
SchedGuard: Protecting against Schedule Leaks
Using Linux Containers

Jiyang Chen∗, Tomasz Kloda†, Ayoosh Bansal∗, Rohan Tabish∗, Chien-Ying Chen∗‡, Bo Liu∗‡,
Sibin Mohan∗, Marco Caccamo† and Lui Sha∗

∗University of Illinois at Urbana-Champaign, USA, †Technical University of Munich, Germany
{jchen185, ayooshb2, rtabish, cchen140, boliu1, sibin, lrs}@illinois.edu, {tomasz.kloda, mcaccamo}@tum.de

Abstract—Real-time systems have recently been shown to be
vulnerable to timing inference attacks, mainly due to their
predictable behavioral patterns. Existing solutions such as sched-
ule randomization lack the ability to protect against such
attacks, often limited by the system’s real-time nature. This
paper presents “SchedGuard”: a temporal protection framework
for Linux-based hard real-time systems that protects against
posterior scheduler side-channel attacks by preventing untrusted
tasks from executing during specific time segments. SchedGuard
is integrated into the Linux kernel using cgroups, making it
amenable to use with container frameworks. We demonstrate
the effectiveness of our system using a realistic radio-controlled
rover platform and synthetically generated workloads. Not only is
SchedGuard able to protect against the attacks mentioned above,
but it also ensures that the real-time tasks/containers meet their
temporal requirements.

Index Terms—Real-Time, CPS, Response time analysis, Linux
Containers, Security

I. INTRODUCTION

Many legacy real-time systems still run on single-core
processors. Various works in the real-time security community
have demonstrated how schedule-based attacks can compro-
mise system security when running along with other trusted
and useful tasks in the system [1]. Schedule randomization
based approaches have been proposed to deter against such
attacks [2]–[4]. However, recently Nasri et al. [5] suggested
that randomization-based approaches might fail to defend
against schedule-based attacks.

The success of schedule-based attacks relies on how soon
the attacker can run relative to the completion of the victim
task. There are various works in the security literature that
deploy the above-mentioned exploit for a successful attack [5].
These attacks target the exact duration of when the victim
finishes its execution or interacts with the outside world
through I/O channels. Examples of such attacks in the cyber-
physical research community include exploits such as bias-
injection attacks [6], zero-dynamics attacks [6]–[11], and re-
play attacks [12]. The schedule based attacks exploit have also
been deployed in the context of general-purpose computing. In
this context, attacks such as cache-timing attacks are common.
These attacks steal or compromise the victim task’s data
integrity by scheduling themselves right after the completion

‡ Chien-Ying Chen and Bo Liu are now with NVIDIA Corporation, USA

of the victim task where important crypto-related information
of the victim task might still be available in the shared caches
or DRAM. Cache-flush based defense mechanism can help
defend against such attacks.

For the schedule-based attacks to be effective, they have
to be deployed/executed within a certain time window after
the completion of the victim task. In this paper, we define this
time for the attacker task as attack effective window (AEW).
Any time greater than AEW makes the attack ineffective.
An example of AEW has been successfully demonstrated
in ScheduLeak [1]. The authors determined the AEW for a
control output overwrite attack to be 8.3ms.

Depending upon the timing relation between when the
attacker launches the attack on the victim task, the schedule-
based attack has been categorized into different attack cate-
gories [5]: (a) posterior attack model: an attack is launched
after the victim has completed its execution; (b) anterior
attack model: an attack is mounted before the execution of
the victim task; (c) pincer attack model: follows a hybrid
approach that aims at combing the posterior and anterior attack
approaches where the attacker analyzes the victim task at
load time and monitors its behavior after the victim task has
completed execution; (d) concurrent attack model: performs
the attack while the victim is running and can be mounted
by executing between the execution window of the victim
task’s job. In this paper, we only consider defense against the
posterior attack model.

Existing randomization-based defense approaches [2]–[4]
against schedule-based attacks are either very ineffective or
incur large overheads, thus affecting response time [5] of the
victim task as well as system schedulability. We implement the
approach using cgroup, which is one of the main techniques
used for enabling Linux containers. This allows us to take
advantage of the resource isolation and protection provided
by the container. In this work, we propose a new systematic
approach called SchedGuard (schedule guard) that blocks
untrusted tasks from running right after the victim task. The
main contribution of this work is:
• We propose a temporal isolation mechanism, Sched-

Guard, to defend against posterior schedule-based attacks
targeting cyber-physical systems.

• We analyze and evaluate the system’s schedulability
under different scheduling mechanisms.

ar
X

iv
:2

10
4.

04
52

8v
1

 [
cs

.C
R

]
 9

 A
pr

 2
02

1

Table I
TASK SETS NOTATION.

Notation Description

hp(i) tasks with higher priority than τi
lp(i) tasks with lower priority than τi
thp(i) trusted tasks with higher priority than τi
tlp(i) trusted tasks with lower priority than τi
uhp(i) untrusted tasks with higher priority than τi
ulp(i) untrusted tasks with lower priority than τi

• We propose a new security-oriented scheduling pol-
icy that prioritizes AEW coverage while maintaining
system schedulability and use simulation to evaluate
its performance.

• We implement our proposed SchedGuard approach in
the Linux scheduler and demonstrate its effectiveness on
commercial-off-the-shelf (COTS) RC cars.

II. SYSTEM AND ADVERSARY MODEL

This section discusses the system and threat models.

A. System model

We consider a uniprocessor platform that runs real-time
periodic tasks. Each task τi is characterized by (Ci, Ti, φi)
where Ci is its worst-case execution time, Ti is its period,
and φi < Ti its initial offset and we assume that the deadline
is equal to period (Di = Ti). All the above parameters
are positive integers. The tasks are scheduled using fixed-
priority preemptive scheduling algorithms and every priority is
assigned by Rate Monotonic (RM) algorithm (i.e., the shorter
the period, the higher the priority) [13]. Table I summarizes
the task sets notations relative to the task τi’s priority.

The worst-case response time Ri for task τi is the longest
time between the release of a job of the task τi until its
completion. The task is schedulable if its worst-case response
time is less than or equal to its deadline (Ri ≤ Di).

B. Threat model

In our threat model, we assume the goal of the attacker
is to successfully perform a posterior scheduler-based attack.
We categorize attacker’s capabilities into technical ones and
operational ones.

Technical capabilities refer to the assumptions about the
attacker’s knowledge regarding the target platform and victim
application. We assume that the attacker has access to a copy
of the target hardware and software system, including the
victim’s binary, such that they have full knowledge about the
hardware platform as well as the victim task’s execution time
and periods. In the case where scheduling related parameters
cannot be determined offline (e.g. task initial offset), attacker
can obtain such information after getting inside the system and
using techniques such as the Scheduleak [1]. We also assume
that the attacker can analyze the application on the target sys-
tem and use other exploits for remote code execution attacks.

Operational capabilities captures the attacker’s abilities to
implement the attack. CPSes nowadays usually have a com-
munication module that connects with the outside world using
WiFi, radio or cellular. These are remote attack surfaces that
adversaries can exploit to get inside the target system. In this
paper we consider only remote attacks in which the adversary
does not have physical access to actually deploy the attack but
can exploit unsecured wireless network or wireless configura-
tions as explained in the following examples. Some drones and
radio-controlled vehicles allow users to control through tablets
and mobile phones. However, these communication protocols
are considered insecure and can be exploited by attackers to
install malware [14]. Besides, communication modules use
legacy software with unpatched, known vulnerabilities. For
example, the security team in Tencent was able to remotely
hack a Tesla through legacy browser software [15]. They
noticed that the Tesla web browser used an old version of
QtWebkit that has many vulnerabilities. Through two exploits
they achieved arbitrary code execution in the center display
system in the Tesla.

We assume a capability-based security system where a pro-
gram requires certain ”capabilities” to achieve certain opera-
tion. For example, starting with Linux 2.2 superuser privileges
are divided into distinct units known as capabilities and they
can be independently enabled and disable for each process.
Only superuser can assign capabilities to other processes.
CAP SY S NICE is a Linux capability that gives a process
permission to change parameters such as scheduling policy,
period and priority. CAP SY S RAWIO is a capability to
allow a process to write to an I/O device. To write to a device
I/O one needs to acquire this capability. We argue that it is
not uncommon for communication modules (such as radio) to
have access to hardware I/O but it is unnecessary for them
to have the capability to change scheduling parameters. The
attacker could gain device I/O access by remotely exploiting
the communication module but cannot gain the capability to
modify scheduling system. Note that although we assume
the attacker can access I/O, we do not consider Denial-of-
Service attack on I/O in this paper. The DoS attack can be
mitigated, for example, by rate limiting some system critical
resources [16].

Inside the target system, we assume that the attacker does
not have the ability to exploit kernel vulnerabilities and gain
root privilege. Although in the aforementioned attack, the
security team was able to achieve privilege escalation to gain
root access in the system, they attribute their success to the
fact that the system was using an old version of the Linux
kernel (2.6.36) which does not have many exploit mitigation
applied. They also commended Tesla’s response that patched
all famous kernel vulnerabilities in the old kernel and also
introduced new kernel (4.4.35) in newer models. With security
concerns rising for CPS, it will become difficult for attackers
to achieve privilege escalation in newer generation of CPS.
However, these do not stop the attacker from getting into the
system and launch attacks that do not require root privileges.

We formally define the attack effective window (AEW).

Definition 1. Attack effective window Ω > 0 is the time
period during which scheduled-based attacks are effective and
ineffective otherwise.

An example of AEW is shown in Figure 1. The window is
associated with victim task τv and is marked in blue. τh is
a higher priority trusted task and τu is an untrusted task that
might be an attacker. We define a window is covered when all
its time slots are utilized by trusted tasks. In this case a large
part of AEW is not covered and leaves place for untrusted
task to execute. This is considered as unsafe.

0 1 2 3 4 5 6 7 8 9

τh

τv
Ω Ω

τu

Figure 1. Attack effective window of τv . Task parameters: τh = (0.5, 2), and
τu = (4, 8), and τv = (1, 4) with attack effective window of length Ω = 2.

The timing of the AEW depends on the type of associated
schedule-based attack. E.g., for anterior attack the AEW
will exist before the execution of the victim task, while for
posterior attack the AEW is after the execution of the victim
task. In order to successfully carry out the attack, the attacker
needs to execute during the AEW following the execution
of the victim task such that victim’s secret can be stolen,
corrupted, or overwritten.

To summarize, the attacker considered in this paper is only
able to penetrate the system through remote code execution on
the target platform and gain device I/O access but can neither
gain scheduling capabilities nor kernel privileges. Hence, we
assume the system kernel (including the scheduler) is secure
from the manipulation of an attacker. The attacker aims to
successfully initiate a posterior schedule-based attack which
means the attacker needs to execute during the AEW for the
chosen attack.

In this paper we also consider a vendor oriented security
model [17] where tasks from the same vendor are considered
to be trusted task (as they share security designs) and as a
result are less likely to be penetrated by an attacker. All other
tasks are considered untrusted and only untrusted tasks from
other vendors have the potential to be the attacker in disguise.
Each task is assigned the minimum set of required capabilities
following the principle of least privilege. We assume a mixed
criticality system where priorities of trusted and untrusted
tasks can interleave. There is only one victim task (denoted
by τv) that carries out security sensitive computation at the end
of its execution, such as accessing important information in the
cache or writing results to a buffer. There is no requirement
on the relative priority between the τv and untrusted tasks.

III. DEFENSE APPROACHES

A. Philosophy

The successful execution of an attacker task during AEW
is crucial to the success of the attack. Hence, our defense
focuses on using scheduling techniques to block all untrusted
tasks from executing during AEW . To this end, we define
two approaches: (a) paranoid approach and (b) trusted execu-
tion approach.

B. Paranoid Approach

A simple, brute-force approach would be to block all tasks
from execution during AEW , say by using the system idle
task to occupy this window. This would be equivalent to
introducing the Flush task approach to prevent information
leakage used by Mohan et al. [18] and Pellizzoni et al. [17].
This can fulfill our defense goal but at the cost of reducing
the schedulability of the system. We consider this to be the
base approach and is the conservative but safe approach.

C. Trusted execution approach

Blocking all tasks from executing during the window wastes
CPU cycles and reduces system utilization. The trusted ex-
ecution approach that we propose would be blocking only
untrusted tasks during AEW , since trusted tasks are consid-
ered safe.

This method will improve the response time of all tasks
compared to the base approach. However, if trusted tasks
cannot use up the entire window time or there are lower
priority trusted tasks executing during the window, it can still
block higher priority untrusted tasks and they may still miss
their deadlines. To solve this problem, we aim to answer the
following questions:

• How will response time of tasks change when using
the trusted execution approach compared with the para-
noid approach?

• Given a set of trusted tasks, determine if all instances of
the AEW are covered?

• Is there a security-oriented scheduling policy that pri-
oritizes window covering as much as possible while
maintaining system schedulability?

IV. ANALYSIS

In this section, we first provide response time analysis for
both paranoid and trusted execution scheduling approaches.
Then we discuss in a unique condition how to determine if a
given trusted task set can fully cover all instances of AEW
and what benefits it can bring. At last, we present a new
scheduling policy that prioritizes the covering of AEW while
not affecting the system’s schedulability.

We assume in our analysis there is only one victim task τv
and its AEW is not longer than its period, Ω < Tv .

A. Response Time for Paranoid Approach

We first consider the scheduling problem with the paranoid
defense mechanism where none task is allowed to execute
within AEW . The window can be modeled as a fixed non-
preemptive region [19]. To compute the safe bounds on the
tasks’ worst-case response times, we assume arbitrary phasing.
We first analyze the tasks with higher priorities than the victim
task, then the tasks with lower priorities than the victim task,
and finally, the victim task.

Response time for higher priority task A task τi ∈ hp(v)
can be blocked by one attack effective window Bi = Ω in the
worst case, and its worst-case response time is:

Ri = Ci + Ω +
∑

j∈hp(i)

⌈
Ri

Tj

⌉
Cj (1)

Response time for lower priority task A task τi ∈ lp(i)
can be blocked by all instances of the victim task window:

Ri = Ci +
∑

j∈hp(i)

⌈
Ri

Tj

⌉
Cj +

⌈
Ri

Tv

⌉
Ω (2)

Response time for victim task The victim task analysis
follows the principle of the non-preemptive response time
analysis [19], [20]: the non-preemptive window can overlap
with the victim’s task next instance or block higher priority
tasks deferring their execution into the victim’s task next
instance. The worst-case response time for τv will occur during
τv busy period Lv (the longest time interval that the processor
is occupied without idle time with tasks that have priorities
higher than or equal to τv [21]) given by the least positive
integer satisfying the following relation:

Lv =
∑

j∈hp(v)

⌈
Lv

Tj

⌉
Cj +

⌈
Lv

Tv

⌉
(Cv + Ω) (3)

Let rv,k = (k − 1) · Tv be the k-th release time of the victim
task τv and fv,k its worst-case finish time (finish time =
release time+ response time):

fv,k =
∑

j∈hp(v)

⌈
fv,k
Tj

⌉
Cj + (k − 1) · Ω + k · Cv (4)

sum of windows

Its worst-case response time is calculated as the maximum
of the response times of all instances.

Rv = max
k
{fv,k − rv,k} (5)

where k : 0 < k ≤ Lv/Tv . Figure 2 shows an example of the
victim task response time analysis.

B. Response Time for Trusted Execution Approach

The trusted execution approach allows the trusted tasks
to execute within the victim’s window. We introduce the
response time analysis for the trusted and untrusted tasks
under the trusted execution approach. Our analysis assumes
arbitrary phasing except for the victim task that, to simplify
the presentation, has no initial offset (φv = 0).

0 1 2 3 4 5 6 7 8 9 10

τh

τv

Ω Ω

Figure 2. Victim task response time analysis under Paranoid Approach: the
victim task τv = (2, 4.5) with Ω = 1, and higher priority task τh = (1, 3).
Note that Rv,1 = 3 and Rv,2 = 3.5.

0 1 2 3 4 5 6 7 8 9 10

τuhp

τi

τv
Ω

Figure 3. Critical instant for higher priority trusted tasks under Trusted
Execution Approach: the victim task τv = (2, 8) with Ω = 2, trusted task
under analysis τi = (2, 4), and untrusted higher priority task τuhp = (1, 4).

Response time for higher priority trusted task and
victim task Task τi ∈ thp(v) can experience interference from
the higher priority (trusted and untrusted) tasks. The victim
task can block the untrusted tasks, and consequently, the time
between the start of the execution of the first and the second
untrusted task instances can be less than its period. Figure 3
illustrates such a situation. Two instances of untrusted higher
priority task τuhp interfere with the task under analysis τi in
the time interval from 4 to 8. To account for this, τuhp delayed
by Ω from the previous instance should be considered. The
worst-case response time of trusted task τi with a priority
higher than τv is the least positive integer that satisfies the
following recurrent equation:

Ri = Ci +
∑

j∈thp(i)

⌈
Ri

Tj

⌉
Cj +

∑
j∈uhp(i)

⌈
Ri + Ω

Tj

⌉
Cj (6)

We can use the above formula to safely upper bound the victim
task’s worst-case response time (i = v).

Response time for higher priority untrusted task
Task τi ∈ uhp(v), besides the interference from the higher
priority (trusted and untrusted) tasks, can be blocked at most
once by the victim’s window. Since the trusted tasks can
execute during the victim’s window, the window time will
not contribute to additional blocking. The critical instance for
τi ∈ uhp(v) happens when: i) τi and other uhp(i) are released
at the beginning of the window, ii) trusted higher priority tasks

τj

Ω

2 · Tj − Cj

Figure 4. Trusted task τj minimal amount of execution within window Ω.

thp(i) interfering with the execution of τi are all released right
after the end of the window.

Ri = Ci+Ω+
∑

j∈thp(i)

⌈
Ri − Ω

Tj

⌉
Cj +

∑
j∈uhp(i)

⌈
Ri

Tj

⌉
Cj (7)

Response time for lower priority untrusted task
Task τi ∈ ulp(v) is subject to interference from the higher
priority tasks (trusted and untrusted) and from the window that
is non-preemptive for untrusted tasks. The window is activated
every time the victim task completes its execution.

The jobs of trusted higher priority task τj ∈ thp(i) executed
within the window can be excluded from the set of the interfer-
ing jobs. We derive a lower bound on the minimal amount of τj
execution within the window of length Ω. Figure 4 illustrates
our approach. We assume that every instance of τj executes for
its worst-case execution time. The first τj instance starts at its
release, and every subsequent instance starts at Cj before its
deadline. The window starts right after the end of the first τj
instance. Such conditions minimize the total execution of τj
within the window (shifting the window to the left or the right
cannot decrease the total workload executed within).

Wmin(j) = max

(
0,

⌈
Ω− 2 · Tj + Cj

Tj

⌉)
Cj (8)

The proposed approach is similar to the response time
analysis for the polling servers [22]. We acknowledge that
the bound is not tight in general.

The worst-case response time of task τi ∈ ulp(v) is the
least positive integer of the following recurrence:

Ri = Ci +
∑

j∈hp(i)

⌈
Ri

Tj

⌉
Cj +

⌈
Ri

Tv

⌉
Ui (9)

preempt by hp(v) blocked by AEW

where the upper bound on the uncovered part of the win-
dow is:

Ui = max

0,Ω−
∑

j∈thp(i)

Wmin(j)

 (10)

Response time for lower priority trusted task We con-
sider now task τi ∈ tlp(v). This task can benefit from the
remaining window time in AEW during its execution. We

first evaluate the minimal amount of accumulated window time
over time interval t. Then we evaluate how much of this time
might be taken by the other higher priority trusted tasks. The
remaining part of the trusted time can be used by τi.

We calculate a lower bound on the minimal amount
of trusted execution α(t) over a generic time interval of
length t > 0. Depending on the attack effective window du-
ration, we can distinguish two cases: i) Ω < Tv −Rv , and
ii) Ω ∈ (Tv −Rv, Tv).

In the first case, Ω < Tv −Rv , the windows from two
consecutive victims’ jobs cannot overlap. Thus, within each
victim task period, there is Ω trusted execution time.

α(t) = max

(
0,

⌊
t− δ
Tv

⌋)
Ω (11)

Variable δ is the maximal time from the end of the attack
effective window to the next victim task release (this happens
when the victim tasks finish immediately at its release time).

δ = Tv − Ω (12)

Figure 5 shows an example of the victim task with non-
overlapping windows and illustrates the above parameters.

Tv Tv

Rv

τv

Ω δ

Figure 5. Non-overlapping trusted execution for Ω < Tv −Rv .

In the second case, Ω ∈ (Tv − Rv, Tv), the windows from
two consecutive victim jobs can overlap. Such overlapping
leads to less trusted execution time. Figure 6 illustrates this
case. The reproduced schedule leads to the minimal time
budget reserved for the execution of the trusted tasks within
the time interval [t1, t2] where t2 > t1 are time instants. The
time instant t1 coincides with the end of the AEW that follows
the victim job executed instantaneously at its release time.
The amount of the trusted execution can be then minimal.
To minimize the amount of the trusted execution, every two
instances of the victim task τv have overlapping windows. The
first victim task instance within the interval [t1, t2] terminates
at its worst-case finishing time while the second one at its
release. We will designate the first job of such a pair as the
odd job and the second one as the even job. The total trusted
execution time for each pair is Tv −Rv + Ω.

The odd τv job gives rise to Tv−Rv trusted execution time
within its period. We cover in [t1, t2] the period of the first
odd job after Tv + δ, and then every 2 ·Tv , the next odd job’s
period is covered.

αodd(t) = max

(
0,

⌊
t+ Tv − δ

2Tv

⌋)
(Tv −Rv) (13)

of odd instances trusted time budget

Ω δ

Tv Rv Ω

Tv Ω

odd even odd even

Rv

Tv

Ω

Ω

τv

t1 t2

Figure 6. Minimal amount of trusted execution time for Ω > Tv −Rv .

The even τv job gives rise to Ω trusted execution time within
its period. We cover in [t1, t2] the period of the first even job
after δ+2 ·Tv , and then every 2 ·Tv , the next even job’s period
is covered.

αeven(t) = max

(
0,

⌊
t− δ
2Tv

⌋)
Ω (14)

Putting it all together, the minimal amount of trusted exe-
cution α(t) can be lower bounded for Ω ∈ (Tv −Rv, Tv) as:

α(t) = αeven(t) + αodd(t) (15)

The derived bounds have simple expressions, thereby sim-
plifying the analysis. However, the bounds are not tight. In
particular, we account only for the trusted execution within
the victim task periods that entirely fit the time interval.

We compute the amount of processing time reserved for a
trusted task in any time interval. During the time reserved
for the trusted execution, task τi contends for the proces-
sor only with trusted higher priority tasks. We estimate the
maximal amount of trusted execution time that might be
reclaimed by thp(i).

Since we assume the Rate Monotonic priority assignment,
trusted tasks with higher priorities than the victim task τv
have shorter periods than the victim and might be therefore
released multiple times during AEW . However, the first task
τj ∈ thp(v) instance within the window must be released
after the window’s beginning. Otherwise, τj could preempt τv
(or some other hp(v) task) and execute before task τv ends.
Figure 7 shows task τj ∈ thp(v) executing within the attack
effective window. The maximal amount of trusted execution
time reclaimed by τj ∈ thp(v) within a single window Ω can
be upper bounded by:

Wmax(j) = min

(
Ω,

⌈
Ω

Tj

⌉
Cj

)
(16)

If α(t) is the minimal amount of the trusted execution over a
generic time interval of length t > 0, then a higher priority
trusted task τj ∈ thp(v) cannot use more trusted execution
budget than:

βj(t) =

⌈
α(t)

Ω

⌉
Wmax(j) (17)

On the other hand, trusted tasks with lower priorities than
the victim task τv (but with a priority higher than the task

τj

τv

Ω

Figure 7. Higer priority trusted task τj ∈ thp(v) maximal amount of
execution within a single attack effective window Ω of task τv .

under analysis τi) have longer than or equal periods to the
victim. Each job of such a lower priority task τj ∈ tlp(v) ∩
thp(i) can overlap with AEW . Two jobs can fit into the same
AEW if the first one finishes as late as possible and the next
one as early as possible. Figure 8 shows such a schedule.
Within time interval of length t > 0, trusted task τj ∈ tlp(v)∩
thp(i) with lower priority than the victim cannot reclaim more
trusted execution time than:

βj(t) =

⌈
t+ Tj − Cj

Tj

⌉
min(Ω, Cj) (18)

τj

τv

Ω Ω

Figure 8. Lower priority trusted task τj ∈ tlp(v) maximal amount of
execution during a sequence of task τv attack effective windows Ω.

Last but not least, a victim task τv instance can execute
during its previous instance of the window as shown in
Figure 9 and the time available for other lower priority trusted
tasks could be further reduced. The amount of the victim
task τv execution that can overlap with its previous window
can be upper bounded by:

Wmax(v) = max (0,min (Cv, Rv + Ω− Tv))

Thus, the maximum amount of task τv execution that can
overlap with all windows in a generic time interval of
length t > 0 is:

βv(t) =

⌈
t

Tv

⌉
Wmax(v) (19)

ΩRv

Tv

τv

Figure 9. Victim task τv running in attack effective window AEW .

Putting it all together, the amount of trusted processing time
available for task τi ∈ tlp(v) during a time interval t > 0 is
lower bounded by:

λi(t) = max

0, α(t)−
∑

j∈thp(i)

βj(t)

 (20)

The worst-case response time of a trusted lower priority
task τi ∈ tlp(v) can be upper bounded by:

Ri = Ci +
∑

j∈thp(i)

⌈
Ri

Tj

⌉
Cj +

∑
j∈uhp(i)

⌈
Ri + Ω

Tj

⌉
Cj− λi(t)

(21)

exec time in AEW

or by the least positive integer value that satisfies:

Ci − λi(Ri) ≤ 0 (22)

Formula (22) can be satisfied when there is a sufficient amount
of trusted execution time to fully execute task τi.

C. Window covering condition

In previous subsections, we derived response time analysis
under the proposed trusted execution approach. If all trusted
tasks ∈ hp(v) and can cover all instances of AEW , then the
response time analysis for untrusted task will be much simpler.
In this subsection, we derive the conditions that a set of trusted
tasks can cover all instances of AEW in a special scenario.

We consider a harmonic taskset (i.e., periods that pairwise
divide each other) with constant execution times. We also
assume that tasks have criticality monotonic priorities (i.e., all
trusted tasks are assigned a higher priority than the same).
Besides, we introduce R+

i as the worst-case response time of
task τi when its worst-case execution time is inflated to Ci +ε
where ε > 0 is an infinitesimally small positive number or one
clock cycle if the discrete-time model is used.

To check if there is any idle time for a length of Ω after the
execution of victim task τv , we first provide a sufficient and
necessary condition for only τi ∈ thp(v) to cover all instances
of the window. Task τv associated attack effective window Ω
is always covered by τi ∈ thp(v) if and only if:

R+
v ≥ Rv + Ω (23)

As shown in Figure 10, both τ1h and τ2h belong to a trusted
task set and they both have higher priority than τv . Task τv has

0 1 2 3 4 5 6 7 8 9 10 11

τ1h

τ2h

τv
Ω

Figure 10. Higher priority tasks covering the attack effective window.

the lowest priority among the three tasks and has an associated
attack effective window Ω of 3 time units. With C+

v = Cv +ε,
the new response time of τv will be 8 + ε (ε is the red part in
Figure 10), which is larger than 8. According to Formula (23),
the given task set can cover the window.

We consider how trusted tasks τi ∈ tlp(v) can fully cover
the window. Let τl ∈ tlp(v). Task τv AEW is fully covered
by τl if Rl satisfies the following relation:

Rl > Ilv + Tl − Tv +Rv + Ω (24)

where Ilv is the difference in initial offset between τl and τv .
A positive Ilv means τl starts earlier than τv . Rl spans over
all instances of τv within τl period. Tl−Tv +Ilv is the release
time of the last τv instance within τl period.

Formula (24) provides a sufficient condition for trusted task
τl ∈ tlp(v) to cover the window. However, it is also applicable
to a trusted task sets: if there exist one task τi ∈ tlp(v) in a
task set that satisfy Formula (24), then this whole task set can
fully cover the window.

Let τl ∈ tlp(v). If the window is not already fully covered
by thp(v) then τv AEW is fully covered by trusted tasks if
and only if R+

l is larger than the last instance of the window in
its period Tl. This provides a necessary and sufficient condition
for lower priority to fully cover the window when higher
priority tasks fail.

To summarize the above findings: Let τv be the victim task
with associated attack effective window Ω and τl ∈ tlp(v) the
trusted task with the lowest priority among all trusted tasks.
The window can be fully covered by the trusted tasks if and
only if

R+
v ≥ Rv + Ω (25)

or
R+

l > Ilv + Tl − Tv +Rv + Ω (26)

This provides a necessary and sufficient condition for a
given trusted task set to cover the window entirely.

In the following example, the response time of τl is 10 such
that it cannot cover the last instance of the window. However,
there is a high priority task τh executing from 10-10.5, and
R+

l will be larger than 10.5, leaving no idle time slot in the
window. According to Formula (26), this task set can indeed
fully cover the window.

0 1 2 3 4 5 6 7 8 9 10 11 12

τh

τv
Ω Ω Ω

τl

Figure 11. Attack window covered with low and high priority tasks.

If a trusted task has the same priority as the victim task,
the scheduler should break the tie by letting the victim task
run first to provide better coverage.

D. Coverage oriented scheduling policy

AEW adds a new dimension to scheduling. However, it
is difficult to obtain information about AEW and use it for
scheduling because its length Ω is system dependant and
attack dependant. This section presents a new scheduling
policy that is also unaware of this AEW information but tries
to provide best-effort security protection while maintaining
system schedulability. The policy aims to maximize trusted
task execution after the execution of victim task τv for a
period as long as possible. The task to protect is marked as the
victim task τv . For each task τi, a maximum tolerable blocking
time Bi is calculated offline using exact RM schedulability
analysis. Maximum tolerable blocking time, by definition, is
the maximum time a task may be blocked from executing by
lower priority tasks without eventually missing its deadlines.

For each scheduling instance, if there are tasks that have
experienced a blocking time of its Bi, the scheduler will
schedule the highest priority task from that group of tasks.
If the above condition is not valid, the scheduler will take
different action based on whether τv is in the run queue and
ready for execution. If τv is in the run queue, the scheduler
will choose the highest priority task from uhp(v). If uhp(v)
is empty, the scheduler will choose τv . If τv is not in the
run queue, the scheduler will choose the highest priority task
from all trusted tasks until τv is inserted into the run queue
again. If τv is not in the run queue and there’s no trusted
task ready for execution, the scheduler will run the system
idle task if no untrusted task has experienced a blocking time
equal to Bi. The pseudo-code for this scheduling policy is
written in Algorithm 1, and a comparison to RM is provided
in Section VI-B2.

This scheduling policy aims to push as many uhp(v) as
possible to execute before τv and pack as many trusted tasks
as possible after the victim task. Schedulability is guaranteed
by scheduling tasks that cannot be blocked any further by other
lower priority tasks. Although this scheduler cannot guarantee
whether a window can always be fully covered or the length
of the window can be covered, it tries to cover periods after
τv as much as possible in a best effort way. The scheduler

achieves better security by sacrificing the response time of
tasks since most of the tasks will finish close to their worst-
case response time.

Algorithm 1 Coverage oriented scheduling policy
1: All task assigned priority pi according to RM
2: Bi is calculated for each task τi
3: For each scheduling instance
4: if Some τi have been blocked for Bi then
5: Select top task from these tasks
6: else if τv in run queue then
7: if Some τi ∈ uhp(v) in run queue then
8: Select top task in uhp(v)
9: else

10: Select τv
11: end if
12: else if τv not in run queue then
13: if Some trusted τi in run queue then
14: Select top task from all trusted tasks
15: else
16: Select system idle task
17: end if
18: end if

V. IMPLEMENTATION

In this section, we describe how SchedGuard was imple-
mented in the Linux kernel before evaluating it in Section V.
To achieve the SchedGuard functionality in the Linux kernel,
we modified the kernel scheduler and made necessary changes
to the cgroup interface as we choose to support contain-
ers. Containers offer low-performance overhead, support for
Linux-based OS, ease of porting software, and isolation en-
forced by namespace. They can be controlled through cgroups,
making them compatible with vendor-oriented security mod-
els. The implementation of SchedGuard assumes that all
trusted tasks run in one container, while untrusted tasks run in
one or several other containers. This implementation targets a
context of a uniprocessor system.

Linux cgroups are hierarchical groups that organize different
resources for a collection of processes to perform resource
allocation and monitoring. Examples include CPU, memory,
device I/O, network, etc. In this paper, we only discuss the
components that are relevant to real-time scheduling on the
CPU. The CPU subsystem controls cgroup tasks access to the
CPU. It has a real-time bandwidth control feature that regulates
the CPU real-time runtime (rt runtime) assigned for cgroup
tasks. When the rt runtime of a cgroup is depleted, real-time
tasks in this cgroup are stalled regardless of their priority until
bandwidth replenishment in the next real-time period. In the
Linux kernel, there is a root task group that sits at the root
of the cgroup hierarchy. By default, all real-time bandwidth
is assigned to this root task group, and any new cgroup can
inherit rt runtime from its parent cgroup. Take Docker, for
example. As shown in Figure 12, Docker is a direct child of
the root task group, and all containers are child cgroups of

Root task group

rt_runtime = 100%

struct rt_rq

docker

rt_runtime = 80%

struct rt_rq

prio = 10 prio = 30 prio = 50

container 1 container 2

rt_runtime = 40%

struct rt_rq

container 3

prio = 30 prio = 40 prio = 45

rt_runtime = 30%

struct rt_rq

rt_runtime = 0%

struct rt_rq

rt task 1 rt task 2

rt task 3 rt task 4

Figure 12. Docker cgroup structure.

Docker. As a result, the sum of rt runtime of all containers
cannot be higher than Docker, which gets rt runtime from the
root task group. Each cgroup has a real-time run queue (rt rq)
that stores information of real-time tasks in this cgroup. During
real-time scheduling, the kernel always starts by searching
in the root cgroup’s rt rq for the highest priority real-time
scheduling entity (sched rt entity), which can be either a task
or cgroup. If the selected sched rt entity is a cgroup, then the
scheduler searches within the rt rq of this cgroup until it finds
a task to execute.

To enable SchedGuard blocking, one should first specify
the protection window’s length for the victim’s cgroup. In our
extension of the cgroup implementation, this can be achieved
using the cgroup file system by setting the cpu.window us
attribute to a non-zero value. The cpu.window us value is
used to set the expiration time of the SchedGuard hrtimer in
the kernel. To use the SchedGuard, the victim task at the run
time calls our newly added system call named cpu block right
before calling yeild. The cpu block ensures two functionali-
ties: 1) it sets the kernel scheduler into protection mode; 2)
it programs the SchedGuard hrtimer to fire in the future. In
the protection mode, the kernel scheduler dequeues all rt rqs
that have real-time tasks ready to execute except the rt rq of
the victim’s cgroup and the rt rq of root task group’s as it
may have real-time kernel tasks. Suppose there are no real-
time tasks ready for execution from the victim’s cgroup or the
root task group during protection mode. In that case, the kernel
scheduler will skip scheduling of all SCHED NORMAL tasks
(normally handled by the CFS scheduler) and select the
system idle task for running until the protection window
is finished. When the SchedGuard hrtimer expires, it reset
the kernel scheduler back to normal mode and enqueues all
dequeued rt rqs.

VI. EXPERIMENTS

This section describes the experimental setup where we have
demonstrated our proposed approach’s results on a realistic

platform, a radio-controlled rover (RC) car. Moreover, we
also provide the theoretical schedulability results of different
defense approaches using synthetically generated workloads.

A. Experimental Results on RC Car

The computing unit on the RC car employs a Raspberry
PI 4B. It has quad-core cortex A-72 cores capable of running
at 1.5Ghz each and comes with Linux kernel 4.19 pre-installed.
For our hardware experiments, we enabled only one core.
To validate our approach’s effectiveness, we first show the
results when SchedGuard is used with a synthetic victim task,
and then we show how it can protect the RC car’s autopilot
application. The simulation experiments run on a desktop
environment and demonstrate the proposed security-oriented
scheduling policy using a synthetically generated victim task.
Defense against timing inference attack

There are works such as ScheduLeak [1] that exploits
scheduling side-channel information to reconstruct a periodic
victim task initial offset (i.e., the arrival time) and case
execution time. With this information, an attacker can carry out
an accurate timing-based attack without leaving any footprint.
SchedGuard can affect the inference on execution time since it
blocks the attacker task from obtaining any information during
the protection window.

The defense is demonstrated in the following example. The
ScheduLeak algorithm is used to infer the victim task initial
offset τv’s initial offset av (i.e., the arrival time) and best
case execution time ev . The observer task from ScheduLeak
is configured as a SCHED FIFO task with the lowest real-
time priority in the system. The victim task is a periodic
real-time task that runs with a 100ms period. The measured
average execution time and best case execution time for the
victim task are 30ms and 19ms, respectively. We run only
one periodic task (the victim task) in the system (excluding
ScheduLeak itself and kernel threads) as this increases the
chance the inference can succeed. The victim’s period is
passed to ScheduLeak as it’s a prerequisite condition for it
to succeed. To protect the victim task with SchedGuard, the
victim runs in a dedicated container alone, and a blocking
window of 10ms is assigned. This container is assigned a
rt runtime around 400ms over a period of 1000ms to make
sure its execution is not affected by cgroup’s RT throttling
mechanism. The ScheduLeak algorithm runs in a different
container following the vendor-oriented security assumption,
and the rest of the system’s remaining rt runtime (550ms)
is assigned to it to increase its success rate. After the victim
starts execution, ScheduLeak is invoked to run for 10 x victim’s
period following the original paper’s recommendation.

The ScheduLeak algorithm is run 100 times for both Sched-
Guard enabled and disabled cases. Inference results on the
victim’s initial offset and best case execution time are shown in
Figure 13 and Figure 14. Figure 13 shows the percentage error
in victim task initial offset inference for both configurations.
ScheduLeak can derive a very accurate av for the victim
with only minor errors in both cases. This is because the

0 20 40 60 80 100

0.015

0.020

0.025

0.030

0.035

0.040

0.045
in

fe
re

nc
e

er
ro

r (
%

)
Inference error on inital offset

with SchedGuard
without SchedGuard

Figure 13. ScheduLeak inference on task initial offset with and without
SchedGuard.

0 20 40 60 80 100

20000

25000

30000

35000

40000

tim
e

(u
s)

Inferred best case execution time
with SchedGuard
without SchedGuard

Figure 14. ScheduLeak inference on victim task BCET with and with-
out SchedGuard.

SchedGuard does not prevent the attacker from obtaining
this information.

The inference results on the victim task’s BCET are shown
in Figure 14 for both configurations. The actual inference
value instead of the percentage error is shown. The victim
task has a true BCET of 19000us, while the majority of
inference results fall between 20000us to 24000us when
SchedGuard is disabled. When SchedGuard is enabled with a
10ms (Ω = 10ms) protection window, most results range from
30000us to 34000us. Comparing with the no protection case,
the difference is the protection window size. This proves that
SchedGuard prevents the attacker from executing within 10ms
after the victim finishes and gives the attacker an impression
that the victim has a longer execution time. With this false
execution time, the attacker will launch a posterior attack at
the wrong moment. If the protection window is longer than
the attack effective window for that specific attack, the system
is protected by SchedGuard.
Defense against control overwrite posterior attack

In this experiment, we demonstrate the real effect of the
proposed defense approach against a real attack on an off-the-
shelf RC car with Raspberry Pi 4 and Navio 2 sensor board1.
The RoverBot software is utilized as the autopilot. RoverBot2

is a modularized software stack that runs on Raspberry Pi 4

1https://navio2.emlid.com/
2https://github.com/bo-rc/Rover/blob/master/cpp/RoverBot

0.0 0.2 0.4 0.6 0.8 1.0
X (meters)

1.0

0.8

0.6

0.4

0.2

0.0

Y
(m

et
er

s)

No Attack
= 1500us
= 1000us
= 500us
= 0

Figure 15. The RC car’s trajectories without an attack (the blue line) and
with attacks under various ωe settings. In this experiment, the car’s target
is to move straight along the X-axis while the attacker tries to override the
steering to make the car turn right.

with a Navio 2 sensor board. RoverBot autopilot comprises
functionally-separated modules which may run in separate
processes, such as Radio input, Localizer, Actuator, etc.. Com-
munication among different modules implements a publish-
subscribe mechanism using FastDDS3 framework. To perform
autonomous waypoint navigation, the Intel RealSense T265
tracking camera4 is connected to the Raspberry Pi 4 computer
to provide localization. The Intel RealSense SDK 2.05 is used
to stream the vehicle’s real-time poses RoverBot autopilot
system, which drives the vehicle to waypoint locations.

We launch the control output overwrite attack [1] that
aims to override the PWM outputs governed by the Actuator
task on the car system. To create a simpler environment for
evaluating the attack and defense results, only the Actuator
task is deployed as a SCHED FIFO real-time task while others
are run as non real-time tasks. The Actuator task runs at a
frequency of 100Hz and has an average execution time of
around 167us. The container that runs the Actuator task is
configured with rt runtime as 400ms, which ensures the task’s
execution is not throttled. To infer the Actuator task’s initial
offset, we launch a ScheduLeak attack as non real-time task in
a separate container. The obtained initial offset is then used to
launch the control output overwrite attack. In this attack, the
attacker aims to override the steering to make the car turn right
while the car is set to move straight. The experiment results
are shown by the car’s trajectories recorded under different
test settings as displayed in Figure 15. The blue line shows
the car’s trajectory without an attack as a reference. As the
figure shows, the attack can make a sharp right-turn when
no protection is involved (Ω = 0). As the window length
increases, the turn is becoming flat and shaky. This is because
the attacker is no longer occupying the AEW and the resulting
PWM signal mixes the updates from both the Actuator task
and the attacker. As a result, the attacker is not able to gain

3https://github.com/eProsima/Fast-DDS
4https://www.intelrealsense.com/tracking-camera-t265/
5https://github.com/IntelRealSense/librealsense

full control of the car at will.

B. Simulation

In this section, we use simulated executions of randomly
generated tasksets to showcase how strict enforcement of
attack effective window (AEW) changes the schedulability
of tasksets with Rate Monotonic (RM) policy. Then we relax
the AEW enforcement, allowing all tasks to run within
AEW , noting if and how long, untrusted tasks execute within
AEW . This coverage metric is then used to compare RM
with Coverage Oriented (CO) Scheduling policy described
in Algorithm 1.

1) Schedulability with AEW enforcement: In Figure 16,
we use a random task generation software to create 1,000,000
random tasksets for each simulation. All tasks are periodic
and follow the Liu and Layland task model assumptions [13].
Utilization for each task is selected using UUniFast algo-
rithm [23]. For each taskset the number of tasks is ran-
domly chosen ∈ [2, 3, ..., 10]. Periods are also chosen ran-
domly ∈ [1, 2, ..., 1000] time units with additional constraint
to have a hyperperiod of 1000. Taskset’s schedulability is
determined by simulating the taskset’s execution over the
taskset’s hyperperiod.

Figure 16 shows the ratio of tasksets (Y-Axis) at each 0.1
utilization interval (X-Axis), which passes the schedulability
test. To show the victim task choice’s impact, the victim is
chosen as the highest priority, middle priority, and second to
lowest priority task in the system. Results are plotted for each.
AEW is based on a percentage of the period of the victim
task. AEW percentages ∈ [10, 30, 50] are explored and noted
in the legend e.g., AEW10 implies AEW is 10% of victim
task period. 20% of all tasks are selected as trusted tasks at
random, while the victim task itself is always allowed to run
within AEW . Baseline refers to RM scheduling policy with no
victim task or AEW restrictions. Paranoid scenario prohibits
the execution of any task other than the victim in AEW . In
Trusted scenarios, other trusted tasks are also allowed to run
within the AEW .

Discussion of results:
AEW constraint disallows untrusted tasks to run within

the AEW independent of priority. There are two primary
reasons for schedulability changes due to AEW . First, the
AEW may not be fully utilized by trusted tasks, leading to
unusable time in the schedule. When the victim is the highest
priority task, this is the only effect observed. Second, AEW
also disallows higher priority untrusted tasks to run within
it, causing further scheduling failures. When the victim is
a medium or low priority task, this effect is observed and
can cause scheduling failures for low utilization tasksets. The
trusted policy allows trusted tasks to run within the AEW
hence the improved schedulability compared to the paranoid
policy for the same setup.

2) Coverage Oriented Scheduling Policy: We further sim-
ulate the CO scheduling policy described in Algorithm 1
and compare it to RM. In each case, a high priority task is
chosen as victim with AEW window sizes a percentage of

0.0

0.2

0.4

0.6

0.8

1.0

%
 S

ch
ed

ul
ab

le

High Priority Victim

Baseline
AEW10_Paranoid
AEW10_Trusted

AEW30_Paranoid
AEW30_Trusted

AEW50_Paranoid
AEW50_Trusted

0.0

0.2

0.4

0.6

0.8

1.0

%
 S

ch
ed

ul
ab

le

Mid Priority Victim

0.0 0.2 0.4 0.6 0.8 1.0
Taskset Utilization

0.0

0.2

0.4

0.6

0.8

1.0

%
 S

ch
ed

ul
ab

le

Low Priority Victim

Figure 16. Schedulability of randomly generated tasksets with Rate Mono-
tonic (RM) Scheduling policy. Baseline refers to standard RM scheduling,
without any task being protected. For all other cases a victim task is chosen
as a High, Medium or Low priority task. AEW sizes as a percentage of
victim’s period are noted in the legend. In Paranoid scenario no tasks other
than the victim are allowed to execute within AEW , but in the Trusted
scenarios, trusted tasks are allowed to run inside of AEW . 20% of the tasks
in a taskset are considered trusted, chosen randomly.

the task period as before. The goal of this simulation is to
compare for RM and CO policies, the fraction of the AEW
that would be utilized by untrusted tasks when the scheduler
does not explicitly protect the AEW , rather only records when
untrusted tasks are run within the AEW As noted before, CO
attempts to cover the AEW by executing trusted tasks within
AEW but without sacrificing schedulability.

AEW sizes are noted in the legend. The ratio of AEW
covered by untrusted tasks (Y-Axis) averaged over tasksets
grouped by utilization (X-Axis) are plotted for both CO and
RM for different AEW sizes.

Discussion of results: CO is able to cover more of the
AEW with trusted tasks or avoid execution of untrusted tasks
within this time by executing them before the victim. Due to
the high percentage of untrusted tasks (80%), the difference
is eventually small.

0.0 0.2 0.4 0.6 0.8 1.0
Taskset Utilization

0.0

0.2

0.4

0.6

0.8
AE

W
 U

nt
ru

st
ed

 C
ov

er
ag

e
Ra

tio

CO AEW10
CO AEW30
CO AEW50
RM AEW10
RM AEW30
RM AEW50

Figure 17. Ratio of AEW time covered by Untrusted tasks (Y Axis),
averaged for tasksets grouped by utilizations (X Axis). Rate Monotonic (RM)
scheduling policy is compared against Coverage Oriented (CO) Scheduling
Policy described in Algorithm 1.

VII. RELATED WORK

Side-channel attacks have been considered in the security
community as one of the major threats. A variety of them
has been studied in the past in [24]–[26]. Solutions such
as cache flushing [27] and hardware/architectural [28]–[31]
modifications have been proposed as a defense mechanism
without real-time constraints in mind.

The first work that demonstrated the leakage of information
when scheduling tasks in a real-time environment is [32]. To
defend against fixed-priority scheduler from leaking informa-
tion, authors in [33] suggest the use of system idle thread.
This approach does not consider what happens after the victim
task has been completed. Similarly, works in [17], [18] sug-
gest defending against the schedule-based information leakage
between the high and low security tasks by the introduction
of flush tasks. This mechanism, however, introduces large
overheads, resulting in poor response time of all the tasks in
the system and effectively reducing system schedulability.

Another category of work to defend against the schedule-
based attacks is to randomize the schedule [2]–[4]. However,
these randomization-based approaches are not very effective
and can easily be susceptible to attacks [5]. Our proposed work
does not follow a schedule-randomization-based approach but
rather tries to defend against the schedule-based attack by
introducing the attack effective window and not allowing the
attacker to run during this window.

From the system’s schedulability point of view, some pre-
vious works have considered limited preemption [34], [35].
However, to the best of our knowledge, this is the first work
that analyzes or considers blocking the window after executing
a certain task (victim).

VIII. CONCLUSION

A new defense mechanism called SchedGuard was intro-
duced to defend against the posterior schedule-based attack
using Linux containers. SchedGuard prevents untrusted tasks
from execution during the specified AEW . We provided

response time analysis for both the paranoid case in which no
tasks are allowed to run during AEW and the trusted execu-
tion case where only trusted tasks can execute during AEW .
We also proposed a novel scheduling policy that provides
best-effort protection in the situation where it is not possible
to determine the size of AEW while not affecting system
schedulability. We evaluated SchedGuard with both simulation
and hardware experiments on an embedded platform with real
attack. The results proved the effectiveness of the SchedGuard
defense mechanism. In the future, we plan to defend against
anterior and pincer attacks using SchedGuard and extend it to
multicore using gang scheduling [36].

ACKNOWLEDGMENT

The material presented in this paper is based upon work
supported by the Office of Naval Research (ONR) under
grant number N00014-17-1-2783 and by the National Science
Foundation (NSF) under grant numbers CNS 1646383, CNS
1932529, CNS 1815891, and SaTC 1718952. M. Caccamo was
also supported by an Alexander von Humboldt Professorship
endowed by the German Federal Ministry of Education and
Research. Any opinions, findings, and conclusions or recom-
mendations expressed in this publication are those of the au-
thors and do not necessarily reflect the views of the sponsors.

REFERENCES

[1] C. Chen, S. Mohan, R. Pellizzoni, R. B. Bobba, and N. Kiyavash,
“A novel side-channel in real-time schedulers,” in 25th IEEE
Real-Time and Embedded Technology and Applications Symposium,
RTAS 2019, Montreal, QC, Canada, April 16-18, 2019, B. B.
Brandenburg, Ed. IEEE, 2019, pp. 90–102. [Online]. Available:
https://doi.org/10.1109/RTAS.2019.00016

[2] M.-K. Yoon, S. Mohan, C.-Y. Chen, and L. Sha, “Taskshuffler: A sched-
ule randomization protocol for obfuscation against timing inference
attacks in real-time systems,” in 2016 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS). IEEE, 2016, pp. 1–
12.

[3] M.-K. Yoon, J.-E. Kim, R. Bradford, and Z. Shao, “Taskshuffler++:
Real-time schedule randomization for reducing worst-case vulnerability
to timing inference attacks,” arXiv preprint arXiv:1911.07726, 2019.

[4] C.-Y. Chen, M. Hasan, A. Ghassami, S. Mohan, and N. Kiyavash,
“Reorder: Securing dynamic-priority real-time systems using schedule
obfuscation,” arXiv preprint arXiv:1806.01393, 2018.

[5] M. Nasri, T. Chantem, G. Bloom, and R. M. Gerdes, “On the pitfalls
and vulnerabilities of schedule randomization against schedule-based
attacks,” in 2019 IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS). IEEE, 2019, pp. 103–116.

[6] A. Teixeira, D. Pérez, H. Sandberg, and K. H. Johansson, “Attack models
and scenarios for networked control systems,” in Proceedings of the 1st
international conference on High Confidence Networked Systems, 2012,
pp. 55–64.

[7] A. Teixeira, I. Shames, H. Sandberg, and K. H. Johansson, “Revealing
stealthy attacks in control systems,” in 2012 50th Annual Allerton
Conference on Communication, Control, and Computing (Allerton).
IEEE, 2012, pp. 1806–1813.

[8] G. Park, H. Shim, C. Lee, Y. Eun, and K. H. Johansson, “When adversary
encounters uncertain cyber-physical systems: Robust zero-dynamics
attack with disclosure resources,” in 2016 IEEE 55th Conference on
Decision and Control (CDC). IEEE, 2016, pp. 5085–5090.

[9] J. Kim, G. Park, H. Shim, and Y. Eun, “Zero-stealthy attack for sampled-
data control systems: The case of faster actuation than sensing,” in 2016
IEEE 55th Conference on Decision and Control (CDC). IEEE, 2016,
pp. 5956–5961.

https://doi.org/10.1109/RTAS.2019.00016

[10] H. Jafarnejadsani, H. Lee, N. Hovakimyan, and P. Voulgaris, “Dual-rate
l 1 adaptive controller for cyber-physical sampled-data systems,” in 2017
IEEE 56th Annual Conference on Decision and Control (CDC). IEEE,
2017, pp. 6259–6264.

[11] J. Kim, G. Park, H. Shim, and Y. Eun, “A zero-stealthy attack for
sampled-data control systems via input redundancy,” arXiv preprint
arXiv:1801.03609, 2018.

[12] Y. Mo and B. Sinopoli, “Secure control against replay attacks,” in
2009 47th annual Allerton conference on communication, control, and
computing (Allerton). IEEE, 2009, pp. 911–918.

[13] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,” Journal of the ACM (JACM),
vol. 20, no. 1, pp. 46–61, 1973.

[14] J.-P. Yaacoub and O. Salman, “Security analysis of drones systems: At-
tacks, limitations, and recommendations,” Internet of Things, p. 100218,
2020.

[15] S. Nie, L. Liu, and Y. Du, “Free-fall: Hacking tesla from wireless to
can bus,” Briefing, Black Hat USA, vol. 25, pp. 1–16, 2017.

[16] J. Chen, Z. Feng, J.-Y. Wen, B. Liu, and L. Sha, “A container-based dos
attack-resilient control framework for real-time uav systems,” in 2019
Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, 2019, pp. 1222–1227.

[17] R. Pellizzoni, N. Paryab, M.-K. Yoon, S. Bak, S. Mohan, and R. B.
Bobba, “A generalized model for preventing information leakage in hard
real-time systems,” in 21st IEEE Real-Time and Embedded Technology
and Applications Symposium. IEEE, 2015, pp. 271–282.

[18] S. Mohan, M. K. Yoon, R. Pellizzoni, and R. Bobba, “Real-time
systems security through scheduler constraints,” in 2014 26th Euromicro
Conference on Real-Time Systems. IEEE, 2014, pp. 129–140.

[19] R. J. Bril, J. J. Lukkien, and W. F. J. Verhaegh, “Worst-case response
time analysis of real-time tasks under fixed-priority scheduling with
deferred preemption revisited,” in 19th Euromicro Conference on Real-
Time Systems (ECRTS’07), 2007, pp. 269–279.

[20] R. I. Davis, A. Burns, R. J. Bril, and J. J. Lukkien, “Controller Area
Network (CAN) schedulability analysis: Refuted, revisited and revised,”
Real-Time Systems, vol. 35, no. 3, pp. 239–272, Apr 2007.

[21] J. P. Lehoczky, “Fixed priority scheduling of periodic task sets with
arbitrary deadlines,” in [1990] Proceedings 11th Real-Time Systems
Symposium, 1990, pp. 201–209.

[22] G. C. Buttazzo, Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications, 3rd ed. Springer Publishing
Company, Incorporated, 2011.

[23] E. Bini and G. C. Buttazzo, “Measuring the performance of schedula-
bility tests,” Real-Time Systems, vol. 30, no. 1-2, pp. 129–154, 2005.

[24] W.-M. Hu, “Reducing timing channels with fuzzy time,” Journal of
computer security, vol. 1, no. 3-4, pp. 233–254, 1992.

[25] T. Kim, M. Peinado, and G. Mainar-Ruiz, “{STEALTHMEM}: System-
level protection against cache-based side channel attacks in the cloud,”
in Presented as part of the 21st {USENIX} Security Symposium
({USENIX} Security 12), 2012, pp. 189–204.

[26] P. C. Kocher, “Timing attacks on implementations of diffie-hellman, rsa,
dss, and other systems,” in Annual International Cryptology Conference.
Springer, 1996, pp. 104–113.

[27] W.-M. Hu, “Lattice scheduling and covert channels,” in Proceedings
1992 IEEE Computer Society Symposium on Research in Security and
Privacy. IEEE Computer Society, 1992, pp. 52–52.

[28] S. Mohan, S. Bak, E. Betti, H. Yun, L. Sha, and M. Caccamo, “S3a:
Secure system simplex architecture for enhanced security and robustness
of cyber-physical systems,” in Proceedings of the 2nd ACM international
conference on High confidence networked systems, 2013, pp. 65–74.

[29] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas, “Secure program
execution via dynamic information flow tracking,” ACM Sigplan Notices,
vol. 39, no. 11, pp. 85–96, 2004.

[30] M.-K. Yoon, S. Mohan, J. Choi, J.-E. Kim, and L. Sha, “Securecore: A
multicore-based intrusion detection architecture for real-time embedded
systems,” in 2013 IEEE 19th Real-Time and Embedded Technology and
Applications Symposium (RTAS). IEEE, 2013, pp. 21–32.

[31] C. Zimmer, B. Bhat, F. Mueller, and S. Mohan, “Time-based intru-
sion detection in cyber-physical systems,” in Proceedings of the 1st
ACM/IEEE International Conference on Cyber-Physical Systems, 2010,
pp. 109–118.

[32] S. H. Son, C. Chaney, and N. P. Thomlinson, “Partial security policies
to support timeliness in secure real-time databases,” in Proceedings.
1998 IEEE Symposium on Security and Privacy (Cat. No. 98CB36186).
IEEE, 1998, pp. 136–147.

[33] M. Völp, C.-J. Hamann, and H. Härtig, “Avoiding timing channels in
fixed-priority schedulers,” in Proceedings of the 2008 ACM symposium
on Information, computer and communications security, 2008, pp. 44–
55.

[34] F. Abdi, R. Mancuso, R. Tabish, and M. Caccamo, “Restart-based fault-
tolerance: System design and schedulability analysis,” in 2017 IEEE
23rd International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA). IEEE, 2017, pp. 1–10.

[35] G. C. Buttazzo, M. Bertogna, and G. Yao, “Limited preemptive schedul-
ing for real-time systems. a survey,” IEEE Transactions on Industrial
Informatics, vol. 9, no. 1, pp. 3–15, 2013.

[36] W. Ali, R. Pellizzoni, and H. Yun, “Virtual gang based schedul-
ing of real-time tasks on multicore platforms,” arXiv preprint
arXiv:1912.10959, 2019.

	I Introduction
	II System and adversary model
	II-A System model
	II-B Threat model

	III Defense approaches
	III-A Philosophy
	III-B Paranoid Approach
	III-C Trusted execution approach

	IV Analysis
	IV-A Response Time for Paranoid Approach
	IV-B Response Time for Trusted Execution Approach
	IV-C Window covering condition
	IV-D Coverage oriented scheduling policy

	V Implementation
	VI Experiments
	VI-A Experimental Results on RC Car
	VI-B Simulation
	VI-B1 Schedulability with AEW enforcement
	VI-B2 Coverage Oriented Scheduling Policy

	VII Related work
	VIII Conclusion
	References

