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Abstract— Robots are often required to operate in environ-
ments where humans are not present, but yet require the human
context information for better human robot interaction. Even
humans are present in the environment, detecting their presence
in cluttered environments could be challenging. As a solution
to this problem, this paper presents the concept of affordance-
map which learns human context by looking at geometric
features of the environment. Instead of observing real humans
to learn human context, it uses virtual human models and
their relationships with the environment to map hidden human
affordances in 3D scenes. The affordance-map learning problem
is formulated as a multi label classification problem that can be
learned using cost-sensitive SVM. Experiments carried out in a
real 3D scene dataset recorded promising results and proved the
applicability of affordance-map for mapping human context.

I. INTRODUCTION

In robotics, learning human context often involves tracking
humans to learn their motion patterns [1], human activity de-
tection [2], [3] and modeling relationships between humans
and their surroundings [4]. Almost all of these techniques
require robots to detect and track humans for a considerable
amount of time before it is being used to model human
context. On the other hand, detecting, tracking and activity
detection of humans in a cluttered environment are still
largely open problems. Further, these tasks become more
challenging and complicated when robots have to accomplish
them while moving in a socially acceptable manner. Often
these existing techniques require a considerable amount of
re-engineering when they are introduced into new environ-
ments.

Introduced by Gibson in 1977 [5] affordance theory de-
fines the word “affordance” as all action possibilities latent
in the environment, objectively measurable and independent
of the individual’s ability to recognize them [5], [6], [7]. Af-
fordance theory argues that action possibilities are motivated
by how environment is arranged. For example, chairs and
sofas support the activity ‘sitting’ and they are physically
designed to support that affordance which encourages the
actor for sitting. Therefore, we believe this strong relation-
ship between human context and environmental affordances
could be used to learn human context even when humans
are not observable. The rationale here is that, it is possible to
learn environmental affordances by only looking at geometric
features of the environment and this form the basis for the
concept called affordane-map which is introduced in this
paper. Affordance-map involves mapping possible human
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affordances in 3D scenes though virtual human models. This
affordance-map learns the human context in a given envi-
ronment without observing any real humans and bypasses
challenges associated with human detection.

As robots use grid based maps for localization, path
planning and obstacle detection, affordance-map could be
used by a robot to improve the human robot interaction.
Therefore, service robots operating in indoor environments
could largely benefit from learning the hidden human con-
text. For example, a domestic service robot could use the
human context information embedded in an affordance-map
to arrange objects in a human preferred manner before
humans arrive from work. Or, it could use pose information
of virtual humans models embedded in affordance-map to
search and localize various objects. Even when humans are
present in the environment, affordance-map could be used
by a robot to carry out its task more efficiently. Firstly,
it could use affordance-map to infer the possible human
locations which could be used by the robot to efficiently
detect humans. Secondly, it could use information from
affordance-map to plan paths that minimize inferences to
humans. Even affordance-map could provide strong priors
for human activity detection when humans are partially
observed or the views of them are completely obstructed.

II. MAPPING AFFORDANCES

Affordance-map is consisted of two sub-maps as shown
in Fig. 1. First, it predicts virtual human skeleton models in
locations that support the tested affordance as shown in Fig.
1(a). Then it outputs a confidence value for each predicted
skeleton that indicates how likely the skeleton model is being
supported by the surrounding environment as shown with a
contour map in Fig. 1(b).
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(a) Vitual Skeleton Map

(b) The contour map of affordance
likelihoods

Fig. 1. The affordance-map of a living room

The affordance-map building process can be formulated as



a supervised learning problem. Given a set of 3D pointcloud
images {iy,....,ix} C I and their associated affordance-map
A, the goal is to learn mapping g : I — A which can be
later used to automatically build affordance-map in unseen
pointclouds. As some locations of the map could have
multiple affordances-labels, mapping g : I — A becomes a
multi label classification problem. As affordance types are
not mutually exclusive, one way to simplify this problem is
to divide each 3D image space into four dimensional grid
locations ( (x,y,z) location of the skeleton model and 6
orientation) and build an independent binary classifier for
each affordance type. Each binary classifier predicts a binary
label vector ¥ = (y1,.yi..,yn) where y; € {+1,—1} for the
feature vector X; = (X1,....,X,), X; € R" calculated for each
grid location of the 3D scene. The label y; becomes +1 if
that location support the tested affordance and —1 if not.

A. SVM Classifier for Affordance-Detection

Support Vector Machines (SVMs) [8], [9], [10] is a popu-
lar machine learning technique, which has been successfully
applied to many real-world application domains. The goal of
the SVM learning algorithm is to find the optimal separating
hyperplane which effectively separates instances into two
classes. SVM algorithm is a discriminative binary classifier
and it’s decision function can be used to assign confidence
values for its predictions. Therefore, SVM classifier is se-
lected as the binary classifier for mapping affordances.

B. Feature selection

The proposed affordance-map predicts virtual skeleton
models with likelihood values for each (x;,y;,6;) grid lo-
cation of the 3D image. It is based on a binary classifier
that predicts positive labels to the locations that support the
tested affordance and negative labels to the locations that do
not support the tested affordance. Therefore, the classifier’s
performance largely depends on the types of features used.
These features should be highly informative such that the
classifier would be able to predict class labels correctly. In
this paper, a new set of features based on virtual human
skeleton models is proposed for mapping affordances. These
features directly model the relationship between the humans
and the environment. Following sections describe different
types of skeleton models and their associated features used
by binary classifiers to build the affordance-map.

1) Virtual Human Skeleton Model: Instead of observing
real humans in the environment, the proposed affordance
mapping process uses virtual humans to model interaction
between the environment and the human. Although many
human poses could be observed in a given environment,
a very few of them directly influence the context of the
environment. For example, most frequently observed human
pose in an office environment is sitting and working at an
office desk. Therefore, if the locations of the office room
that supports this affordance can be identified then human
context of the environment can be inferred easily.

For the purpose of mapping affordances, human skeleton
models are obtained from a human activity detection dataset

(a) Sitting- (b) Standing- (c) Sitting-
Relaxing Working Working
Fig. 2. Types of affordances and their associated skeleton models

[11]. These human skeleton models are captured using a
depth camera from real humans while they perform different
activities. The K-mean clustering is done to cluster all
skeleton models to three clusters and the most frequently
seen pose in the each cluster is shown in the Fig .2. Each of
these skeleton models are associated with an affordance type
that closely represents the type of activity that each skeleton
model belongs.

Each human model is a skeleton with 15 joint body posi-
tions in 3D. In order to obtain feature vectors, these virtual
skeleton models need to be transformed to each (x,y,z,0)
pose of the map. This can be done by moving the 3D points
of the human skeleton, H; across given environment using
the rigid body transformations of translation and rotation.
Then each human skeleton model can be mapped to the
coordinate system of the environment using (1), where g; =
(%K, Yk» 2k, Ok ) 1s the position and orientation of the skeleton’s
torso in the world coordinate system and R.(6)) is the
rotational matrix about z axis (vertically up). It is to be noted
that only rotation about z axis is considered here.

Hy(gr) = P, vioz) T + R (61).H, (1)

2) Distance and Collision Features: The features model
the relationship between the human skeletons and the envi-
ronment. This relationship is modeled through two geometric
features: distance features and collision features. Selection
of these features are motivated by two facts. First is the
proximity of objects for effective interactions and the second
is to prevent collisions or intersects with occupied voxels of
the environment.

The first step of feature extraction involves modeling the
environment. The 3D point clouds generated from RGBD
SLAM algorithms [12] usually contain a large amount of
3D points, and searching for a particular affordance in this
large feature space is computationally infeasible. Therefore,
it is required to convert these dense point clouds into much
lighter abstract representations without losing much data.
This is achieved by modeling the environment by a 3D
Distance Transform Map DT (x) and a 3D Occupancy Map
OC(x), where x is any 3D position of the environment.
The 3D Distance Transform (DT) is a shape representation
that indicates the minimum distance from a point in the



environment to the closet occupied voxel. In our approach,
we calculated 3D Distance Transform by using the occupied
voxels of 3D point clouds, OC. The distance transform map
DT (x) of the occupancy grid map OC can be generated using
an unsigned distance function (2), that represents Euclidean
distance from each location x of the environment to the
nearest occupied voxel in OC(x).

DT (x) = min |0;~x] )
J

The distance features are obtained by moving the human
model across the voxels in the environment and calculating
a distance measure for each and every skeleton points of
the human model. Once the environment is modelled by (2),
we can effectively calculate distance features of a human
skeleton with location and orientation g, = (xx, Vk, 2k, 6x) by
(3), where n is the number of 3D points in the skeleton.

[dladZa"'dﬂ} :DT(Hw(gk)) 3)

Similarly, we can check for any collisions of a skeleton at
any location and orientation, X; by (4). In case of a collision
¢ is assigned as 1 and O otherwise.

[c1,¢2,...ch) = OC(H,y(gk)) )

3) Normal Features: The other set of features used for af-
fordance detection is normal features. These normal features
represents vertical and horizontal planes of the environments.
The selection of these features is motivated by the fact that
most of the affordances are supported by vertical and hori-
zontal planes. For example ‘sitting’ affordance is supported
by a horizontal plane under the lap of a sitting skeleton and
the spine of the skeleton is supported by a vertical plane.

The normals features for the affordance detection are
calculated as follows. First, a Im xIm x 1m cubic volume
is considered from the torso position of a skeleton model at
location, (x,y,z,0). Then it is voxelised into 10cm x 10cm
x 10cm voxels. Finally surface normal values of points in
each grid cell are averaged to find the normal features for
each voxel.

III. EXPERIMENTAL SETUP

This section explains the experimental setup used for
mapping affordances in 3D pointclouds.

A. Dataset

Both the SVM and Flexible Naive Bayes classifier dis-
cussed in previous sections are supervised learning algo-
rithms. Therefore, they need to be trained first before used
for building an affordance-map in an unseen environment
and require a number of 3D scenes to learn parameters of
the classification models. The recent advancements in RGBD
Simultaneous Localization and Map Building (SLAM) algo-
rithms ([12]) allows us to build highly informative dense
3D scenes by stitching 3D point clouds frames acquired
from low cost 3D depth cameras. A dataset is created for
affordance mapping by capturing a number of dense 3D

TABLE I
SUMMARY OF THE CLASS IMBALANCE IN THE DATASET

Affordance # Positive | # Negative Ima.balance
Examples | Examples | Ratio
Sitting-Relaxing 2457 1285326 1:523
Sitting-Working 213 2570439 1:12067
Standing-Working 391 1284935 1:3286

scenes using a ASUS Xition depth camera and a 3D map
building software [12]. The final dataset is consisted of
12 high quality 3D scenes captured in office and domestic
environments.

B. Search space

The affordance map is a concatenation of classifier’s
outputs for each (x,y,z,0) grid location of the 3D scene.
Therefore, the first step of the affordance mapping involves
voxelising the input 3D images into grid locations. This
voxelising is done by dividing the the input image into 10 cm
x 10 cm x 10 cm grids. The rotation 6 of the each skeleton
model is evaluated in 0.1 rad resolution at each grid level.
In order to limit the search space, the grid search along the
z axis can be restricted as the human skeletons are always
located close to the ground plane.

C. Ground Truth Labels

The proposed affordance-map building process is a super-
vised learning problem, which requires ground truth labels
in order to learn parameters of the classifier. Therefore,
all possible locations in 3D images that support the tested
affordances are manually labeled for each affordance type.

IV. SOFT MARGIN OPTIMIZATION WITH CLASS
IMBALANCE

The Table. I summarises the number of positive and
negative examples found in the dataset for each affordance
type. It is clear form this table data that all of the affordance
types found in the dataset have a high number of negative
examples than the number of positive examples. The sitting-
working affordance has recorded the highest class imbalance.
This is desirable as the sitting surface of an office chair
is very small with compared to the rest of the room. Any
affordance detection algorithm should be able to effectively
handle these type of class imbalances in order to effectively
build affordance map in a large room. However, a few
researchers have reported that SVM classifier tend to produce
sub-optimum results when trained on highly imbalanced
datasets [13], [14].

To understand the impact of the class imbalance on
affordance detection, we carried out few experiments and
experimental results are shown below. First the dataset is
divided into two subsets: training set and validation set. Then
SVM classifiers are trained for different class imbalances.
These learnt classifiers are tested on unseen 3D images and
Fl-scores are recorded for each setting. The average F1-
scores for each affordance type in different class imbalances
are shown in Fig. 3.
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Fig. 3. The effect of class imbalance on the SVM classifier

According to the test results, it is clear that all three
affordances have reported low F1- scores initially (when
the positive and negative classes are equally balanced) and
increased slightly before gradually dropping down again.
This behaviour is clearly visible with the sitting-working
affordace and less visible with the standing-working affor-
dance. When more negative examples are added for training,
the performances of the SVM classifiers have gradually
increased as can be seen with increasing F1-scores. This is
predicted because more negative examples mean the SVM
classifier can discriminate the difference between the positive
examples and negative examples more effectively. However,
the performances of the SVM classifiers have degraded when
the class imbalances become more and more extreme. When
the class imbalances are too high all F1-scores have fallen to
zero. That means the classifier have predicted all locations
of the room with negative labels. Overall, standing-working
affordance has recorded low F1-scores.

This unexpected behaviour is due to the movement of
the separating hyperplane of the SVM classifier toward the
majority class and it can be be understood by analysing the
SVM soft-margin optimization problem.

N B <
argmin{ = ||w||"+C}) &
min{ 5P +C L&)
Yi(w-@(xi) —b) >1-§
st Vi=1,...,n

&)

The objective function of the standard SVM classifier
shown in (5) has two terms. The first part tries to maximize
the margin while the second part attempts to minimize the
penalty associated with the misclassification. The regular-
ization parameter C, which is a constant, balances the trade-
off between these two terms and can also be considered as
the defining factor of the misclassification cost. As both the
positive and negative examples are assigned with the same
misclassification cost (C), the penalty term is minimized
when the misclassification cost of the training samples be-
come minimized. However, for an imbalance dataset with
a higher number of negative examples there could be more
negative examples even near the class boundary where the
ideal hyperplane is passing through. This influences the

optimization problem, because in order to minimize the total
misclassification cost, the separating hyperplane could shift
towards the minority class. This undesirable shift can cause
more false negative examples by impacting the performances
of the minority class. However, the total misclassification
cost and the total error would remain low due to the higher
number of true negative examples. In cases like affordance
detection, where class imbalance is extreme, the SVM could
easily produce a skewed hyperplane which would classify all
examples as negative.

A. Cost Sensitive SVM

As it explained in the previous section, the main reason
for the inability of soft margin SVM to learn separating
hyperplane accurately when dataset is imbalanced would be
that it assigns equal cost values for both the minority and
majority class misclassification in the penalty term. This
would create a biased model with a hyperplane that is skewed
towards the minority class. The cost sensitive SVM model
proposed in [15] has been designed to mitigate this issues
by assigning different penalty terms for the two classes.
By assuming that the positive class is the minority class,
misclassification cost of C* can be assigned for the positive
class and C~ cost can be assigned for the negative class in
the objective function of the soft margin SVM optimization
equation as shown in (6).

’Zl &+C an i}
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The effect of the imbalanced data is minimized by as-
signing higher misclassification cost for the positive class
(i.e.,CT™ > C~ ) which eventually would fix the bias of
separating hyperplane. Therefore the optimization would try
to balance the total positive and total negative cost values
and the separating hyperplane would not skew towards the
positive class examples. The dual Lagrangian form of this
modified objective function can be represented as follows:

n
1
mO?X{Z o — Ezaiaj)’i)’jk(xi'xj)}
=1 i,j

n
7
s.t. Z}’iai:() @

i=1

0<a'<C", 0<a <C i=1,..,n

where o and @ represent the Lagrangian multipliers of
positive and negative examples, respectively. The cost values
C*t and C~ can be chosen by the rule of thumb method
proposed in [15].

ct _ Number of negative examples
C~  Number

®)

of positive examples
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Fig. 4. SVM learning with different cost models

V. RESULTS AND DISCUSSION

To evaluate the performances of the SVM classifier, a
series of experiments are carried out. First, the data set
is divided into three subsets : training set, validation set
and testing set. The training set is used to train the model
parameters and validation set is used to fine tune the input
parameters. Finally, trained classifiers are tested on the
testing set. This process reduces the possibility of over-fitting
the classifiers.

The behavior of the cost-sensitive SVM classifier in dif-
ferent class imbalances is shown in Fig. 4. Initially FI-
scores of all three affordances have gradually increased
or tried to stabilize as more and more negative examples
are added to the SVM trainer. A steep increase is visible
in the sitting-working affordance and has resisted extreme
class imbalances well. The sitting-relaxing affordance type
has also resisted well for the class imbalance problem.
However, F1-score of the standing-working affordance a have
declined when the class imbalance become too extreme.
Overall, cost sensitive SVM has shown steady resistance to
class imbalance problem and recorded better results than the
conventional SVM.

The qualitative analysis is done by selecting an 3D image
for each affordance from the dataset and comparing predic-
tion results. Both 2D affordance map and 3D skeleton map
are used for this purpose.

Fig. 5 shows the the predictions results of the affordance
type ‘Sitting-Relaxing’. The test room is a living room with a
sofa set in the middle and it is marked with green rectangles.
In the plan view of the room, red color circles represents
torso position of skeleton models and corresponding blue
lines denote their orientation. It is clear from these results
the affordance-map has predicted most of its skeletons with
high confidence values on the sofa set.

The 3D view and 2D plan view of the office space used to
test the ‘sitting-working’ affordance is shown in the Fig. 6.
It has four office chairs as shown with green rectangle areas.
The affordance-map has placed a number of sitting-working
human models on office chairs with high confidence scores.
It has failed to place any skeleton on the chairs to the top-

(b) 3D view of predicted hu-
man models. Most of skele-
tons are on the sofa

(a) Plan view with ground
truth skeleton locations and
their orientations

(c) SVM decision function.
High confidence values can be
seen on the Sofa set

(d) Predicted skeleton loca-
tions and their orientations

Fig. 5.
colour

Test results for the Sitting-Relaxing Affordance. Best viewed in

left of the plan view of the room. However, this chair is not
oriented towards the table, and therefore could argue that it
is not supporting sitting-working affordance.

The Fig. 7 shows the room used to analyze the perfor-
mances of the ‘standing-working affordance’. It is a lab
space with two workbenches and green color rectangle areas
indicate workbenches of the lab space. The affordance-map
has placed correctly oriented skeleton models near one of
the work benches but has failed to predict any skeletons near
other workbench. However, the decision function has placed
high confidence scores near both workbenches.

The k-fold cross validation is carried out to report the
performances of the two classifiers. In k-fold cross valida-
tion, the dataset is divided into k folds and one of them is
selected as the testing set. Then the affordances are trained
on rest of the k— 1 folds and finally tested on the left-out
set. The k-fold cross validation results for the affordance
detection is shown in table II. The sitting-relaxing affordance
type has recorded the highest F1-score and standing-working
affordance has recorded the lowest Fl-score. Therefore it
seems that learning the standing-working affordance type is
difficult than other two affordance type.

TABLE I
K-FOLD CROSS VALIDATION RESULTS OF AFFORDANCE DETECTION

Affordance Type | Precesion | Recall | F1l-score
Sitting-relaxing 0.65 0.68 0.65
Sitting-working 0.50 0.55 0.52
Standing-working | 0.15 0.42 0.21

According to the table II the sitting-relaxing and sitting-
working affordance types have recorded acceptable results.



(a) Plan view with ground
truth skeleton locations and
their orientations

(b) 3D view of the predicted skele-
ton models
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(c) SVM decision function.
High confidence values can be
seen on office chairs

(d) Plan view with predicted
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Fig. 6. Prediction results of the Sitting-Working Affordance. Best viewed
in colour

(a) Plan view with ground  (b) 3D view of the predicted skele-
truth skeleton locations and tons
their orientations

(¢) SVM decision function.
High confidence values can be
seen around tables

(d) Plan view with predicted
skeleton poses
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Test results of the Standing-Working Affordance. Best viewed in

The performances on the standing-working affordance type is
moderate. This could be due to the high intra-class variations
associated with standing-working affordance type.

VI. CONCLUSIONS AND FUTURE WORK

This paper presented the affordance-map which involves
mapping hidden affordances in 3D scenes using geometric
features. This problem was formulated as a multi label classi-
fication problem with a binary classifier for each affordance-
type. The cost-sensitive SVM classifier was proposed as
the binary classifier for mapping affordances and it showed
acceptable results for the class imbalance problem. The
affordance mapping algorithm was tested on real 3D scenes
and recorded promising results. However, the performance
of the standing-working affordance type was realatively low
with compared to other two affordance types. Therefore,
our future work involves improving affordance mapping in
standing-working affordance type using Structured output
SVM algorithm.
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