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Abstract—Appearance-based mapping and localisation is 

especially challenging when separate processes of mapping and 
localisation occur at different times of day. The problem is 
exacerbated in the outdoors where continuous change in sun 
angle can drastically affect the appearance of a scene. We 
confront this challenge by fusing the probabilistic local feature 
based data association method of FAB-MAP with the pose cell 
filtering and experience mapping of RatSLAM. We evaluate 
the effectiveness of our amalgamation of methods using five 
datasets captured throughout the day from a single camera 
driven through a network of suburban streets. We show 
further results when the streets are re-visited three weeks later, 
and draw conclusions on the value of the system for lifelong 
mapping. 

I. INTRODUCTION 

Appearance-based SLAM matches locations based on 
similarity in camera images taken from each location. This 
challenge is difficult as an environment can change greatly 
in visual appearance over time due to both scene alterations 
and differing lighting conditions [1]. Many recent studies in 
visual SLAM have been done using robust local features, 
which are designed to be scale and illumination invariant 
[2],[3]. Outdoor loops of 5 km length have been mapped 
using local features and stereo cameras [4], while  250m 
loops have been mapped using only a single hand held 
camera and optical flow techniques [5]. However these 
experiments were only performed on datasets gathered in a 
single time period and hence did not include extensive visual 
change. Recent work has shown that building dynamic maps 
that adapt to changing conditions can be achieved [6], albeit 
with a SICK laser range finder and only indoors. 

Outside of the SLAM domain, research has investigated 
the use of local visual features in data association over very 
large periods of time [7]. Images of the same location were 
gathered over nine months and included extreme weather 
conditions, such as snow and sun glare. The lack of feature 
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matching between different times of year suggested that 
current local feature detection algorithms could not 
successfully match the same scene over different seasons. 

Recent work on a probabilistic approach to appearance-
based data association using recursive Bayes and Chow Liu 
dependency trees, dubbed FAB-MAP, has successful 
mapped a loop of over 1000km [8]. FAB-MAP uses local 
SURF features that are illumination invariant, with the 
potential for successful mapping over large time periods. 
Mapping is performed purely in appearance space however, 
and there is no representation of pose. Perhaps the largest 
appearance-based full SLAM experiment was that 
performed using RatSLAM [9], which successfully mapped 
a 66km suburb using only a single low-cost webcam. 
However, RatSLAM’s current visual data association system 
performance is strongly dependent on lighting conditions, 
and is unlikely to be suitable for outdoor mapping over 
larger time scales. 

This paper presents a hybrid SLAM system between 
RatSLAM and FAB-MAP. The hybrid system combines 
RatSLAM’s filtering and mapping algorithms with FAB-
MAP’s lighting invariant data association, with the aim to 
create a robust system for SLAM over long time periods in 
visually varying environments. Section 2 describes both 
FAB-MAP and RatSLAM and details how the two systems 
are integrated. Section 3 presents the experimental setup, 
with results in Section 4. Discussion is provided in Section 
5, as well as directions for future work. 

II. APPLYING PROBABILISTIC APPEARANCE-BASED PLACE 
RECOGNITION TO RATSLAM 

Given a visual scene, the FAB-MAP system calculates the 
probability that the scene matches to any previously visited 
location, as well as the probability that the scene is from an 
unvisited location [10]. Visual scenes, and hence locations in 
the real world, can be associated from high probability 
matches in appearance space.  

A. Location Representation 
Each image is held as a set of visual features, known as 
‘words’. Words are created by quantizing each SURF 
descriptor to an a-priori generated list of common features 
in the environment. It is therefore necessary to create the 
database of common words, named a ‘codebook’, as a once 
off calculation from a set of training data [11]. Every feature 
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extracted from the image is converted to the closest word in 
the codebook, reducing each image to a vector of which 
words are present in the image. 
 },...,{ 1 vk zzZ =  (1) 

Each unique location Lk is represented by the probability that 
the object ei (that creates observation zi) is present in the 
scene. 
 )}|1(),...,|1({ kvki LepLep ==  (2) 

This location representation can be compared to other 
locations using Bayesian probability to determine their 
similarity. 

B. Probabilistic Data Association 
The probability of a new image coming from the same 
location as a previous image is estimated using recursive 
Bayes: 

 
)|(

)|(),|()|( 1

11

−

−−

= k
k

k
i

k
ikk

i Zp
LpLZpLp

Z
ZZZ  (3) 

where kZ  is a collection of previous observations up to time 
k. 

The likelihood that an observation comes from location Li, 
),|( 1−k

ik LZp Z , is assumed to be independent from all past 
observations and is calculated using a Chow Liu 
approximation [12]. The Chow Liu tree is used to describe a 
full joint probability distribution as a product of second-
order conditional and marginal distributions. The tree is 
constructed once as an offline process based on training 
data. It has been shown that this method improves 
performance over a straight naïve Bayes model. 
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where r is the root node of the Chow Liu tree and pq is the 
parent of node q.  

The prior probability of matching a location )|( 1−k
iLp Z  is 

estimated using a naïve motion model. The probability of a 
new place )|( 1−k

newLp Z  is set to a constant and given a 
location i at time t, the probability of matching to locations i-
1, i, and i+1 are equal at time t+1.  

The denominator of equation 3 incorporates the 
probability of matching to a new location in addition to 
localisation within known places. To estimate if a new 
observation comes from a previously unvisited location the 
model needs to consider all locations, not just visited 
locations. This can be split into mapped and unmapped 
locations: 
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where M is the set of mapped locations. Since the second 
term cannot be evaluated directly (as it would require 
information on all unknown locations), an estimation must 
be used. Two calculations for this estimation are presented. 
The first is a mean field approximation [13], where the 

unmapped location is estimated by creating an ‘average 
location’ from training data. 
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The second method is a sampling technique, where a random 
selection of scenes from training data is used to evaluate the 
unmapped location according to: 
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where Lu is a sampled location and ns is the total number of 
samples. A probability density function over all previous 
locations and the probability of a new place can then be 
calculated to provide data association for the RatSLAM 
system. 

C. Visual Template Injection 
The RatSLAM local view cells store each unique visual 
location as a ‘template’, an activation level ai that 
corresponds to its match to the current visual scene, and the 
peak activity location in the pose cell network Pi when each 
template was generated: 
 },{ iii PaV =  (8) 
Each local view cell uses the FAB-MAP calculated 
probability that a new visual scene matches the current 
template to set the activation level. Since RatSLAM does not 
require probabilistic inputs, the probabilistic match pi

 

generated by FAB-MAP can be transformed to provide finite 
injection even at low probabilities: 
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When the activation level ai for a new, previously unseen 
location is above a threshold, a new local view cell is created 
using the current visual scene as a visual template.  

D. Pose Cell Network 
Each active Local View cell injects activity into the pose cell 
network as follows: 
 ∑=Δ
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where δ is the visual calibration strength constant. The pose 
cell network takes the form of a three-dimensional 
competitive attractor network Px’,y’,θ’, where each neuron in 
the grid simultaneously excites and inhibits its neighbours. 
The excitatory weight matrix εa,b,c takes the form of a 
normalised spherical Gaussian, which is calculated by 
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where kp and kd are the directional constants in the x’, y’ and 
θ’ directions respectively. The update cycle for the pose cell 
network is as follows: 
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where nx’, ny’ and nθ’ are the sizes of each dimension of the 
pose cell network, and a, b, and c are modulo created 



 
 

boundaries which ensures that the t
wraparound on the grid is enforced during
and inhibition. Local inhibition is calcula
local excitation, using a three-dimensional 
matrix ψa,b,c and global inhibition value φ. 

Path integration in the pose cell network
by shifting all activity packets in the dire
motion, such that identical trajectories 
angular velocity result in identical paths 
space. Further details of path integration 
[14],[15]. 

E. Experience Mapping 
The experience map forms the useful outpu
combines outputs from both local view cel
as well as odometry information, to form a
of the path taken by the SLAM system. Ea
encodes an activation level Ei, pose cell lo
template Vi

 and position pi in experience spa
 },,,{ iiii

i VPEe p=  
The activation level of each experience is 
well it matches the current pose cell loca
visual template, and is calculated as follows
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constant for pose cell location. If all activati
than or equal to 0, a new experience is c
current pose cell location and visual templat

As the experience map develops it is nec
locations in experience space pi to accou
odometry found during loop closure. The fo
is applied iteratively to each experienc
associated positions: 
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where Nf is the number of links from expe
experiences, Nt is the number of lin
experiences to ei, and α is a correction co
equal to 0.5 for maximum map correction
instability [9]. By plotting the experience m
as well as the links between experiences, a
of the environment is formed. 

III. EXPERIMENT SETUP 

A. Datasets 
The experiment uses 10 datasets from a se
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Fig. 1. Dataset route ground truth. 

(a) (b) 
Fig. 2. The same location at (a) 8:4
8:45am approximately 3 weeks later 

The video was captured using a L
9000 web camera at 640x480 p
average of 15 frames per second. T
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48 degrees vertically. GPS position
Hz during video capture. 
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B. Algorithm Tuning 
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unrealistically shaped. We are aware that more sophisticated 
visual odometry methods are available (e.g. [17]) but as high 
quality visual odometry is not the focus of the study, more 
accurate visual odometry was simulated using a linear 
interpolation of the position differential of the GPS signal. 
Despite being GPS based ,this method introduces significant 
incremental error in accumulation of difference 
measurements to positions and is therefore suitable for 
simulating error prone dead reckoning. 

TABLE 1 
SUMMARY OF CONSTANTS USED IN ALGORITHMS FOR EXPERIMENTS. 

FAB-MAP  
)0|1( == ii ezp   0 

)1|0( == ii ezp   0.61 

)Z|( 1−k
newLp   0.9 

RatSLAM  
Injection δ 0.005 
Pose Cell Network Size 60 x 60 x 36 cells 
Cell Size 10m x 10m x 10 degree 
Graph Correction Constant 0.5 
Graph Correction Repetition 25 

IV. RESULTS 

A. Mapping throughout the Day 
The original RatSLAM system and the hybrid FAB-

MAP/RatSLAM system were tested on the first five datasets 
to evaluate data association over the space of an entire day. 
Fig. 3 shows the percentages of frames that match over a 
threshold of 0.99 (as used in [10]) for FAB-MAP and a 
threshold of 0.1 (chosen to compensate for RatSLAM-
profiles’ lower precision) for RatSLAM-profiles. These 
results indicate the True Positives matched between datasets 
only, the self matches within a single dataset are not 
reported. For example, after running FAB-MAP through the 
8:45am dataset, only 0.37% of frames in the 2:10pm dataset 
correctly matched back to the 8:45am dataset.  

The recall rates when mapping a dataset to itself are not 
100% as new visual locations are not created from every 
frame in the first pass through the dataset, so there is not 
always an exact frame to match to in the second run through. 
Recall generally reduces as the time difference between 
datasets increases, and is very low (0.32% to 3.4%) for 
matching between morning and afternoon. It can be seen that 
FAB-MAP data association outperforms the original 
RatSLAM-profile matching in both recall and precision. 

Both algorithms, run independently, result in catastrophic 
failure over the full day dataset. The original RatSLAM fails 
due to low recall (Fig. 4) and FAB-MAP fails as any false 
positive causes an incorrect loop closure (Fig. 5).  

The complete hybrid RatSLAM/FAB-MAP algorithm was 
used to map the five datasets sequentially, ordered 
chronologically in terms of time of day. The true positive 
loop closures to all previous datasets are shown as circles. A 
concise map can be seen in Fig. 6(a) demonstrating that the 
hybrid system can perform SLAM within loops of a single 

dataset. Each sequential map is initially started disjoint to 
the previous map but in every case enough data association 
occurs to allow RatSLAM to link the newly created map to 
the previous map. Fewer loop closures occur with greater  

 
 

        (a)          (b) 

        (c)        (d) 
Fig. 3. True positive (TP) and false positive (FP) match 
percentages for data association techniques between different 
times of day (a) TP for RatSLAM-profiles (b) FP for 
RatSLAM-profiles (c) TP for FAB-MAP (d) FP for FAB-
MAP. 

 
Fig. 4. Mapping using only RatSLAM-profiles, results in 
catastrophic failure over full day datasets. 

 
Fig. 5. Mapping using only FAB-MAP data association, 
results in catastrophic failure over full day datasets. This map 
was created using complete energy injection resulting in a loop 
closure on any reported match. 



 
 

 

 

 
time difference between visiting the location, indicated by 
fewer matches and consequently multiple paths for the same 
street. This has a direct correspondence to the true positives 
rates presented in Fig. 3. However, the false positive data 
association has not caused catastrophic failure (as seen in 
Fig. 5) because the RatSLAM pose filtering addresses the 
false positives produced by FAB-MAP. This is a necessary 
addition to any data association system, as false positives are 
inevitable when dealing with large long-term real-world 
datasets. 

B.  Mapping between weeks 
The data association methods were also tested for precision 
and recall on datasets collected 3 weeks apart but at the same 
time of day. The true positive and false positive rates for 
FAB-MAP with a threshold of 0.99 and RatSLAM-profiles 
with a threshold of 0.1 are shown in Fig. 7. FAB-MAP again 
outperforms RatSLAM-profile matching with respect to 
recall and precision rates, but the presence of false positives 
again indicates FAB-MAP could not be used as the sole 
input to a mapping algorithm. 
 

       (a)         (b) 
Fig. 7. Comparison of data association with a three week gap. 
The third series uses all five initial datasets in the location 
creation phase, (a) true positives (b) false positives. 

The 12:10pm dataset from 3 weeks afterwards was then 
localised within the complete map from the first 5 datasets 
of the previous 3 weeks. The resulting map can be seen in 
Fig. 8. The relatively high true positive rate (16.85%) causes 
the new map to link to the previous 5 maps and consistent 
loop closures do not create any extra paths in the experience 
map. 

 

 
Fig. 8.  RatSLAM-created experience map and loop closure 
locations using FAB-MAP from data captured at 12:10pm 
three weeks after having mapped the entire first five datasets.  

(a) 

   

(b) 

   

(c) 

   

(d) 

   

(e) 

   
Fig. 6. RatSLAM-created experience maps and loop closure 
locations using FAB-MAP data association. Sequentially 
including (a) 8:45am (b) 10:00am (c) 12:10pm (d) 2:10pm and 
(e) 3:45pm. 



 
 

 

C. Location Growth 
An important aspect to note is the rate at which new 
locations are created as both space and computation time 
increase with the number of locations. Current FAB-MAP 
recall rates are not high enough to generalize completely 
both within and between datasets. A linear growth rate can 
be seen when mapping all six datasets in Fig. 9, even though 
the same locations are continually visited. When considering 
the aim is for long-term mapping on a mobile robot this 
continual growth rate would cause the current algorithm to 
be unsustainable without a map management or pruning 
algorithm [15]. 

 
Fig. 9. FAB-MAP total number of locations vs. video frame 
number. The plot indicates near linear growth rate of locations 
over time. 

V. DISCUSSION 
Individually, neither RatSLAM nor FAB-MAP can 

address the challenge of producing a coherent map across all 
times of day for the datasets presented in this paper. 
RatSLAM’s lightweight heuristic approach to image-based 
location matching produces too small a true-positive-to- 
false-positive match ratio to create a useful map. FAB-MAP 
significantly improves the ratio of true-to-false positive 
matches, but does not provide sufficient filtering to remove 
the final few false matches, nor a system to combine pose 
estimation and re-localisation for performing full SLAM. 

The hybrid RatSLAM/FAB-MAP system has shown that 
mapping can be performed even in difficult outdoor 
conditions when the environment’s appearance varies due to 
changes in illumination and structure. However, the results 
clearly show that the map diverges when there are long 
sections of path where no matches occur. The algorithm also 
does not generalize well enough to reduce the rate at which 
new locations are produced when revisiting locations. This 
occurs in all cases; within a single dataset, across multiple 
datasets at different times of day and from week to week. 
This unchecked growth in locations would become 
computationally intractable in long-term real-time operation. 
We suspect that this is not a shortcoming of FAB-MAP, but 
rather the SURF features on which it is based,  which are 
simply too variable over the course of a day to form a truly 
re-useable appearance-based map. 

A. Future Work 
A number of improvements to the FAB-MAP algorithm 
described here are presented in [8], including reducing 
computation time, improved robustness to false positives 
using the geometry of features in an image and updating 
location representations as they are revisited. A more robust 
set of features or multiple types of features could be 
incorporated to provide increased recall rates in variable 
lighting conditions addressing the problem of location 
growth. We are also working towards a new version of 
RatSLAM where the filtering and mapping components of 
the system can be more rigorously designed to suit the 
application at hand. 
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