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Abstract— This paper describes improvement of sound source
separation for a simultaneous automatic speech recognition
(ASR) system of a humanoid robot. A recognition error in
the system is caused by a separation error and interferences
of other sources. In separability, an original geometric source
separation (GSS) is improved. Our GSS uses a measured robot’s
head related transfer function (HRTF) to estimate a separation
matrix. As an original GSS uses a simulated HRTF calculated
based on a distance between microphone and sound source,
there is a large mismatch between the simulated and the
measured transfer functions. The mismatch causes a severe
degradation of recognition performance.

Faster convergence speed of separation matrix reduces sep-
aration error. Our approach gives a nearer initial separation
matrix based on a measured transfer function from an optimal
separation matrix than a simulated one. As a result, we expect
that our GSS improves the convergence speed. Our GSS is also
able to handle an adaptive step-size parameter.

These new features are added into open source robot audition
software (OSS) called ”HARK” which is newly updated as
version 1.0.0. The HARK has been installed on a HRP-2
humanoid with an 8-element microphone array. The listening
capability of HRP-2 is evaluated by recognizing a target speech
signal which is separated from a simultaneous speech signal by
three talkers. The word correct rate (WCR) of ASR improves
by 5 points under normal acoustic environments and by 10
points under noisy environments. Experimental results show
that HARK 1.0.0 improves the robustness against noises.

I. INTRODUCTION

Automatic speech recognition (ASR) is essential to a

humanoid robot which interacts with humans. In a dairy life,

it is required for a humanoid robot to have the listening

capability of recognizing simultaneous speech signals. The

capability enables a humanoid robot to work where multiple

sound sources exist besides target speech sources and noise

sources radiated from robot’s own motors. A typical speech

recognition system assumes a single target speech source.

Such a system avoided multiple speech recognition problems

by means of making a user wear a headset microphone [1].

Separation error and interference of other sources cause

a recognition error in a simultaneous speech recognition

system. The error and interference contaminate acoustic

feature, which is extracted from the separated signal. Thus,

the acoustic feature mismatches an acoustic model of an ASR

system. Although an acoustic model adaptation technique is
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available for reducing the mismatch, we have to know about

the error and interference in advance. The separated speech

signals are required as an adaptive training data set. Such

signals are hard to correct in general.

We improve an original geometric source separation (GSS)

in separability. As microphones are installed on a robot head

of a humanoid robot, each microphones are receives a direct-

wave and an indirect-wave, such as a reflected wave from

the robot head. Thus, our GSS uses a measured robot’s head

related transfer function (HRTF) instead of a simulated one

to estimate a proper separation matrix. Separation results

based on a proper separation matrix enables the robots to

improve the robustness against noises. An original GSS uses

a simulated robot’s HRTF calculated based on a distance

between positions of microphones and sound sources to

estimate a separation matrix. It’s assumed that microphones

are located in an acoustical free field condition. Thus, it’s

assumed that each microphone only receives a direct-wave

component of source signal. The assumption is unsatisfied

in an ASR system of a humanoid robot.

Our simultaneous speech recognition system consists of

capturing sounds with a microphone array, localizing sound

sources, separating each sound source, and recognizing each

separated source by an ASR system. It is based on “Robot

Audition”, which can handle recognition of noisy speech

such as simultaneous speakers by using robot-embedded

microphones, that is, the ears of a robot, was proposed in

[2]. It has been studied actively for recent years [3], [4], [5],

[6], [7], [8], [9], [10]. We provides the platform as an open

source robot audition software (OSS) called HARK stands

for Honda Research Institute Japan Audition for Robots

with Kyoto University, which has a meaning of “listen”

in old English. It is available at http://winnie.kuis.kyoto-

u.ac.jp/HARK/, which is newly updated as version 1.0.0. Our

new GSS is also included.

The rest of the chapter is organized as follows: Section II

introduces sound source separation. Section III describes

issues and approach. Section IV explains the implementation

of HARK. How to use HARK to construct robot audition

systems. Section V describes the evaluation of the system,

and the last section concludes the paper.

II. SOUND SOURCE SEPARATION

First we describe two algorithms of sound source separa-

tion in a previous version HARK 0.1.7, that is a Delay-and-

Sum (DS) beamforming and a Geometric Source Separation

(GSS) [11]. A GSS is available by providing a patch for

SeparGSS which changes I/O IF to be able to use as a

HARK module.
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A DS beamforming separates sound sources by using

sound source tracking results. It is easy to control beam-

former parameters, and it shows high robustness for environ-

mental noises. A large number of microphones are necessary

to get high separation performance. A GSS is a kind of

hybrid algorithm of a Blind Source Separation (BSS) and

a beamforming.

As a GSS shows higher separation performance than a DS

beamforming, we improve a GSS. A current implementation

has four problems, thus we re-implemented GSS module and

improve the four problems.

A. Formulation of GSS

Suppose that there are M sources and N (≥ M ) micro-

phones. A spectrum vector of M sources at frequency ω,

s(ω), is denoted as [s1(ω)s2(ω) . . . sM (ω)]T , and a spec-

trum vector of signals captured by the N microphones at

frequency ω, x(ω), is denoted as [x1(ω)x2(ω) . . . xN (ω)]T ,

where T represents a transpose operator. x(ω) is, then,

calculated as

x(ω) = H(ω)s(ω), (1)

where H(ω) is a transfer function matrix. Each component

Hnm of the transfer function matrix represents the transfer

function from the m-th source to the n-th microphone. The

source separation is generally formulated as

y(ω) = W (ω)x(ω), (2)

where W (ω) is called a separation matrix. The separation

is defined as finding W (ω) which satisfies the condition that

output signal y(ω) is the same as s(ω). In order to estimate

W (ω), GSS introduces two cost functions, that is, separation

sharpness (JSS) and geometric constraints (JGC ) defined by

JSS(W ) = ‖E[yyH − diag[yyH ]]‖2, (3)

JGC(W ) = ‖diag[WD − I]‖2, (4)

where ‖ · ‖2 indicates the Frobenius norm, diag[·] is the

diagonal operator, E[·] represents the expectation operator

and H represents the conjugate transpose operator. D shows

a transfer function matrix based on a direct sound path

between a sound source and each microphone. The total cost

function J(W ) is represented as

J(W ) = αSJSS(W ) + JGC(W ), (5)

where αS means the weight parameter that controls the

weight between the separation cost and the cost of the geo-

metric constraint. This parameter is usually set to ‖xHx‖−2

according to [12]. In an online version of GSS, W is updated

by minimizing J(W )

W t+1 = W t − µJ
′(W t), (6)

where W t denotes W at the current time step t, J ′(W ) is

defined as an update direction of W , and µ means a step-size

parameter.

III. ISSUES AND APPROACHES FOR HARK

When we constructed a robot audition system based on

HARK 0.1.7, we found problems both in separation and in

ASR.

A. Issues in Sound Source Separation

GSS has high separation performance originating from

BSS (Eq. (3)), and also relaxes BSS’s limitations such as

permutation and scaling problems by introducing “geometric

constraints” obtained from the locations of microphones

and sound sources (Eq. (4)). Therefore, GSS has better

performance than delay-and-sum beamforming with a small

number of microphones. However, current implementation

has the following problems, thus we re-implemented a GSS

module to solve these problems.

1) The transfer function D is calculated from the re-

lationship between microphone and source locations.

This means that the effect of a robot head was not

considered to get D, and the calculated D has large

errors. This lead to low separation performance and

slow convergence of W .

2) Usually, a robot has fans and actuators that generate

stationary noise. This kind of noise always should be

removed in separation. However, the number of sound

sources is decided by thresholding a spatial spectrum

estimated in sound source localization. Sometimes it

fails in detecting a robot’s stationary noise with a high

threshold, or too many erroneous noise sources are

detected with a low threshold.

3) W is initialized at the beginning of each utterance,

and the initial value of W ’ is calculated from D.

However, this initial value includes a lot of errors, and

thus the convergence of W is slow.

4) Moving sources were not considered. An update of

W (Eq. (6)) is based on sound source direction. This

means that W is successfully updated only when a

sound source is stationary.

B. Approaches in Sound Source Separation

For four problems, we take following approaches to solve

the problem.

1) To use more realistic transfer function D than calcu-

lated transfer function D from the relationship between

microphone and source location, our new GSS imple-

mentation can support measured transfer functions A

tool which converts measured impulse responses into a

transfer function matrix file for GSS is also provided.

The measurement based transfer function is expected

to have better performance in separation.

2) To deal with robot’s noises such as fans and actuators,

we implemented our new GSS module so that we

can specify a fixed direction of noise source. When

this is specified, this module always removes the

corresponding sound source as a robot’s noise in spite

of sound source localization results.

3) To provide faster convergence of the separation matrix,

we add a new function to our new GSS module which
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can import initial W from a separation matrix file

on initialization. If we can prepare a good separation

matrix in advance, the matrix can be given as initial

W . We also add a separation matrix export function

to generate the separation matrix file. When we have

a converged separation matrix as the separation matrix

file, the error of initial W will be smaller.

4) To separate moving sound sources, the criteria and

timing of the separation matrix update are control-

lable in our new implementation. We can select ei-

ther direction-based initialization or speaker-ID-based

initialization. As other techniques, we are trying to

add two new features to GSS, that is, adaptive step-

size control that provides faster convergence of the

separation matrix [13] and Optima Controlled Recur-

sive Average [14] that controls window size adaptively

for better separation. We are testing these features

and have some promising results [15]. They will be

included in a future HARK release.

C. Issues in ASR

We have a problem regarding acoustic feature extraction,

and we have another room to improve ASR performance in

terms of acoustic model.

1) We use a Mel-Scale Log-Spectrum (MSLS) feature

as an acoustic feature. We showed that this acoustic

feature is more noise-robust than a commonly-used

MFCC feature when we used it with sound source

separation. Our acoustic feature consists of a 24-dim

MSLS feature, and a 24-dim ∆ MSLS feature. The

total dimension of the acoustic model is 48. This

may be too many because a MFCC-based acoustic

feature usually has 25-27 dimensions. In addition, it

is well-known that ∆ power feature improves noise-

robustness, but we did not use it.

2) We used only a clean acoustic model so far, while ASR

basically has better performance with a noise-adapted

acoustic model.

D. Approaches in ASR

1) We propose a new 27-dim acoustic feature which

consists of 13 MSLS, 13 ∆ MSLS and ∆ power.

To realize this, we add new HARK modules called

FeatureRemover and DeltaPowerMask.

2) We trained a noise-adapted acoustic model for ASR,

and try a combination of separation, MFT and ASR

with the noise-adapted acoustic model.

IV. IMPLEMENTATION OF HARK

HARK works on middle ware named Flowdesigner which

is OSS. Flowdesigner is a data flow oriented development

environment. It can be used to build an application such as

robot audition system by combining small, reusable building

blocks, named modules. An application is described by some

modules and arcs for connecting between two modules.

TABLE I

MODULES PROVIDED BY HARK 1.0.0

Category Name Module Name

Multi-channel Audio I/O AudioStreamFromMic
AudioStreamFromWave
SaveRawPCM

Sound Source Localization LocalizeMUSIC
and Tracking ConstantLocalization

SourceTracker
DisplayLocalization
SaveSourceLocation
LoadSourceLocation
SourceIntervalExtender

Sound Source Separation DSBeamformer
GSS
Postfilter
BGNEstimator

Acoustic Feature Extraction MelFilterBank
MFCCExtraction
MSLSExtraction
SpectralMeanNormalization
Delta
FeatureRemover
PreEmphasis
SaveFeatures

Automatic Missing Feature MFMGeneration
Mask Generation DeltaMask

DeltaPowerMask
ASR Interface SpeechRecognitionClient

SpeechRecognitionSMNClient
MFT-ASR Multiband Julius/Julian

(non-FlowDesigner module)

Data Conversion and Operation MultiFFT
Synthesize
WhiteNoiseAdder
ChannelSelector
SourceSelectorByDirection
SourceSelectorByID
MatrixToMap
PowerCalcForMap
PowerCalcForMatrix

Figure 1 displays an overview of a robot audition system

using HARK. The system consists of six part named, Multi-

Channel Sound Input, Sound Source Localization & Track-

ing, Sound Source Separation, Acoustic Feature Extraction,

Missing Feature Mask Generation, and ASR Interface. Part

of HARK is implemented as modules. HARK modules

consists of eight categories. Non-module part of HARK is

ASR subsystem. As we can see, it is easy to construct a

robot system using HARK by connecting some modules. A

new modules can be developed by a user. Some modules

may be combined to compose a specific function. Table I

shows the module list provided in HARK 1.0.0. Main part

of improvement of HARK 1.0.0 is sound source separation

modules.

Each modules has custumizable property. Property values

can be changed if you need. Figure 3 shows property of

LocalizeMUSIC module. For example, A MATRIX prop-

erty represents a file name of transfer function between

microphones and sound sources. MIN DEG and MAX DEG

properties represent direction range of localization.
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Fig. 1. An example of a robot audition system using HARK.

V. EVALUATION

We conducted two experiments for comparing new fea-

tures of HARK 1.0.0 with features of HARK 0.1.7. For

the fist problem, we conducted an experiment for GSS with

mesured transfer function (HARK 1.0.0) and with calculated

transfer function from locations of microphones and sound

sources, that is conventional GSS (HARK 0.1.7).

A. Experiment 1

An evaluation task is a simultaneous speech recognition

experiment by three males, signified as “m101”, “m102”,

and “m103”. Simultaneous speech signal by three talkers is

highly interfered. Therefore a separation matrix has to be

estimated accurately to achieve high separation performance.

We considered that a separation matrix was estimated more

accurate based on a measured transfer function than based

on calculated transfer function.

Figure 4 shows a robot and three talkers in virtual space.

Instead of talking three talkers at once to a robot, each speech

signals were convoluted impulse response corresponds to

eight microphones and sound source. Then the mixed speech

signals composed of eight tracks were localized, separated,

and recognized. Distance between each sound sources and

the robot is 100 centimeters. In HARK 0.1.7, impulse re-

sponse was calculated from microphone locations. In HARK

1.0.0, impulse response was measured by a humanoid robot

HRP-2 whose body shows in Figure 5. HRP-2 has eight

microphones in his head as shown in Figure 6.

We used Mel-scale logarithmic spectrum (MSLS) base

acoustic feature. The acoustic feature vector is composed of

27 spectral-related acoustic features, i.e., mean normalized

MSLS 13 spectral features and 13 differential features, and

delta logarithmic power. Analysis frame length and frame

shift length were 25 ms and 10 ms.

Hidden Markov Model base ASR is used. A training

condition of the HMM is detailed in Table II. ASR is based

Cooling Fans

Microphones

2
0
cm

2
0
cm

Fig. 2. Cooling fans on HRP-2 and the nearest microphones from them.

TABLE II

ACOUSTIC MODEL

HMM Type Triphone HMM
Num. of mixture 4

States 3 stats left-to-right model
Num. of states 2000
Training data Phonetically balanced speech signals

15,370 sentences
(Japanese News Article Speech database)

Data format 16 kHz (sampling rate)
16 bit Linear PCM

on missing-feature theory. When acoustic logarithmic like-

lihood is caluculated, unreliable acoustic feature is masked

generated from MFMGeneration.

Test speech signals were constructed from phonetically

balanced words in Advanced Telecommunications Research

Institute International (ATR). Test set includes 200 isolated

words from 3 talkers.

Separated speech was recognized based on Julius 3.5,

which is a HMM base speech recognition engine. It is also

OSS. We modified it to support a missing-feature theory base

recognition.

Figure 7 shows the word correct rates (WCR). Solid,

dotted and dashed lines show WCR of center, left and right

talkers. Red and blue lines show WCR using HARK 1.0.0

and HARK 0.1.7, that is using measured transfer function

and calculated transfer function which is calculated from

473



Fig. 3. A window for property setting in LocalizeMUSIC.

Microphone array

Center Speaker (0 deg.)

Left Speaker (30 deg.)

Right Speaker (330 deg.)

HRP-2

100cm

Noise
source

Fig. 4. HRP-2 and three talkers.

microphone positions. The horizontal and vertical axes show

angles between talkers and WCR. These results show that

measured transfer function improved WCR. For center talker,

WCR is improved about 5 points. For peripheral talkers,

WCR is improved about 10 to 30 points. As focusing on

center talker, angles between talkers using HARK 1.0.0 base

system to achieve the same WCR is narrower than using

HARK 0.1.7.

B. Experiment 2

We evaluated effectiveness of noise source removing.

An evaluation task is a simultaneous speech recognition

experiment by three males when a noise source from a fixed

direction exists. HRP-2 has fans on his back. Figure 2 shows

two fans on HRP-2. The nearest microphones from a hole

for air flows is apart from 20 cm. This fan noise achieves at

50–60 dBA. Therefore HARK 0.1.7 localizes the fan noise

source as well as other sound sources. GSS in HARK 1.0.0

can be ignore the noise source among other sources. Figure

3 shows virtual noise source as black point.

Fig. 5. HRP-2 Humanoid.
Fig. 6. HRP-2 head mock-up.
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Fig. 7. Comparison simultaneous speech recognition system between old
HARK 1.0.0 HARK 0.1.7.

For this experiment, an acoustic model was trained. Multi-

condition training was applied to train the acoustic model.

The model is more robust than an acoustic model trained

from clean speech database. Other experimental conditions

were the same as the experiment 1. First, clean model was

trained. Second, some parameters in a robot audition system

mare tuned to maximise word correct rate. A clean model

is used to recognize. Third, speech source separation for all

speech signals in JNAS by single talker was applied. Finally,

HMM was trained from clean and separated speech signal.

By a multi-condition training, a robust acoustic model for

separation distortion is obtained.

Figure 8 shows experimental result. Almost all WCR of

HARK 1.0.0 outperform that of HARK 0.1.7. Center talker’s

WCR of HARK 1.0.0 increases for angle between talkers. In

contrast, that of HARK 0.1.7 shows a dip around 45 degree.

Around 75 degree, both WCRs of HARK 1.0.0 and 0.1.7

forms dip. This may cause by head shape of HRP-2, that is

two fins.

VI. CONCLUSIONS AND FUTURE WORK

We developed a new GSS which incorporates a mea-

sured robot’s HRTF, a fixed-noise-removing-function, and

an adaptive-step size. When a robot’s HRTF has strong

resonance for indirect-wave components, a measured HRTF

base GSS is more effective than the original GSS. For a fixed

noise source, such as cooling fans, a fixed-noise-removing-

function enables the robot to neglect the noise. By neglecting
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Fig. 8. Comparison simultaneous speech recognition system between
old HARK and new HARK with directional noise generated from HRP-
2 cooling fans.

it, error that the robot localizes the fixed noise source never

has been happened.

Experimental results prove that a WCR of separated

speech improves by using our GSS which incorporates a

measured robot’s HRTF instead of the original GSS. For

a center talker, a WCR improves about 5 points. For pe-

ripheral talkers, WCRs improve about 10 to 30 points. By

a fixed-noise-removing-function, WCR of separated speech

improves. Almost all WCRs of HARK 1.0.0 outperform

those of HARK 0.1.7. For a center talker, WCRs of HARK

1.0.0 increase for angles between talkers. In contrast, that

of HARK 0.1.7 shows a dip around 45 degrees. Around 75

degrees, both WCRs of HARK 1.0.0 and 0.1.7 form dips.

Two fins installed on a HRP-2 may cause the dips.

We have released a new version of robot audition software

HARK. One year has been passed since we released a

first version. For one year, we developed many modules

and improved some modules for the new version. This

paper describes some of the modules are evaluated. A robot

audition system is possible to construct from only HARK.

This means that all robot audition researchers who want to

use HAKR have to do is to sign up a HARK license. An

old version of HARK depends on other modules distributed

from a different developer.

We are going to develop an automatic system turning

method to optimize many parameters in a robot audition

system. The parameters relate each other, and a WCR is

nonlinear with respect to one specific parameter. Thus, the

optimization is based on empirical knowledge. By providing

a turning method, HARK will be rapid prototyping system

for designing a robot audition system.
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