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Abstract— Radar and lidar, provided by two different range
sensors, each has pros and cons of various perception tasks on
mobile robots or autonomous driving. In this paper, a Monte
Carlo system is used to localize the robot with a rotating radar
sensor on 2D lidar maps. We first train a conditional generative
adversarial network to transfer raw radar data to lidar data,
and achieve reliable radar points from generator. Then an
efficient radar odometry is included in the Monte Carlo system.
Combining the initial guess from odometry, a measurement
model is proposed to match the radar data and prior lidar
maps for final 2D positioning. We demonstrate the effectiveness
of the proposed localization framework on the public multi-
session dataset. The experimental results show that our system
can achieve high accuracy for long-term localization in outdoor
scenes.

I. INTRODUCTION

Localization on map is an essential and critical component
for autonomous navigation systems, which estimates the
precise metric position for mobile robots or vehicles as an as-
sistance. In recent years, localization algorithms and methods
are relatively mature and success with the development of
sensor technology and back-end optimization. However, the
reliable localization is still challenging for long autonomy,
due to the unpredictable conditions on roads, including the
variable of illumination and weather etc.

To overcome these constraints of variations, different types
of sensors are selected or connected on board, according
to the requirements of robots and relative operating envi-
ronments. For instance, pure vision systems were proposed
and popular for indoor localization [1]. As for field robots,
visual descriptors and features change a lot from various
illumination, thus lidar based methods were widely used
for metric positioning across day and night [2], including
laser map aided visual localization [3]. The success of lidar
based mapping and localization enabled the application of
mobile robots in real world. But the weather invariance still
remains challenging, especially in foggy or snowy days,
some scenerios may not return any meaningful measurements
for laser scanner, leading to a potential difficulty for long-
term localization.

Radio detection and ranging (Radar) is considered as a
weather-invariant on board sensor, which provides distance
and speed measurements of vehicles for driver assistance
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Fig. 1: A brief illustration of the proposed localization
system. The raw radar is first transfered to lidar-like represen-
tation by the trained generator in GAN. Then the fake lidar
points are transformed into MCL system for pose estimation.
The prior 2D lidar map for localization is shown in black,
and the green points stand for the transformed fake lidar on
the estimated pose.

systems. Recent scanning radar sensors achieve much im-
provements with higher resolution and broader field of view
[4], [5], but various types of noises still remains a significant
challenge for applications, including ghost detections, multi-
path reflection etc [6], [7]. Many researches tried to filter the
noisy radar data to a more precise form by geometrical or
learning methods, and majority of the works mainly focus
on the radar data processing.

In this paper, we consider that lidar sensor can be a
connection for radar application in real world, since both
of the sensors provide range sensing on mobile platforms.
Specifically, range data from laser scanner are more accurate
and reliable compared to radar, so we use a conditional
generative adversarial network (GAN): pix2pix [8], which
can learn the lidar representations for Frequency-Modulated
Continuous-Wave (FMCW) radar data. The trained genera-
tive model is able to transfer the radar data to fake lidar
points. Then a Monte Carlo localization (MCL) system is
formulated by motion and measurement models. The whole
system can localize the robot with the transfered data on a
pre-built laser map, illustrated in Fig. 1 and Fig. 2. Overall,
the contributions of this paper are as follows:
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• Conditional GAN is used to transfer the radar data
to fake lidar points, which has a more precise form
compared to raw data.

• We propose a Monte Carlo based localization system
to localize the mobile robot, with radar data input and
pre-built lidar maps.

• Multi-session dataset is employed to demonstrate the
effectiveness of the proposed system across days.

The rest of this paper is organized as follows: In Section II,
we introduce the related work about radar based localization.
The proposed localization system is presented in Section
III. Section IV reports the experimental results using public
dataset. And a brief conclusion and future outlook are
addressed in Section V.

II. RELATED WORK

Multi-sensor based localization is widely applied in the
area of mobile robot or intelligent vehicles. We mainly focus
on the radar based localization in this section to review the
recent development.

Radar data processing is a key part for real application in
real world since there are many noises and Doppler effect
in the raw radar data. Some researchers studied the Doppler
effect and data distortion formulation in order to estimate the
robot’s displacement [6]. Radar data clustering was used in
[9], which can achieve high accuracy with wheel odometry
from vehicle. Similarly, feature extraction method was used
in [10], which detected distinguishable landmarks for radar
based simultaneous localization and mapping (SLAM).

With the development of FMCW radar sensor, two new
datasets are presented for researching: Oxford Radar Robot-
Car Dataset [4] and MulRan Dataset for Urban Place Recog-
nition [5]. The Navtech Millimetre-Wave FMCW radar is
able to achieve more accurate range sensing, and several
radar based research works for outdoor scenes are also
conducted on these two datasets. One of the topics is the
ego-motion estimation between two radar scans, which is
published in many recent papers [11]–[14]. These methods
proposed effective algorithms to filter the noisy radar data
and estimate the transformation between two radar scans.
Conventional signal processing technique was used to detect
the landmarks from radar data [11], and then data association
was performed for scan matching. Keypoints based method
was also proposed to achieve real-time radar odometry [13].
In addition, data filter can be achieved by learning based
methods. In [12], ground truth poses were used to annotate
the raw data pixel by pixel by accumulating radar scans,
and then U-Net was trained under the supervision of the
labels. The trained U-Net is able to discard the useless radar
points and keep the high power points for motion estimation.
End-to-end radar odometry [14] was proposed to replace
the conventional scan matching methods, which can also
perform robust and efficient odometry system. But due to
the limitation of motion estimation, some errors may occur
during the robot moving. In [15], a failure detection method
was proposed to improve the reliability of odometry system.

The connection between lidar and radar is a popular topic
for range sensing in recent years. Place recognition is a crit-
ical module in localization and mapping system. Compared
to lidar based place recognition or loop closing, there are few
research search on radar range data. In [16], researchers find
that ScanContext [17] for lidar place recognition can also
be used for radar data. A geometrical solution for indoor
localization was shown in [18], which registered the radar
points on CAD models and lidar maps. The relationship
between lidar and radar was also performed in [19]. An
Inverse Sensor Model was learned from lidar data by neural
network, which can filter the noises and occlusions in radar
data. Considering that lidar and radar are both range sensors,
we use the neural network to transfer the radar data to lidar
points directly in this paper. With the output from the trained
network, a localization system on lidar maps is built for pose
estimation.

III. METHODS

The proposed system is presented in this section, including
the pix2pix network for data filter, and the Monte Carlo
localization system. The whole system is shown as Fig. 2.

A. Radar-Lidar style transfer

In this paper, the FMCW radar data or lidar data in 2D-XY
cartesian coordinate has two representations for processing:
the 2D image-like representations I for neural network train-
ing, and 2D point cloud P for metric localization. Specif-
ically, images I are used for image style transfer by deep
learning, and point clouds P are used for metric localization
of mobile robot. Both of these two representations can be
transformed to each other under a certain resolution r, as
follows:

I 
 P (1)

Given a sequence of radar and lidar images from bird-
eye view, donated as Ir and Il, we first align the lidar data
on the radar coordinate by calibration results, and find the
nearest lidar scan of each radar by timestamps. With the
aligned pairwise data, we train a pix2pix network [8] to learn
the lidar representation for radar data. The objective of the
pix2pix network contains two parts, as follows:

G = argmin
G

min
D
L(G,D) + λL(G) (2)

which are the objective of conditional GAN and the L1
distance loss. The loss of generator and discriminator is
formulated as follows:

L(G,D) =E(Ir,Il)[logD(Ir, Il)]+

E(Ir)[log(1−D(Ir, G(Ir)))]
(3)

and the L1 distance of “real” lidar image and “fake” image
is as follows:

L(G) = E(Ir,Il)[‖Il −G(Ir)‖1] (4)

Overall, as shown in Fig. 2, pix2pix network is able to
train a generator G and discriminator D after learning lidar
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Fig. 2: The framework of the proposed localization system. In the training session, we use a GAN network to achieve radar
data transfer, which contains two objectives: L(G,D) and L(G), shown in the figure. In the inference session, the trained
generator is used to transform the radar data to fake lidar data for localization. The components are components of MCL
are ICP registration for odometry estimation, and the a measurement model on laser map.

style transfer, and only G is used in the inference step, the
following metric localization on lidar maps.

Generally, the ground in x− y planes in 3D point clouds
are used to constrain the Z-axis for 6DoF localization. While
in this paper, we consider the ground planes are redundant
for 2D positioning, and we use a height threshold on original
3D lidar point cloud for filtering ground planes, thus a more
precise 2D lidar representation can be used for radar style
transfer and following operations. Finally, the filtered 2D
lidar data are fed into GAN for training, then we can obtain
the fake lidar image and point cloud by using the trained
generator, as follows:

G(Ir) 7→ Ifl , P
f
l (5)

B. Monte Carlo localization

With the generated fake lidar point clouds, the metric
localization can be achieved by registration on the laser
map directly. Considering the uncertainty of neural networks,
there still exist some noises on the fake lidar compared to the
real lidar data, so a reliable back-end is required for long-
term localization. In this paper, Monte Carlo localization,
or particle filter localization, is used as the pose estimation
method. MCL is widely used mobile platforms due to its
pose tracking and re-localization abilities [20], [21].

In this paper, we follow the two steps of conventional
MCL method: the prediction phase by motion model and

the update phase by measurement model. Based on a prior
laser map M , the particle filter is the following factorization:

p̂(xt|Zt,M) = ηp(zt|xt,M)p̂(xt|Zt−1,M) (6)

where η is a normalizer. And the measurements Zt =
{z1, ..., zt} = {P1, ..., Pt}, in which the fake lidar cloud P fl
is denoted as P for clearance.

In the prediction phase, the robot state is approximated by
samples as follows:

p̂(xt|Zt−1,M) =
∑
i

p(xt|sit−1, ut−1) (7)

where si represents a particle in estimator, and u is the robot
motion, which is achieved by applying 2D iterative closest
points (ICP) method to align Pt−1 and Pt.

In the update phase, to calculate the likelihhood of sit
given zt on M , the individual importance weight ωit =
p(zt|sit,M) is needed. We define the weight as a power
function relationship to the number of matched points N i

t

in point cloud P it , as follows:

ωit = (N i
t )
λ (8)

where λ is a constant value, and P it is the point cloud Pt
aligned on sit. A direct form to determine whether a radar
point is “matched” can be formulated by the nearest distance
to the map points: if a point is close the map point, we



consider it contributes to the localization effectively. Based
on a threshold distance dth and the nearest distance dp,M ,
we set a radar point as matched with the following criteria:

matched =

{
0 dp,M ≥ dth
1 dp,M < dth

, p ∈ P it (9)

which is similar with the observation count for map points in
[22]. Based on the distance statistics on the P it , the impor-
tance weights can be obtained. The particles with larger N i

t

and higher likelihood are kept after weight normalization and
re-sampling step, and the robot pose is estimated combing
with the particles’ states and weights. Finally, the prediction
and update phases are repeated recursively with the input
lidar scans from the trained generator model.

IV. EXPERIMENTS

Experimental results are presented in this section with
public dataset. We first introduce the dataset and some
preparations, and then present the generated fake lidar point
clouds. Finally, localization performance is evaluated on
multiple sessions. To help understanding our experimental
results, a supplimentary video is uploaded 1.

A. Dataset and implementation

We use the public multi-session dataset, Oxford Radar
RobotCar Dataset 2 [4], [23] for performance evaluation,
which includes dual Velodyne HDL-32E lidar sensors and
one Navtech CTS350-X Millimetre-Wave FMCW radar. The
calibration results and optimised ground truth radar odometry
are also provided.

The provided ground truth odometry can be used for ego-
motion or odometric error evaluation. But for the localization
across days, the starting position is different for each single
session, so the ground truth odometry can not be used
directly in this paper. To achieve proper evaluation, we first
select five sessions with the same starting place, and set
the initial state as zero for each one. Then five laser maps
are accumulated by using the dual lidar data and ground
truth odometry with initial states. Finally, we set the first
session map as the target global map, and use a precise
ICP method to register other maps on it. The ground truth
poses of each session can be obtained by multiplying each
global ICP result, which are appropriate for localization
evaluation under the same global coordinate. And we present
the detailed information of these selected sessions in Oxford
Radar RobotCar Dataset, shown in Tab. I.

As for the image translation, we use the open code of
pix2pix network 3. The generator network is set as ResNet
with 9 blocks and default configurations. We set the one-
channel range images with 512 × 512 size and resolution
of 0.25m/pixel. The images are handled with original sizes
and no crop or resize operations.

1https://youtu.be/wE-DbaCDbsU
2https://dbarnes.github.io/radar-robotcar-dataset
3https://github.com/phillipi/pix2pix

TABLE I: Sessions for evaluation

Date Times Duration Distance Usage

10/01/2019 11:46:21 00:37:00 9.02 km Training and Mapping

10/01/2019 12:32:52 00:35:57 9.04 km Seq01 for localization

11/01/2019 12:26:55 00:32:00 9.03 km Seq02 for localization

16/01/2019 13:42:28 00:31:53 9.01 km Seq03 for localization

18/01/2019 12:42:34 00:34:13 9.03 km Seq04 for localization

TABLE II: Localization results: RMSE error

Sequence Failed Times Positional RMSE Yaw RMSE

seq01 0 8.46m 5.43◦

seq02 0 6.93m 2.46◦

seq03 0 9.12m 4.47◦

seq04 2 14.10m 4.25◦

TABLE III: Localization results: error distribution

Sequence <1m, 2◦ <2m, 5◦ <5m, 10◦

seq01 29.55% 59.89% 74.74%

seq02 27.22% 68.08% 86.25%

seq03 13.71% 48.47% 77.10%

seq04 23.57% 48.49% 68.56%

B. Real-Fake image comparison

For localization application, we first transfer the radar
image Ir to lidar image Il, which filter the noisy radar data
to fake lidar data. Some scenes with images are presented
in Fig. 3. Intuitively, the generated images are similar with
the lidar image, but there are still some noises after process-
ing; and fewer lidar points are remained through network
compared to the original lidar data.

To compare the two images Ifl and Il quantitatively,
we use a statistic based method to measure the similar-
ity between the point clouds P fl and Pl. We build a K-
Dimensional tree on the real lidar point clouds, and then
every point in P fl obtains its nearest neighbor (NN) distance.
All the NN distances are counted as histograms for similarity
measurement, as shown in Fig. 3. Almost more than 40%
points in P fl are close to the lidar points and the distances
are below 1m, and nearly 60% points when the distance is
2m. Specifically, the generated points are mainly focused on
the bushes, walls and trees on the sides of the road. These
lidar points are informative for metric localization, but there
are still some ghost objects in the fake lidar.

C. Localization results

We conduct the localization test on four sessions from
Oxford Radar RobotCar Dataset, shown in Tab I. These
sessions traveled a distance over 35km across eight days in
urban area, which can validate the effectiveness of the pro-
posed localization system under challenging environments.
For Seq01, Seq02 and Seq03, the proposed system can
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Fig. 3: We present four cases of image style transformation and similarity measurement as above. The raw radar data Ir,
the generated fake lidar Ifl , the real lidar Il and the similarity measurement are shown from left to right in each row. The
histogram shows the distribution of nearest distances from P fl to Pl.

achieve complete results without localization failure when
running. While for Seq04, the estimator fails at two places
when localizing; so we re-set the initial state at these two
places manually, and then continue the localization process.

To present the results precisely, we calculate the root mean
square error (RMSE) of position and orientation, shown in
Tab. II; and the percentages of localization results within
three thresholds are listed in Tab. III. The trajectories and
error distributions are displayed in Fig. 4. The majority
of positional errors of all sessions are within 5m, and the
heading errors are limited in 3◦. On the one hand, there are
some large errors are at some cases, the vehicle running or
turning at high speed for example, which have effects on
the average error calculation. On the other hand, these large

errors are reduced during traveling by re-localization, which
validates the feasibility of the MCL system for long-term
operation.

Generally, we consider that the localization errors or
failures are caused by the reasons as follows:

• The laser scanner has a smaller detecting range com-
pared to the radar sensor, which makes the data an-
notation or image style transfer incomplete. Only the
points near to the radar sensor (≤ 64m) can be used
for localization in the experiments.

• The learned radar representations by neural networks
are still noisy. The noises in fake lidar points mainly
focus on ghost objects on roads, which are hard to
distinguish from real landmarks in raw radar data.
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Fig. 4: The localization evaluation in different days. The trajectories, and the histograms of position and heading are shown
from left to right in each row.

• The ICP registration in motion model is affected by
some noisy data directly. As for measurement model,
the pose estimation is determined by the number of par-
ticles and some other parameters, which makes the pre-
cise positioning difficult in challenging environments.

V. CONCLUSION

This paper proposed a radar based localization system
to estimate the robot poses on pre-built lidar maps. The
whole system relies on the the image transfer network at
the front-end and Monte Carlo localization at the back-end.
Specifically, the trained GAN network is able to generate
fake lidar point clouds from raw radar data; and then MCL



is performed to localize the mobile robot. The effectiveness
of the proposed system is validated on the Oxford Radar
RobotCar Dataset. In the future, we consider that a more
efficient and concise framework is desired by real-time
computing for localization, which can be achieved by end-
to-end deep learning technology in recent years.
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