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Abstract—Scaling up the number of qubits and speeding
up the execution of quantum algorithms are important steps
towards reaching quantum advantage. This poses heavy demands
particularly on the control stack, as pulses need to be distributed
to an increasing number of control channels and variational
algorithms require rapid interleaving of quantum and classical
computation. Assessing the bottlenecks in the control stack is
therefore key to making it ready for reaching quantum advan-
tage. However, existing benchmark suites suffer from lack of
detail due to indirect access to the control hardware. In this work,
we present Q-Profile, a tool to profile quantum control stacks
that circumvents these issues by utilizing a direct connection
from the host CPU to the control stack, providing fine accuracy
in measuring the runtime and allowing to identify performance
bottlenecks. We demonstrate the use of our tool by benchmarking
the Quantum Approximate Optimization Algorithm (QAOA) on
a Qblox Cluster for a virtual 4 to 14-qubit transmon system.
Our results identify the major execution bottlenecks in the
passive qubit reset and communication overhead. We estimate
a 1.40x speedup with respect to the total runtime by using an
active qubit reset, instead of passive reset, and demonstrate a
further speedup of 1.37x by parallel initialization of the control
modules. The presented method of profiling is applicable to
other control-stack providers, as well as to other benchmarks,
while still providing detailed information beyond a single metric.
By extension, this tool will enable identifying and eliminating
bottlenecks for future quantum acceleration. The profiling tool is
included in the open-source Quantify quantum control software,
which allows support for multiple back-ends.

Index Terms—Quantum control stacks, NISQ, Profiling,
Benchmarking, Acceleration

I. INTRODUCTION

In recent years, quantum computing has been growing at a
fast rate towards executing a computational task faster than any
classical computer [1]. The next milestone, now sought after,
is achieving fast computations for practical utility, dubbed
quantum advantage. In order to achieve this, the number of
controlled qubits has to scale up and the gate error rates
have to decrease, each by multiple orders of magnitude. This

places heavy demands on the quantum control stack (both in
terms of hardware and software), where programs and pulses
need to be distributed to an increasing number of control
channels, and where hybrid optimization algorithms [2], [3]
and gate-tuning protocols [4] require rapid interleaving of
quantum-circuit execution, analysis and classical computation.
Furthermore, previous results [5] indicate the importance of
accelerating variational quantum algorithms, since worst-case
runtimes of over 15 hours have been measured for minimal
(5 qubit) example problems. Assessing and understanding the
bottlenecks in the control stack is therefore key to making
it ready for reaching quantum advantage. While a number
of benchmark suites have been developed in the last few
years [5]–[8], they suffer from inaccuracies due to indirect
access and connection to the control hardware.

In this work we present Q-Profile, a tool to benchmark
quantum control stacks that circumvents long-distance high-
latency connections by utilizing a direct connection from the
host CPU to the quantum control stack. Having access to
the control hardware runtime of the scheduled instructions,
this tool provides fine detail and accuracy in measuring the
quantum runtime. The profiling method is aimed at prac-
tical benefit, allowing control-stack developers to identify
performance bottlenecks while executing near-term quantum
algorithms on their systems.

To showcase Q-Profile, the quantum approximate optimiza-
tion algorithm (QAOA) [2] implementation from the QPack
benchmark suite [5], a quantum application benchmark suite,
is used. Using this implementation, instead of providing a
benchmark score, we present a means of profiling the quantum
control hardware, demonstrated on a Qblox Cluster for a 4 to
14 qubit virtual transmon system. This means that the Cluster
operates as if connected to actual transmon qubits, while only
the binary measurement outcomes used by the QAOA op-
timizer on the host CPU are simulated. The QPack suite

ar
X

iv
:2

30
3.

01
45

0v
1 

 [
qu

an
t-

ph
] 

 2
 M

ar
 2

02
3



Fig. 1. General layout of quantum computations. A host CPU compiles a
quantum circuit into an executable schedule of operations. This is uploaded
(e.g. via Ethernet) to the quantum control hardware, which executes the
schedule (initialization, gates, measurements) by sending appropriate pulses
to the qubits for each of these operations. The circuit is usually repeated many
times to collect statistics and the results are eventually sent back to the host
CPU for post-processing.

was applied for profiling IBM hardware in earlier work [5],
however, insufficient access to the underlying hardware gave
unsatisfactory results. Instead, by having direct access to the
control hardware, cloud communication and queue times are
non-existent, greatly speeding up the processes of profiling.
Our findings identify the major execution bottlenecks in the
modality of qubit reset (passive versus active) and communica-
tion overhead. For each of these bottlenecks, we propose and
implement mitigation strategies, achieving a 1.40x speedup
for active reset compared to the baseline measurements, and
a further 1.37x speedup by parallel module initialization.
This method of profiling is applicable to other control-stack
providers, as well as to other benchmarks. The profiling tool
is included in the open-source Quantify [9] quantum control
software, which allows support for multiple back-ends. Addi-
tionally, Q-Profile can be used to measure CLOPS (Circuit-
Layer Operations Per Seconds) [10] by running quantum-
volume-like circuits instead of QAOA circuits, while still
providing detailed information beyond a single metric. By
profiling the most demanding computation steps, developers
can efficiently locate and mitigate performance issues in both
software and hardware. By extension, this tool will enable
identifying and eliminating future bottlenecks for quantum
acceleration in general.

We give a short introduction to the quantum hardware
structure (II), a description of the quantum algorithm we use
to evaluate the hardware (III) and the used metrics (IV). The
results of the performance measurements are presented (V)
and discussed (VI), including potential strategies to increase
performance. In Section VII we summarize our findings.

II. QUANTUM CONTROL HARDWARE STRUCTURE

Quantum computers can vary significantly between im-
plementations. Especially for quantum-computing chips, no
consensus has been reached on which technology will be-

come the standard [11]. However, in terms of the quantum-
computing control-hardware structure, many similarities can
be found. The general structure for executing quantum com-
putations is given in Fig. 1. A host classical CPU is required
for general-purpose computations, pre- and post-processing.
The host CPU compiles a high-level quantum algorithm to
executable quantum circuit instructions. These are transferred
to the quantum control hardware, e.g. via Ethernet. The
control hardware executes gates and measurements in different
manners, depending on the quantum-chip technology. The
control hardware generally stores, reads and interprets the
received instructions in order to generate the respective pulse
sequences. Furthermore, the measurement results need to be
stored, read and optionally processed before sending the results
back to the host CPU. Each execution of a quantum circuit
with a final measurement is referred to as a shot. In order
to collect accurate statistics, thousands or more shots are
generally executed for each instance of a quantum circuit. The
measurement results are either transferred back at the end of
each shot or are temporarily saved locally, allowing to reduce
latency.

III. HYBRID QUANTUM ALGORITHMS

In the current era of quantum computing, the so-called
NISQ era (Noisy Intermediate-Scale Quantum), qubits are
limited in number and quality, limiting the scope of problems
that can be solved on current quantum computers. Algorithms
such as the well-known Shor’s factorization or Grover’s search
algorithms require a large number of qubits to calculate
practical use cases and need even more qubits to mitigate
errors in the form of quantum error correction (20 million
qubits are expected to be required to break standard RSA cryp-
tography [12]).

In recent trends, hybrid classical/quantum algorithms are
preferred [13]. These algorithms are parametrized quantum al-
gorithms which interact with classical optimizers to update and
optimize their parameters. Examples of these algorithms are
QAOA (Quantum Approximate Optimization Algorithm) [2]
and VQE (Variational Quantum Eigensolver) [14]. One of the
qualities that makes these algorithms appealing for NISQ com-
puting is that the number of qubits required to achieve quan-
tum advantage might be of the order of a few hundreds to
thousands of qubits [15]. While the current state of quantum-
computing chips is not at this stage, it is expected to be reached
in the near future [16].

While these algorithms seem promising, practical difficul-
ties surface as well. Most prominent is the difficulty of classi-
cally optimizing the parameters for QAOA, as this optimiza-
tion has been shown to be NP-hard [17]. Furthermore, since
this algorithm includes both classical and quantum computing,
the pipeline within the quantum control stack must be assessed
to ensure efficient calculations. Section V will go into further
detail regarding this assessment, and identify bottlenecks in
the quantum control stack.



Fig. 2. Graphical representation of the layout of QAOA. A classical
computer updates the parameters ~β and ~γ of QAOA. After each iteration, the
measurement statistics is used to evaluate the cost function of the problem
instance, and the QAOA parameters are consequently updated by a classical
optimizer.

A. Quantum Approximate Optimization Algorithm (QAOA)

QAOA is a variational quantum algorithm proposed in
Ref. [2] intended to solve combinatorial optimization prob-
lems. QAOA is a layered algorithm. The layers consist of a
“cost” unitary followed by a “mixer” unitary, each of which
is implemented as a layer of parameterized gates. The general
idea is that the cost unitary encodes the problem instance to
be solved, while the mixer Hamiltonian creates superpositions
of the basis states in order to subsequently find the state which
produces the best solution to the problem. The optimization
is a bound constrained optimization since the parameters are
rotation angles bounded within [0, 2π]. A representation of
the general structure of the algorithm is shown in Fig. 2. Note
that only the single-qubit gates are parametrized, whereas the
two-qubit gates are static. The implementation used in this
work uses 2 layers, as deemed sufficient for small problem
sizes [18]. Furthermore, in a noise-free scenario, increasing
the number of layers increases the accuracy [2], however this
may not be the case on noisy quantum computers. We note
that while here the number of layers stays constant for all
problem sizes, the circuit depth per layer can increase as a
function of the problem size. In general, a constraint can be set
between 2 qubits, which translates to a set of two-qubit gates.
In the worst-case scenario, all qubits share a constraint with
all other qubits, which results in n(n−1)

2 constraints, where n
is the number of qubits. In the used benchmark set, the ratio of
constraints to qubits remains constant (4 constraints per qubit)
and therefore the growth is linear.

IV. CONTROL-HARDWARE BENCHMARK

A. Benchmark metrics

To benchmark quantum control hardware, several metrics
must be evaluated, including the runtime performance and
the result accuracy, as outlined and implemented in earlier

work [5]. In this paper we focus on the runtime performance.
The result accuracy is relevant for users of our tool that have
access to a quantum chip in an experimental setup. However, in
this work a subroutine simulates the noiseless quantum circuit
(like the one in Fig. 2) to make the benchmarking and profiling
reproducible and independent of the availability of a cryostat
and quantum device calibration. As such, while our tool can
evaluate the result accuracy as well, we do not discuss it in
the rest of this work.

The main focus of the benchmark tool that we introduce
here is a fine-grained resolution of the runtime for the various
computing steps. The measured steps are:

• Compile: quantum-circuit compilation to Q1ASM in-
structions by the control software on the host CPU (Qblox
uses the open-source multi-vendor Quantify software [9]).

• Schedule (execution): execution of the circuit (gates,
measurements) and qubit reset as pulses on a (virtual)
quantum chip.

• Communication: communication from the host CPU to
the quantum control hardware and back, including pos-
sibly multiple rounds to set up the modules and send
the compiled instructions. The communication category
is further subdivided into:

– Stop: command to stop the schedule. Used as a safety
precaution both to make sure the modules are ready
before receiving new schedules, and after receiving
the measured data.

– Prepare: sending the compiled waveform schedule
over an Ethernet connection to the control and read-
out modules, which then make the sequencers ready.

– Start: command to start the waveform schedule.
– Wait-done: host CPU waiting and checking until the

schedule has finished, net of the schedule-execution
time (in the profiling measurements we performed,
this runtime includes the schedule-execution runtime,
however the latter is subtracted to isolate the wait-
done overhead).

– Retrieve acquisition: receiving the measured results
from the readout modules to the host CPU.

• Total: the total runtime of the hybrid quantum/classical
algorithm.

The current implementation gives several advantages. First,
as there is a direct connection from the host CPU to the
quantum control hardware, there are no factors such as
API calls or long-distance high-latency connections. Secondly,
fine control in measuring the quantum runtime is available. It is
indeed possible to directly access the pipeline of all scheduled
instructions, allowing for an exact measurement of the runtime.
Furthermore, one can also go into detail on different sub-
processes of the major computational steps.

B. Methods

The initialization used in this work for benchmarking and
profiling uses a host CPU (Intel Core i5 10th Gen i5-10210U,
8GB RAM, Nvidia GeForce MX250) connected to a Qblox



Fig. 3. Used initialization for benchmarking the control hardware. A host CPU
communicates Q1ASM instructions to a Qblox Cluster via Ethernet, which
performs its operations as if connected to actual transmon qubits. The random
measurement results reported by the Cluster for a virtual chip are substituted in
the host CPU with the measurement results obtained using QASM to simulate
the QAOA circuits like the one in Fig. 2.

Cluster through a 1 Gbps Ethernet connection (see Fig. 3). For
14 qubits, in this work the Cluster uses three quantum control
modules and three readout modules to generate the pulses for
single-qubit gates and measurements. As two-qubit gates are
static, and thus their schedule is always the same, we do not
actually generate the corresponding pulses in separate control
modules (but we account for their gate time in the reported
schedule times). Each module employs a time-deterministic
and Turing-complete processor, named Q1 processor, for
executing the control and readout tasks. Q1 processors are
programmed with the Q1ASM assembly code that is compiled
by Quantify on the host CPU. In order to faithfully reproduce
experimental conditions and estimate the runtime, the Cluster
performs its operations as if it were connected to actual
transmon qubits. This means that the Cluster generates pulses
and measures the signal at its input ports. As these are
disconnected in this scenario, the Cluster effectively measures
noise, communicating random measurement results in the
retrieve-acquisition step. These measurements are returned to
the host CPU, but are immediately discarded and substituted
with the measurements from the simulated circuit, which are
then used by the optimizer for the parameter updates.

The circuit simulation is implemented through the
Qiskit Aer simulator [19], but for future usage any QASM-
supporting simulator can be integrated. Note that feedback
on the measurement results is required for running a hybrid
quantum algorithm such as QAOA, hence the simulation is
required to run the benchmark (of course, one can use an
actual quantum device, if available). The considered device
parameters for gates and operations are reported in Table I and
are inspired by Ref. [20]. Furthermore, we consider an all-to-
all connectivity for simplicity of compilation (see Section VI
for an estimate of the required overhead for using SWAP
gates).

The QAOA algorithm is implemented using the QPack
suite [5]. Specifically, we consider QAOA for the Max-Cut
problem for 4 to 14 qubits. For each qubit number, we

TABLE I
CONSIDERED EXECUTION TIMES FOR QUANTUM OPERATIONS.

Passive reset Active reset 1Q gate 2Q gate Measurement
200 µs 1 µs 40 ns 100 ns 500 ns

TABLE II
AVERAGE RUNTIMES PER OPTIMIZATION ITERATION FOR QAOA ON

4 QUBITS FOR 1000 SHOTS, SHOWN IN FIG. 4.

Computation step Measured runtime [ms]
Circuit execution 11.7
Reset (passive) 200
Reset (active) 1

Schedule execution (passive) 211.7
Schedule execution (active) 12.7

Start 57.11
Prepare (baseline) 207.2
Prepare (parallel) 73.9

Wait done 56.3
Retrieve acquisition 58.9

Stop 19.5
Communication total (baseline) 388.1
Communication total (parallel) 254.8

Compilation 84.2
Optimizer 0.47

Total (baseline) 694.8
Total (active reset) 495.7

Total (active reset + parallel) 348.8

consider a single problem instance and we run the bench-
mark for 40 times starting from the same initial parameters.
As the (simulated) measurement outcomes are probabilistic,
the number of optimization iterations to reach convergence
varies each time. To take this into account, the time results
in Section V are averaged over the number of iterations and
runs. The classical optimizer used is the SHGO optimizer
(Simplicial Homology Global Optimization) [21] included in
the scipy.optimize library [22]. We note that it takes 0.47 ms
per iteration for 4 qubits. We use 1000 shots for each iteration,
as this order of shots has proven to give sufficiently accurate
optimization results for the examined small problem sizes [5].
The QAOA schedule uses single- and two-qubit gates for a
maximum total of 64 gates, with a final measurement, resulting
in a total maximum circuit time of 14.8 µs. However, the
compiled schedules will generally have lower execution times,
as gates for which the parameters are set to 0 by the optimizer
will be cancelled or merged by the compiler.

V. RESULTS

A. Benchmark on 4 qubits and addressed bottlenecks

The circuit execution (i.e. gates, measurements, excluding
qubit reset) forms the essential core of a quantum algorithm or
experiment in general. However, the profiling results in Fig. 4
(see also Table II) show that the main part of the computation
is not spent on the circuit execution. Indeed, one can compute
that the baseline total runtime is 59.4 times the circuit-
execution runtime (694.8 ms versus 11.7 ms). Hence, reducing
this huge overhead will have a significant impact for real-world
applications. The most significant steps in the computation for
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Fig. 4. Average runtimes per optimization iteration for QAOA on 4 qubits, each measured for a total of 1000 shots (see Table II for the exact values).
Specifically, the results are averaged over the optimization iterations and over 40 runs of the benchmark. The error bars represent the standard deviation
(root-mean-square deviation). The figure shows the runtimes for baseline (left column), using an active reset (middle) and for both an active reset combined
with the implemented parallel module preparation. Note that the parallel module preparation is independent of using a passive or active reset.

baseline are, in descending order, the qubit reset if passive
(as it is often the case), the communication between the
host CPU and the quantum control hardware (specifically
the module preparation step), and the schedule compilation.
We note that the runtime standard deviation per run can be
significant – for example, for the longest run we measured
24.49 s for a total of 34 iterations and for the shortest 5.62 s
for 8 iterations. Especially for large or noisy systems, large
amounts of iterations are required for the classical optimizer.
As such, it is most relevant to consider the average runtimes
per iteration.

We first discuss how to mitigate the bottleneck due to the
passive qubit reset. This can be done by implementing an
active qubit reset instead [23]. We assume that the active reset
will take approximately the qubit measurement time, plus the
time for a corrective gate, for which we use a conservative
estimate of 1 µs overall. At the time of writing, feedback
cycles with the Cluster are shortened to 320 ns, allowing for
500-700 ns reset cycles (depending on the time of flight and
readout pulse duration). This increases the schedule execution
speed by an estimated

211.7

211.7− 199
= 16.67 times, (1)

leading to an overall speedup of

694.8

694.8− 199
= 1.40 times. (2)

The comparison to the baseline is given visually in Fig. 4
active reset (middle columns).

The second execution bottleneck that emerged is the com-
munication overhead (388.1 ms). This is much more than the
measured, bare latency of 2.5-3 ms over a short Ethernet cable.
We observed that this overhead is mostly due to the initializa-
tion (“preparation”) of the control and readout modules in the
Cluster. The control software (here Quantify) prepares these
modules sequentially. We implemented a parallelization of this
preparation step through multi-threading. In particular, instead
of loading the compiled waveforms sequentially per module,
the waveforms are loaded in parallel.

If parallelization would be complete, the runtime for paral-
lelized preparation would be

388.1 ms− (388.1 ms− 2.5 ms)× 4

5
= 79.6 ms. (3)

However, this maximum speedup is not achieved and is
attributed to non-parallelizable overhead.

The actual improvement is visualized in Fig. 4 active reset
+ parallel module initialization (right columns). The measured
speedup with this implementation is then:

694.8

694.8− (388.1− 254.8)
= 1.24 times, (4)

whereas if this were implemented on top of an active qubit
reset, where the overhead bottleneck is more apparent, the
speedup is

694.8− 199

694.8− 199− (388.1− 254.8)
= 1.37 times. (5)

Note in Fig. 4 that the parallel prepare step displays a
relatively large standard deviation. We suspect it to be caused
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Fig. 5. Left axis: Average runtimes per optimization iteration for QAOA on
4,6,8,10,14 qubits, each measured for a total of 1000 shots. Specifically, the
results are averaged over the optimization iterations and over 40 runs of the
benchmark. Right axis: schedule data size, see dotted line with cross markers.

by conflicts during communication, as this can occur when
employing multi-threading.

B. Scaling from 4 to 14 qubits

We examine the growth of the runtimes as a function of
the number of qubits in order to gain insight on bottlenecks
for larger systems. The profiling results up to 14 qubits
are presented in Fig. 5, showing that the hardware prepare
step grows with the highest slope and is dominating the
execution time. A speedup of 3.58x is achieved at 14 qubits
when comparing the parallel and baseline prepare step. By
implementing the parallel prepare, a linear growth of the
execution time can still be observed, albeit small. We attribute
this linear growth to the growth of schedule data sent during
the prepare command and to the time that it takes the modules
to get ready. Measurement of the data size shows that the data
grows linearly with the number of qubits, at a rate of about
25 kb per qubit, correlating to the linear increase in prepare
time.

C. Extrapolation to 50+ qubits

As the scale at which variational quantum algorithms may
be useful is around 400 qubits [15], it would be interesting
to extrapolate the current results to that scale. However, we
cannot simply make a linear fit of the measured data from
4 to 14 qubits and extending it that much since the order of
growth (linear, quadratic or else) depends on many factors and
assumptions. We discuss our expectations for the QAOA op-
timizer, schedule, prepare step, compilation and number of
SWAPs in a square-grid connectivity.

As far as the optimizer is concerned, the number of itera-
tions will highly depend on the smoothness of the cost function
and the number of local minima. These factors make it harder
for an optimizer to find the global optimum, affecting the
accuracy metric of the algorithm. As this function is the black-
box evaluation of the quantum algorithm, this will strongly

depend on the problem instance and quantum-device noise.
However, two indications about the optimization time can
be given. For the SHGO algorithm specifically, it is known
that SGHO is very unlikely to give good results for over
10 variables [21]. As the optimization of QAOA reaches this
point already for small problem sizes, the performance of
SHGO is likely not well suited for QAOA on large scale.
Current research explores the option of machine learning to
solve this optimization issue, but results show that training
these algorithms is very time-consuming, in the order of
hours even for small problem sizes [24], [25]. The second
concern for the time complexity of QAOA optimization is the
growth of parameters. This is determined by (a) the number
of constraints and (b) the number of QAOA layers. Note that
the total number of parameters is the multiplication of both
factors (times a small constant). The growth of layers as a
function of problem size is up until now only determined
empirically. However, the number of constraints grows at worst
quadratically (n(n−1)

2 where n is the number of qubits) for a
fully connected graph and at best linearly under the assumption
that all nodes are connected.

The potential quadratic scaling of the QAOA parameters dis-
cussed above reflects directly in the schedule execution time.
The size of the schedule file would also grow accordingly,
increasing the load time of the compiled schedules during the
(parallel) prepare step. Up to 14 qubits we observe that the
description of the model waveforms and the schedule itself,
i.e. the ordering and parameter specification of the waveforms
to form the schedule, take different fractions of the data
depending on the type of module. For readout modules the
data consists of ∼ 87.5% waveform descriptions and ∼ 12.5%
schedule instructions (measurements). These do not change for
larger quantum circuits as there is only one final measurement
per qubit. For control modules the data consists of ∼ 12.5%
waveform descriptions, which remain constant as no new types
of gates are introduced in scaling the circuit. The schedule
description occupies ∼ 87.5% of the data, which can grow
for larger systems, but hardly increases for this particular
benchmark (we only observe that the per-qubit schedule
description varies by at most 1 kb per instruction file) We
attribute this to the fact that, for the chosen problem instance in
the used QPack benchmark [5], as discussed in Section III-A,
this ratio of constraints to qubits is linear, therefore the per-
qubit schedule does not increase on average (not counting
SWAP gate overhead, see below). As the increase in file size
due to increasing schedule length is negligible at this scale,
the only driving factor is the linear increase of total data
due to the linearly increasing number of compiled files (one
control and one readout per qubit). However, if the problem
would be structured differently, the number of constraints per
qubit could grow with the problem size. As then only the
control schedule itself may grow quadratically in the worst
case, we predict that the growth in data size and thus prepare-
step runtime will still look linear for relatively low number
of qubits, even though a specific number for the latter is hard
to determine. The possible factor that is expected to be most
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Fig. 6. Measured results for the number of SWAP gates required for the
QAOA algorithm on a square-grid qubit layout. The results are fitted to a
polynomial function, obtaining an exponent of 1.7.

impactful on the prepare time is the loading of the schedules
on the sequencers, which increases for larger problem sizes.
The bandwidth of the connection might create a bottleneck
at some point, however, with file sizes in the order of 25 kb
per qubit, the bandwidth of Ethernet connections (1 Gbps)
will not cause concerns for near-term quantum computers (for
example, it takes about 360 µs to transfer the schedules for
14 qubits, plus a small latency overhead).

The scaling of the compilation is harder to predict. The
quadratic growth of the schedule will introduce a quadratic
scaling of some part of the compilation step, but currently
it is unclear how large the impact will be. Furthermore, the
given compile runtimes are for all-to-all connectivity and thus
do not include the overhead due to the compilation of SWAP
gates (see below) in a limited connectivity. The latter is hard
to isolate in Qiskit and to combine with the different schedule
format in Quantify.

As we have considered all-to-all connectivity for simplicity
but this is typically not available in transmon qubits, each two-
qubit gate has to be compiled making the use of a number of
SWAP gates. This is dependent on the problem instance, the
number of constraints and the qubit layout, leading in general
to an increase in the schedule time. In order to estimate the
growth of this overhead, we use Qiskit’s schedule transpiler
[26] for the same QAOA algorithm to compile the SWAP gates
for a square-grid layout. This layout has been chosen to
emulate the chip in Ref. [20] as well as Google’s Sycamore
processor [1]. The results are shown in Fig. 6. We fit them
to a polynomial function, resulting in a power of 1.7. The
found growth of the number of SWAP gates is realistic, as it
is at most cubic (quadratic number of two-qubit gates times
maximum linear number of SWAPs per two-qubit gate) and
with a minimum of 0 (in the case the problem maps exactly
to the qubit layout).

As discussed in this section, the extrapolation of the
measured average runtimes is uncertain given the unknown
factors in the scaling of the QAOA layers, schedule size and

TABLE III
LINEAR EXTRAPOLATION TO 50 QUBITS OF THE MEASURED AVERAGE

RUNTIMES PER OPTIMIZATION ITERATION, IN DESCENDING ORDER, FOR
1000 SHOTS EACH, FOR THE CASE WITH ACTIVE RESET AND PARALLEL

MODULE PREPARATION.

Execution step Runtime [s]
Compile 0.923

Parallel prepare 0.754
Start 0.479

Retrieve acquisition 0.478
Wait done 0.388

Stop 0.213
Schedule (active reset) 0.090

Total 3.325

compilation. Nevertheless, we perform a best-case-scenario,
linear extrapolation to 50 qubits to get a rough estimate
of the required runtimes (see Table III). Only the schedule
time includes the polynomial extrapolation of the additional
SWAP gates. These numbers indicate that the next major
bottleneck is compilation (in fact, this is the case in Fig. 5
already for 14 qubits). As stated before, the actual time is
expected to be even larger compared to the linear estimation.
In Section VI we propose ways to mitigate this compilation
bottleneck.

VI. DISCUSSION

While the presented runtime measurements break the run-
time into its main categories, Q-Profile is capable of further
decomposing them into finer blocks. Further profiling the
computation steps is a necessity as new bottlenecks will
emerge. One of the expected bottlenecks is the quantum-circuit
compilation, as discussed in Section V-C. This step currently
occurs from scratch for every optimization iteration. However,
the quantum circuits contain the same gates with different
parameters only. One solution would be to parameterize the
quantum-circuit schedule, where only the updated parameters
are uploaded to the control hardware while the general circuit
structure remains stored on the control hardware. This would
significantly reduce the quantum-circuit compilation time and
further accelerate variational quantum algorithms. Optionally,
dedicated hardware acceleration can be considered. Note that
if one would optimize the schedule to use parallel gates to
best fit the qubit layout, more time for compilation would
be required than here. Quantum circuit optimization is a
challenging task in itself, with contextual circuit improvements
for e.g. QAOA [27]. Including this in the compilation would
give rise to even larger compile times, leading to a tradeoff
between compile time and circuit optimization.

Our tool shares common aims with the CLOPS bench-
mark [10]. This benchmark aims at measuring the speed at
which not only gates are executed on a quantum chip, but
also the speed at which classical computation proceeds to
schedule and compile instructions, as well as to collect results
and perform post-processing. IBM’s results [10] indicate a
bottleneck in the quantum control hardware which increases
with larger devices, as more control hardware is required and



as the initialization and load times increase. In particular,
the IBM cloud setup introduces most of its overhead in
the communication, as could be expected, even to a much
higher degree compared to our results. As algorithm, the
CLOPS benchmark utilizes parameterized quantum-volume
(random) circuits in order to represent a typical use of the
quantum computer. Its score is influenced by the number
of shots, templates, parameter updates and quantum-volume
layers. While our tool could be used to run the same circuits,
in this work we chose instead to apply it to QAOA because
we believe that profiling specific algorithms of broad interest
is relevant and timely as well.

VII. CONCLUSION

We have proposed and demonstrated Q-Profile, an accurate
and efficient tool for benchmarking and profiling quantum
control hardware and software. Profiling quantum systems
is becoming increasingly important due to the aim of using
quantum computing for acceleration. We applied Q-Profile
to QAOA to reflect near-term practical usage, but it can be
extended to other quantum algorithms, as well as to more
qubits to study how the overhead and its profile scale with
system size. The presented tool indicated various bottlenecks
for the current state of (variational) quantum computing, and
demonstrates capabilities for profiling quantum control stacks
in the future. An improvement to the hardware control soft-
ware has been implemented to demonstrate the effectiveness
of profiling. With this work, we have demonstrated the utility
of Q-Profile and given insight to hardware and software
developers in how to find performance bottlenecks in their
systems. The profiling capability has been included in the
open-source software Quantify [9].
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[23] D. Ristè, C. C. Bultink, K. W. Lehnert, and L. DiCarlo, “Feedback
control of a solid-state qubit using high-fidelity projective measurement,”
Phys. Rev. Lett., vol. 109, p. 240502, Dec 2012. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevLett.109.240502

[24] S. Khairy, R. Shaydulin, L. Cincio, Y. Alexeev, and P. Balaprakash,
“Reinforcement learning for quantum approximate optimization,” in
Supercomputing, vol. 19, 2019, pp. 1–10.

[25] M. Alam, A. Ash-Saki, and S. Ghosh, “Accelerating quantum
approximate optimization algorithm using machine learning,” in 2020
Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2020, pp. 686–689. [Online]. Available: https://ieeexplore.ieee.
org/document/9116348

[26] “Qiskit Terra transpiler,” https://qiskit.org/documentation/apidoc/
transpiler.html.

[27] M. Alam, A. Ash-Saki, and S. Ghosh, “Circuit compilation
methodologies for quantum approximate optimization algorithm,”
in 2020 53rd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2020, pp. 215–228. [Online]. Available:
https://ieeexplore.ieee.org/document/9251960

http://dx.doi.org/10.1038/s41586-019-1666-5
http://dx.doi.org/10.1038/s41586-019-1666-5
https://arxiv.org/abs/1411.4028
https://arxiv.org/abs/1411.4028
https://arxiv.org/abs/2103.08505
https://arxiv.org/abs/2006.04594
https://arxiv.org/abs/2103.17193
https://arxiv.org/abs/2003.01862
https://arxiv.org/abs/2003.01862
https://doi.org/10.1109/TQE.2021.3090207
https://doi.org/10.1109/TQE.2021.3090207
https://arxiv.org/abs/2110.03137
https://gitlab.com/quantify-os
https://gitlab.com/quantify-os/quantify-scheduler/-/blob/v0.12.0/quantify_scheduler/gettables_profiled.py
https://gitlab.com/quantify-os/quantify-scheduler/-/blob/v0.12.0/quantify_scheduler/gettables_profiled.py
https://gitlab.com/quantify-os/quantify-scheduler/-/blob/v0.12.0/quantify_scheduler/gettables_profiled.py
https://arxiv.org/abs/2110.14108
https://www.science.org/doi/abs/10.1126/science.abb2823
https://www.science.org/doi/abs/10.1126/science.abb2823
https://doi.org/10.22331/q-2021-04-15-433
https://www.nature.com/articles/s42254-021-00348-9
https://www.nature.com/articles/s42254-021-00348-9
https://www.nature.com/articles/ncomms5213
https://www.nature.com/articles/ncomms5213
https://doi.org/10.1038%2Fs41598-019-43176-9
https://doi.org/10.1038%2Fs41598-019-43176-9
https://research.ibm.com/blog/ibm-quantum-roadmap
https://research.ibm.com/blog/ibm-quantum-roadmap
https://doi.org/10.1103%2Fphysrevlett.127.120502
https://arxiv.org/abs/1905.12134
https://qiskit.org/documentation/stubs/qiskit.providers.aer.QasmSimulator.html
https://qiskit.org/documentation/stubs/qiskit.providers.aer.QasmSimulator.html
https://doi.org/10.1038%2Fs41586-022-04566-8
https://doi.org/10.1007/s10898-018-0645-y
https://www.nature.com/articles/s41592-019-0686-2
https://www.nature.com/articles/s41592-019-0686-2
https://link.aps.org/doi/10.1103/PhysRevLett.109.240502
https://ieeexplore.ieee.org/document/9116348
https://ieeexplore.ieee.org/document/9116348
https://qiskit.org/documentation/apidoc/transpiler.html
https://qiskit.org/documentation/apidoc/transpiler.html
https://ieeexplore.ieee.org/document/9251960

	I Introduction
	II Quantum control hardware structure
	III Hybrid quantum algorithms
	III-A Quantum Approximate Optimization Algorithm (QAOA)

	IV Control-hardware benchmark
	IV-A Benchmark metrics
	IV-B Methods

	V Results
	V-A Benchmark on 4 qubits and addressed bottlenecks
	V-B Scaling from 4 to 14 qubits
	V-C Extrapolation to 50+ qubits

	VI Discussion
	VII Conclusion
	References

