman, V., Munoz, J.: Multiple representation for understanding data

structures. Computers & Education 29(1), 1-11 (1997)

. Ko, A.J., DeLine, R., Venolia, G.: Information needs in collocated software development teams.

In: Proceedings of the 29th international conference on Software Engineering. pp. 344-353
(2007)

. LaToza, T.D., Myers, B.A.: Developers ask reachability questions. In: Proceedings of the 32nd

ACM/IEEE International Conference on Software Engineering-Volume 1. pp. 185-194 (2010)
LaToza, T.D., Myers, B.A.: Hard-to-answer questions about code. In: Evaluation and Usability
of Programming Languages and Tools. p. 8 (2010)

. LaToza, T.D., Venolia, G., DeLine, R.: Maintaining mental models: a study of developer work

habits. In: Proceedings of the 28th international conference on Software engineering. pp. 492—
501 (2006)

Lawrance, J., Bogart, C., Burnett, M., Bellamy, R., Rector, K., Fleming, S.D.: How program-
mers debug, revisited: An information foraging theory perspective. Software Engineering,
IEEE Transactions on 39(2), 197-215 (2013)

Metoyer, R., Lee, B., Riche, N., Czerwinski, M.: Understanding the verbal language and
structure of end-user descriptions of data visualizations. ACM SIGCHI Conference on Human
Factors in Computing Systems (2012)

Omar, C., Yoon, Y., LaToza, T.D., Myers, B.A.: Active code completion. In: Proceedings of the
2012 International Conference on Software Engineering. pp. 859-869. IEEE Press (2012)
Zeller, A.: The future of programming environments: Integration, synergy, and assistance. In:
FoSE. pp. 316-325 (2007)

10

https://eclipse.org/

	1 Introduction
	2 Motivating Example
	3 Interface Design
	3.1 Context-driven API/example View
	3.2 Coworker Views
	3.3 In-situ Interface Elements

	4 Visualization Design
	4.1 Multiple Visualizations of Source Code
	4.2 Interactions across Linked Visualizations

	5 Conclusion and Future Work

