
End-to-End Network Delay Guarantees
for Real-Time Systems using SDN
Rakesh Kumar†, Monowar Hasan†, Smruti Padhy†∗, Konstantin Evchenko†,

Lavanya Piramanayagam‖, Sibin Mohan† and Rakesh B. Bobba§
†University of Illinois at Urbana-Champaign, USA, ‖PES University, India, §Oregon State University, USA

Email: †{kumar19, mhasan11, evchenk2, sibin}@illinois.edu, ∗smruti@mit.edu,
‖lava281995@gmail.com, §rakesh.bobba@oregonstate.edu

Abstract—We propose a novel framework that reduces the
management and integration overheads for real-time network
flows by leveraging the capabilities (especially global visibility
and management) of software-defined networking (SDN) archi-
tectures. Given the specifications of flows that must meet hard
real-time requirements, our framework synthesizes paths through
the network and associated switch configurations – to guarantee
that these flows meet their end-to-end timing requirements. In
doing so, our framework makes SDN architectures “delay-aware”
– remember that SDN is otherwise not able to reason about
delays. Hence, it is easier to use such architectures in safety-
critical and other latency-sensitive applications. We demonstrate
our principles as well as the feasibility of our approach using
both – exhaustive simulations as well as experiments using real
hardware switches.

I. INTRODUCTION

Software-defined networking (SDN) [29] has become in-
creasingly popular since it allows for better management of
network resources, application of security policies and testing
of new algorithms and mechanisms. It finds use in a wide
variety of domains – from enterprise systems [27] to cloud
computing services [22], from military networks [36] to power
systems [32] [10]. The global view of the network obtained by
the use of SDN architectures provides significant advantages
when compared to traditional networks. It allows designers to
push down rules to the various nodes in the network that can,
to a fine level of precision, manage the bandwidth and resource
allocation for flows through the entire network. However,
current SDN architectures do not reason about delays. On
the other hand, real-time systems (RTS), especially those
with stringent timing constraints, need to reason about delays.
Packets must be delivered between hosts with guaranteed
upper bounds on end-to-end delays. Examples of such sys-
tems include avionics, automobiles, industrial control systems,
power substations, manufacturing plants, etc.

While RTS can include different types of traffic1, in this

∗Smruti Padhy was affiliated with Univesity of Illinois at the time of
this work but her affiliation has since changed to Massachussetts Institute
of Technology.

1For instance, (a) high priority/criticality traffic that is essential for the
correct and safe operation of the system; (b) medium criticality traffic that
is critical to the correct operation of the system, but with some tolerances
in delays, packet drops, etc.; and (c) low priority traffic – essentially all
other traffic in the system that does not really need guarantees on delays
or bandwidth such as engineering traffic in power substations, multimedia
flows in aircraft, etc.

paper we focus on the high priority flows that have stringent
timing requirements, predefined priority levels and can tolerate
little to no loss of packets. We refer to such traffic as “Class I”
traffic. Typically, in many safety-critical RTS, the properties
of all Class I flows are well known, i.e., designers will make
these available ahead of time. Any changes (addition/removal
of flows or modifications to the timing or bandwidth re-
quirements) will often require a serious system redesign. The
number (and properties) of other flows could be more dynamic
– consider the on-demand video situation in an airplane where
new flows could arise and old ones stop based on the viewing
patterns of passengers.

Current safety-critical systems often have separate networks
(hardware and software) for each of the aforementioned
types of flows (for safety and sometimes security reasons).
This leads to significant overheads (equipment, management,
weight, etc.) and also potential for errors/faults and even
increased attack surface and vectors. Existing systems, e.g.,
avionics full-duplex switched Ethernet (AFDX) [8], [13], [24],
controller area network (CAN) [20], etc. that are in use in
many of these domains are either proprietary, complex, expen-
sive and might even require custom hardware. Despite the fact
that AFDX switches ensure timing determinism, packets trans-
mitted on such switches may be changed frequently at run-
time when sharing resources (e.g., bandwidth) among different
networks [28]. In such situations, a dynamic configuration
is required to route packets based on switch workloads and
flow delays to meet all the high priority Quality of Service
(QoS) requirements (e.g., end-to-end delay). In addition AFDX
protocols require custom hardware [15].

In this paper we present mechanisms to guarantee end-
to-end delays for high-criticality flows (Class I) on networks
constructed using SDN switches. The advantage of using SDN
is that it provides a centralized mechanism for developing and
managing the system. The global view is useful in providing
the end-to-end guarantees that are required. Another advantage
is that the hardware/software resources needed to implement
all of the above types of traffic can be reduced since we can use
the same network infrastructure (instead of separate ones as is
the case currently). On the other hand, the current standards
used in traditional SDN (OpenFlow [29], [35]) generally do
not support end-to-end delay guarantees or even existing
real-time networking protocols such as AFDX. Retrofitting

1

ar
X

iv
:1

70
3.

01
64

1v
2

 [
cs

.N
I]

 3
 M

ay
 2

01
7

OpenFlow into AFDX is not straightforward and is generally
less effective [18].

A number of issues arise while developing a software-
defined networking infrastructure for use in real-time systems.
For instance, Class I flows need to meet their timing (e.g.,
end-to-end delay) requirements for the real-time system to
function correctly. Hence, we need to find a path through the
network, along with necessary resources, that will meet these
guarantees. However, current SDN implementations reason
about resources like bandwidth instead of delays. Hence, we
must find a way to extend the SDN infrastructure to reason
about delays for use in RTS. Further, in contrast to traditional
SDNs, it is not necessary to find the shortest path through the
network. Oftentimes, Class I flows can arrive just in time [31],
[33], i.e., just before their deadline – there is no real advantage
in getting them to their destinations well ahead of time. Thus,
path layout for real-time SDN is a non-trivial problem since,
(i) we need to understand the delay(s) caused by individual
nodes (e.g., switches) on a Class I flow and (ii) compose them
along the delays/problems caused by the presence of other
flows in that node as well as the network in general.

In this work2 we consider Class I (i.e., high-criticality)
flows and develop a scheme to meet their timing constraints3.
We evaluate the effectiveness of the proposed approach with
various custom topology and UDP traffic (Section VII). The
main contributions of this work are summarized as follows:

1) We developed mechanisms to guarantee timing con-
straints for traffic in hard real-time systems based on
COTS SDN hardware (Sections III, IV and V).

2) We illustrate the requirements for isolating flows into
different queues to provide stable quality of experience
in terms of end-to-end delays (Section III-A) even in the
presence of other types of traffic in the system.

II. BACKGROUND

1) The Software Defined Networking Model: In traditional
networking architectures, control and data planes coexist on
network devices. SDN architectures simplify access the system
by logically centralizing the control-plane state in a controller
(see Figure 1). This programmable and centralized state then
drives the network devices that perform homogeneous for-
warding plane functions [12] and can be modified to control
the behavior of the SDN in a flexible manner.

In order to construct a logically centralized state of the SDN
system, the controller uses management ports to gauge the
current topology and gather data-plane state from each switch.
This state is then made available through a northbound API to
be used by the applications. An application (e.g., our prototype
proposed in this paper) uses this API to obtain a snapshot of
the SDN state. This state also includes the network topology.

2A preliminarily version of the work is under submission to the 2017 RTN
workshop that does not have published proceedings. In this paper we extend
the workshop version with more comprehensive experiments (Section VII)
and evaluation on actual hardware switches (Section III-A).

3We will work on integrating other types of traffic in future work.

Fig. 1. An SDN with a six switch topology. Each switch also connects to the
controller via a management port (not shown). The QoS Synthesis module
(Section VI) synthesizes flow rules by using the northbound API.

2) The Switch: An SDN switch consists of table processing
pipeline and a collection of physical ports. Packets arrive at
one of the ports and they are processed by the pipeline made
up of one or more flow tables. Each flow table contains flow
rules ordered by their priority. Each flow rule represents an
atomic unit of decision-making in the control-plane. During
the processing of a single packet, actions (e.g., decision-
making entities) can modify the packet, forward it out of the
switch or drop it.

When a packet arrives at a switch, it is compared with flow
rules in one or more flow table pipelines. In a given table, the
contents of the packet header are compared with the flow rules
in decreasing order of rule priority. When a matching flow rule
is found, the packet is assigned a set of actions specified by the
flow rule to be applied at the end of table processing pipeline.
Each flow rule comprises of two parts:

• Match: is set of packet header field values that a given
flow rule applies to. Some are characterized by single
values (e.g., VLAN ID: 1, or TCP Destination Port:
80), others by a range (e.g., Destination IP Addresses:
10.0.0.0/8). If a packet header field is not specified then
it is considered to be a wild card.

• Instructions Set: is a set of actions applied by the flow
rule to a matching packet. The actions can specify the
egress port (OutputPort) for packets matching the rule.
Furthermore, in order to make the appropriate allocation
of bandwidth for the matching packets, the OpenFlow
[35] specification provides two mechanisms:
– Queue References: Every OpenFlow switch is capable

of providing isolation to traffic from other flows by
enqueuing them on separate queues on the egress port.
Each queue has an associated QoS configuration that
includes, most importantly, the service rate for traffic
that is enqueued in it. The OpenFlow standard itself
does not provide mechanisms to configure queues,
however, each flow rule can refer to a specific queue
number for a port, besides the OutputPort.

– Meters: Beyond the isolation provided by using
queues, OpenFlow switches are also capable of limiting
the rate of traffic in a given network flow by using
objects called meters. The meters on a switch are stored
in a meter table and can be added/deleted by using

2

messages specified in OpenFlow specification. Each
meter has an associated metering rate. Each flow rule
can refer to only a single meter.

III. SYSTEM MODEL

Consider an SDN topology (N) with open flow switches
and controller and a set hrof real-time flows (F) with specified
delay and bandwidth guarantee requirements. The problem is
to find paths for the flows (through the topology) such that the
flow requirements (i.e., end-to-end delays) can be guaranteed
for the maximum number of critical flows. We model the
network as an undirected graph N(V,E) where V is the set of
nodes, each representing a switch port in a given network and
E is set of the edges4, each representing a possible path for
packets to go from one switch port to another. Each port v ∈ V
has a set of queues vq associated with it, where each queue
is assigned a fraction of bandwidth on the edge connected to
that port.

Consider a set F of unidirectional, real-time flows that
require delay and bandwidth guarantees. The flow fk ∈ F
is given by a four-tuple (sk, tk, Dk, Bk), where sk ∈ V and
tk ∈ V are ports (the source and destination respectively)
in the graph, Dk is the maximum delay that the flow can
tolerate and Bk is the maximum required bandwidth by the
flow. We assume that flow priorities are distinct and the flows
are prioritized based on a “delay-monotonic” scheme viz.,
the end-to-end delay budget represents higher priority (i.e.,
pri(fi) > pri(fj) if Di < Dj , ∀fi, fj ∈ F where pri(fk)
represents priority of fk).

For a flow to go from the source port sk to a destination
port tk, it needs to traverse a sequence of edges, i.e., a flow
path Pk. The problem then, is to synthesize flow rules that
use queues at each edge (u, v) ∈ Pk that can handle all
flows F in the given system while still meeting each flow’s
requirement. If dfk(u, v) and bfk(u, v) is the delay faced by
the flow and bandwidth assigned to the flow at each edge
(u, v) ∈ E respectively, then ∀fk ∈ F and ∀(u, v) ∈ Pk the
following constraints need to be satisfied:

∑
(u,v)∈Pk

dfk(u, v) ≤ Dk, ∀fk ∈ F (1)

bfk(u, v) ≥ Bk, ∀(u, v) ∈ Pk,∀fk ∈ F. (2)

This problem needs to be solved at two levels:
• Level 1: Finding the path layout for each flow such that it

satisfies the flows’ delay and bandwidth constraints. We
formulate this problem as a multi-constrained path (MCP)
problem and describe the solution in Sections IV and V.

• Level 2: Mapping the path layouts from Level 1 on to
the network topology by using the mechanisms available
in OpenFlow. We describe details of our approach in
Section VI.

In addition to the aforementioned delay and bandwidth
constraints (see Eqs. (1) and (2)), we need to map flows

4We use the terms edge and link interchangeably throughput the paper.

assigned to a port to the queues at the port. Two possible
approaches are: (a) allocate each flow to an individual queue
or (b) multiplex flows onto a smaller set of queues and dispatch
the packets based on priority. In fact, as we illustrate in the
following section, the queuing approach used will impact the
delays faced by the flows at each link. Our intuition is that the
end-to-end delays are lower and more stable when separate
queues are provided to each critical flow – especially as the
rates for the flows get closer to their maximum assigned rates.
Given the deterministic nature of many RTS, the number of
critical flows are often limited and well defined (e.g., known at
design time). Hence, such over-provisioning is an acceptable
design choice – from computing power to network resources
(for instance one queue per critical real time flow). We carried
out some experiments to demonstrate this (and to highlight the
differences between these two strategies) – this is outlined in
the following section.

A. Queue Assignment Strategies

We intend to synthesize configurations for Class I traffic
such that it ensures complete isolation of packets for each
designated class I flow.

In order to test how using output queues can provide
isolation to flows in a network so that each can meet its delay
and bandwidth requirements simultaneously, we performed
experiments using OpenFlow enabled hardware switches5. The
experiments use a simple topology that contains two white box
Pica8 P-3297 [4] switches (s1, s2) connected via a single link
as shown in Figure 2(a). Each switch has two hosts connected
to it. Each host is a Raspberry Pi 3 Model B [6] running
Raspbian Linux.

We configured flow rules and queues in the switches to
enable connectivity among hosts at one switch with the hosts
at other switch. We experimented with two ways to queue the
packets as they cross the switch-to-switch link: (i) in one case,
we queue packets belonging to the two flows separately in two
queues (i.e., each flow gets its own queue), each configured
at a maximum rate of 50 Mbps (ii) in the second case, we
queue packets from both flows in the same queue configured
at a maximum rate of 100 Mbps.

After configuring the flow rules and queues, we used
netperf [3] to generate following packet flows: the first
starting at the host h1s1 destined to host h1s2 and the
second starting at host h2s1 with a destination host h2s2.
Both flows are identical and are triggered simultaneously to
last for 15 seconds. We changed the rate at which the traffic is
sent across both flows to measure the average per-packet delay.
Figure 2(b) plots the average value and standard error over 30
iterations. The x-axis indicates the rate at which the traffic is
sent via netperf, while the y-axis shows the average per-
packet delay. The following key observations stand out:

1) The per-packet average delay increases in both cases as
traffic send rate approaches the configured rate of 50

5We also conduct similar experiments with software simulations (e.g., by
using Mininet [25] topology) and observe similar trends (see Appendix B).

3

(a)

40 42 44 46 48 50
Flow Rate (Mbps)

80

90

100

110

120

M
ea

n
De

la
y

(u
s)

Different output queue Same output queue

(b)
Fig. 2. Delay measurement experiments: (a) The two-switch, four host topology used in the experiments with the active flows. (b) The measured mean and
99th percentile per-packet delay for the packets in the active flows in 30 iterations.

Mbps. This is an expected queue-theoretic outcome and
motivates the need for slack allocations for all applica-
tions in general. For example, if an application requires
a bandwidth guarantee of 1 Mbps, it should be allocated
1.1 Mbps for minimizing jitter.

2) The case with separate queues experiences lower average
per-packet delay when flow rates approach the maximum
rates. This indicates that when more than one flow uses
the same queue, there is interference caused by both flows
to each other. This becomes a source of unpredictability
and eventually may cause the end-to-end delay guarantees
for the flows to be not met or perturbed significantly.

Thus, isolating flows using separate queues results in lower
and more stable delays especially when traffic rate in the
flow approaches the configured maximum rates. The maximum
delay along a single link can be measured. Such measurements
can then be used as input to a path allocation algorithm that
we describe in the following section.

IV. PATH LAYOUT: OVERVIEW AND SOLUTION

We now present a more detailed version of the problem
(composing paths that meet end-to-end delay constraints for
critical real-time flows) and also an overview of our solution.

Problem Overview: Let Pk be the path from sk to tk for
flow fk that needs to be determined. Let D(u, v) be the delay
incurred on the edge (u, v) ∈ E. The total delay for fk over
the path Pk is given by

Dk(Pk) =
∑

(u,v)∈Pk

D(u, v). (3)

Therefore we define the following constraint on end-to-end
delay for the flow fk as

Dk(Pk) ≤ Dk. (4)

Note that the end-to-end delay for a flow over a path has
following delay components: (a) processing time of a packet
at a switch, (b) propagation on the physical link, (c) trans-
mission of packet over a physical link, and (d) queuing at the
ingress/egress port of a switch. As discussed in the Section III,
we use separate queues for each flow with assigned required

rates. We also overprovision the bandwidth for such flows
so that critical real-time flows do not experience queueing
delays. Hence, we consider queuing delays to be negligible.
We discuss how to obtain the values of other components of
delay in Appendix A.

The second constraint that we consider in this work is
bandwidth utilization, that for an edge (u, v) for a flow fk,
can be defined as:

Bk(u, v) =
Bk

Be(u, v)
(5)

where Bk is the bandwidth requirement of fk and Be(u, v) is
total bandwidth of an edge (u, v) ∈ E. Therefore, bandwidth
utilization over a path (Pk), for a flow fk is defined as:

Bk(Pk) =
∑

(u,v)∈Pk

Bk(u, v). (6)

Note that the bandwidth utilization over a path Pk for flow fk
is bounded by

Bk(Pk) ≤ max
(u,v)∈E

Bk(u, v)|V |. (7)

where |V | is the cardinality of a set of nodes (ports) in the
topology N . Therefore in order to ensure that the bandwidth
requirement Bk of the flow fk is guaranteed, it suffices to
consider the following constraint on bandwidth utilization

Bk(Pk) ≤ B̂k (8)

where B̂k = max
(u,v)∈E

Bk(u, v)|V |

Remark 1. The selection of an optimal path for each flow
fk ∈ F subject to delay and bandwidth constraints in Eq. (4)
and (8), respectively can be formalized as a multi-constrained
path (MCP) problem that is known to NP-complete [21].

Therefore we extend a polynomial-time heuristic similar to
that presented in literature [14]. The key idea is to relax one
constraint (e.g., delay or bandwidth) at a time and try to obtain
a solution. If the original MCP problem has a solution, one of
the relaxed versions of the problem will also have a solution
[14]. In what follows, we briefly describe the polynomial-time
solution for the path layout problem.

4

Polynomial-time Solution to the Path Layout Problem: Let
us represent the delay and bandwidth constraint as follows

D̃k(u, v) =

⌈
Xk ·D(u, v)

Dk

⌉
(9)

B̃k(u, v) =

⌈
Xk ·Bk(u, v)

B̂k

⌉
(10)

where Xk is a given positive integer. For instance, if we relax
the bandwidth constraint (e.g., represent Bk(Pk) in terms of
B̃k(Pk) =

∑
(u,v)∈Pk

B̃k(u, v)), Eq. (8) can be rewritten as

B̃k(Pk) ≤ Xk. (11)

Besides, the solution to this relaxed problem will also be a
solution to the original MCP [14]. Likewise, if we relax the
delay constraint, Eq. (4) can be rewritten as

D̃k(Pk) =
∑

(u,v)∈Pk

D̃k(u, v) ≤ Xk. (12)

Let the variable dk[v, i] preserve an estimate of the path
from sk to tk for ∀v ∈ V , i ∈ Z+ (refer to Algorithm 1).
There exists a solution (e.g., a path Pk from sk to tk) if any of
the two conditions is satisfied when the original MCP problem
is solved by the heuristic.
• When the bandwidth constraint is relaxed: The delay and

(relaxed) bandwidth constraints, e.g., Dk(Pk) ≤ Dk and
B̃k(Pk) ≤ Xk are satisfied if and only if

dk[t, i] ≤ Dk, ∃i ∈ [0, Xk] ∧ i ∈ Z.

• When the delay constraint is relaxed: The (relaxed)
delay and bandwidth constraints, e.g., D̃k(Pk) =∑

(u,v)∈Pk
D̃k(u, v) ≤ Xk and Bk(Pk) ≤ B̂k are

satisfied if and only if

dk[t, i] ≤ Xk, ∃i ∈ [0, B̂k] ∧ i ∈ Z.

V. ALGORITHM DEVELOPMENT

A. Path Layout

Our proposed approach is based on a polynomial-time
solution to the MCP problem presented in literature [14].
Let us consider MCP HEURISTIC(N, s, t,W1,W2, C1, C2), an
instance of polynomial-time heuristic solution to the MCP
problem that finds a path P from s to t in any network N ,
satisfying constraints W1(P) ≤ C1 and W2(P) ≤ C2.

The heuristic solution of MCP problem, as summarized in
Algorithm 1 works as follows. Let

∆(v, i) = min
P∈P (v,i)

W1(P) (13)

where P (v, i) = {P |W2(P) = i,P is any path from s to t}
is the smallest W1(P) of those paths from s to v for which
W2(P) = C2. For each node v ∈ V and each integer
i ∈ [0, · · · , C2] we maintain a variable d[v, i] that keeps an
estimation of the smallest W1(P). The variable initialized to
+∞ (Line 3), which is always greater than or equal to δ(v, i).
As the algorithm executes, it makes better estimation and
eventually reaches ∆(v, i) (Line 8-15). Line 3-17 in Algorithm

1 is similar to the single-cost path selection approach presented
in earlier work [14, Sec. 2.2] and for the purposes of this work,
we have extended the previous approach for our formulation.

We store the path in the variable π[v, i],∀v ∈ V,∀i ∈
[0, · · · , C2]. When the algorithm finishes the search for path
(Line 17), there will be a solution if and only if the following
condition is satisfied [14]

∃i ∈ [0, · · · , C2], d[t, i] ≤ C1. (14)

If it is not possible to find any path (e.g., the condition in
Eq. (14) is not satisfied), the algorithm returns False (Line
41). If there exists a solution (Line 19), we extract the path
by backtracking (Line 21-29). Notice that the variable π[v, i]
keeps the immediate preceding node of v on the path (Line
13). Therefore, the path can be recovered by tracking π starting
from destination t through all immediate nodes until reaching
the source s. Based on this MCP abstraction, we developed
a path selection scheme considering delay and bandwidth
constraints (Algorithm 2) that works as follows.

For each flow fk ∈ F , starting with highest (e.g.,
the flow with tighter delay requirement) to lowest pri-
ority, we first keep the delay constraint unmodified and
relax the bandwidth constraint by using Eq. (10) and
solve MCP HEURISTIC(N, sk, tk,Dk, B̃k, Dk, Xk) (Line 3)
using Algorithm 1. If there exists a solution, the cor-
responding path Pk is assigned for fk (Line 6). How-
ever, if relaxing bandwidth constraint is unable to return
a path, we further relax delay constraint by using Eq.
(9), keeping bandwidth constraint unmodified and solve
MCP HEURISTIC(N, sk, tk, D̃k,Bk, Xk, B̂k) (Line 9). If the
path is not found after both relaxation steps, the algorithm
returns False (Line 14) since it is not possible to assign a
path for fk such that both delay and bandwidth constraints are
satisfied. Note that the heuristic solution of the MCP depends
of the parameter Xk. From our experiments we find that if
there exists a solution, the algorithm is able to find a path as
long as Xk ≥ 10.

B. Complexity Analysis

Note that Line 8 in Algorithm 1 is executed at most
(C2 + 1)(V − 1)E times. Besides, if there exists a path, the
worst-case complexity to extract the path is |P|C2. Therefore,
time complexity of Algorithm 1 is O(C2(V E + |P|)) =
O(C2V E). Hence the worst-case complexity (e.g., when both
of the constraints need to be relaxed) to execute Algorithm 2
for each flow fk ∈ F is O((Xk + B̂k)V E).

VI. IMPLEMENTATION

We implement our prototype as an application that uses
the northbound API for the Ryu controller [7]. The prototype
application accepts the specification of flows in the SDN.
The flow specification contains the classification, bandwidth
requirement and delay budget of each individual flow. In order
for a given flow fk to be realized in the network, the control-
plane state of the SDN needs to be modified. The control-
plane needs to route traffic along the path calculated for each

5

Algorithm 1 Multi-constraint Path Selection
Input: The network N(V,E), source s, destination t, constraints on links

W1 = [w1(u, v)]∀(u,v)∈E and W2 = [w2(u, v)]∀(u,v)∈E , and the
bounds on the constraints C1 ∈ R+ and C2 ∈ R+ for the path from s
to t.

Output: The path P∗ if there exists a solution (e.g., W1(P∗) ≤ C1 and
W2(P∗) ≤ C2), or False otherwise.

1: function MCP HEURISTIC(N, s, t,W1,W2, C1, C2)
2: /* Initialize local variables */
3: d[v, i] :=∞, π[v, i] := NULL, ∀v ∈ V , ∀i ∈ [0, C2] ∧ i ∈ Z
4: d[s, i] := 0 ∀i ∈ [0, C2] ∧ i ∈ Z
5: /* Estimate path */
6: for i ∈ |V | − 1 do
7: for each j ∈ [0, C2] ∧ j ∈ Z do
8: for each edge (u, v) ∈ E do
9: j′ := j + w2(u, v)

10: if j′ ≤ C2 and d[v, j′] > d[u, j] + w1(u, v) then
11: /* Update estimation */
12: d[v, j′] := d[u, j] + w1(u, v)
13: π[v, j′] := u /* Store the possible path */
14: end if
15: end for
16: end for
17: end for
18: /* Check for solution */
19: if d[t, i] ≤ C1 for ∃i ∈ [0, C2] ∧ i ∈ Z then
20: /* Solution found, obtain the path by backtracking */
21: P := Ø, done := False, currentNode := t
22: /* Find the path from t to s */
23: while not done do
24: for each j ∈ [0, C2] ∧ j ∈ Z do
25: if π[currentNode, j] not NULL then
26: add currentNode to P
27: if currentNode = s then
28: done := True /* Backtracking complete */
29: break
30: end if
31: /* Search for preceding hop */
32: currentNode := π[currentNode, j]
33: break
34: end if
35: end for
36: end while
37: /* Reverse the list to obtain a path from s to t */
38: P∗ := reverse(P)
39: return P∗
40: else
41: return False /* No Path found that satisfies C1 and C2 */
42: end if
43: end function

fk as described in Section V. In this section, we describe
how this is accomplished by decomposing the network-wide
state modifications into a set of smaller control actions (called
Intents) that occur at each switch.

A. Forwarding Intent Abstraction

An intent represents the actions performed on a given
packet at each individual switch. Each flow fk is decomposed
into a set of intents as shown in Figure 3. The number of
intents that are required to express actions that the network
needs to perform (for packets in a flow) is the same as the
number of switches on the flow path. Each intent is a tuple
given by (Match, InputPort,OutputPort,Rate). Here, Match
defines the set of packets that the intent applies to, InputPort
and OutputPort are where the packet arrives and leaves the
switch and finally, the Rate is intended data rate for the packets

Algorithm 2 Layout Path Considering Delay and Bandwidth
Constraints
Input: The network N(V,E), set of flows F , delay and bandwidth uti-

lization constraints on links Dk = [Dk(u, v)]∀(u,v)∈E , D̃k =

[D̃k(u, v)]∀(u,v)∈E and Bk = [Bk(u, v)]∀(u,v)∈E , B̃k =

[B̃k(u, v)]∀(u,v)∈E , for each flow fk ∈ F , respectively, and the delay
and bandwidth bounds Dk ∈ R+ and B̂k ∈ R+, respectively, and
positive constant Xk ∈ Z, ∀fk ∈ F .

Output: The path vector P = [Pk]∀fk∈F where Pk is the path if the delay
and bandwidth constraints (e.g., Dk(Pk) ≤ Dk and Bk(Pk) ≤ B̂k)
are satisfied for fk , or False otherwise.

1: for each fk ∈ F (starting from higher to lower priority) do
2: /* Relax bandwidth constraint and solve */
3: Solve MCP HEURISTIC(N, sk, tk,Dk, B̃k, Dk, Xk) by using Algo-

rithm 1
4: if SolutionFound then /* Path found for fk */
5: /* Add path to the path vector P */
6: Pk := P∗ where P∗ is the solution obtained by Algorithm 1
7: else
8: /* Relax delay constraint and try to obtain the path */
9: Solve MCP HEURISTIC(N, sk, tk, D̃k,Bk, Xk, B̂k) by using

Algorithm 1
10: if SolutionFound then
11: /* Path found by relaxing delay constraint */
12: Pk := P∗ /* Add path to the path vector */
13: /* Update remaining available bandwidth */
14: Be(u, v) := Be(u, v)−Bk, ∀(u, v) ∈ Pk

15: else
16: Pk := False /* Unable to find any path for fk */
17: end if
18: end if
19: end for

Fig. 3. Illustration of decomposition of a flow fk into a set of intents: fk
here is a flow from the source host h1 to the host h2 carrying mission-critical
DNP3 packets with destination TCP port set to 20, 000. In this example, each
switch that fk traverses has exactly two ports.

matching the intent. In our implemented mechanism for laying
down flow paths, each intent translates into a single OpenFlow
[35] flow rule that is installed on the corresponding switch in
the flow path.

B. Bandwidth Allocation for Intents

In order to guarantee bandwidth allocation for a given flow
fk, each one of its intents (at each switch) in the path need to
allocate the same amount of bandwidth. As described above,
each intent maps to a flow rule and the flow rule can refer to a
meter, queue or both. However, meters and queues are precious
resources and not all switch implementations provide both of
them. As mentioned earlier (Section III), we use the strategy

6

of one queue per flow that guarantees better isolation among
flows and results in stable delays.

C. Intent Realization

Each intent is realized by installing a corresponding flow
rule by using the northbound API of the Ryu controller.
Besides using the intent’s Match and OutputPort, these flow
rules refer to corresponding queue and/or meter. If the meters
are used, then they are also synthesized by using the controller
API. However, OpenFlow does not support installation of
queues in its controller-switch communication protocol, hence
the queues are installed separately by interfacing directly with
the switches by using a switch API or command line interface.

VII. EVALUATION

In this section, we evaluate our proposed solutions using the
following methods: (a) an exploration of the design space/per-
formance of the path layout algorithm in Section VII-A, and
(b) an empirical evaluation, using Mininet, that demonstrates
the effectiveness of our end-to-end delay guaranteeing mech-
anisms even in the presence of other traffic in the network
(Section VII-B). The parameters used in the experiments are
summarized in Table I.

TABLE I
EXPERIMENTAL PLATFORM AND PARAMETERS

Artifact/Parameter Values

Number of switches 5
Bandwidth of links 10 Mbps
Link delay [25, 125] µs
Bandwidth requirement of a flow [1, 5] Mbps
SDN controller Ryu 4.7
Switch configuration Open vSwitch 2.3.0
Network topology Synthetic/Mininet 2.2.1
OS Debian, kernel 3.13.0-100

A. Performance of the Path Layout Algorithms

Topology Setup and Parameters: In the first set of ex-
periments we explore the design space (e.g., feasible delay
requirements) with randomly generated network topologies
and synthetic flows. For each of the experiments we randomly
generate a graph with 5 switches and create fk ∈ [2, 20]
flows. Each switch has 2 hosts connected to it. We assume
that the bandwidth of each of the links (u, v) ∈ E is 10 Mbps
(e.g., IEEE 802.3t standard [9]). The link delays are randomly
generated within [25, 125] µs (refer to Appendix A for the
calculation of link delay parameters). For each randomly-
generated topology, we consider the bandwidth requirement
as Bk ∈ [1, 5] Mbps, ∀fk.

Results: We say that a given network topology with set of
flows is schedulable if all the real-time flows in the network
can meet the delay and bandwidth requirements. We use the
acceptance ratio metric (z-axis in Fig. 4) to evaluate the
schedulability of the flows. The acceptance ratio is defined as
the number of accepted topologies (e.g., the flows that satisfied
bandwidth and delay constraints) over the total number of

Delay Requirement (µ
s)

0
200

400
600

800
1000

Number of Flows
234567891011121314151617181920

A
cce

p
ta

n
ce

 R
a
tio

 (%
)

0

20

40

60

80

100

Fig. 4. Schedulability of the flows in different network topology. For each of
the (delay-requirement, number-of-flows) pair (e.g., x-axis and y-axis of the
figure), we randomly generate 250 different topology. In other words, total 8
× 7 × 250 = 14,000 different topology were tested in the experiments.

generated ones. To observe the impact of delay budgets in
different network topologies, we consider the end-to-end delay
requirement Dk, ∀fk ∈ F as a function of the topology.
In particular, for each randomly generated network topology
Gi we set the minimum delay requirement for the highest
priority flow as Dmin = βδi µs, and increment it by Dmin

10
for each of the remaining flows. Here δi is the diameter (e.g.,
maximum eccentricity of any vertex) of the graph Gi in the
i-th spatial realization of the network topology, β = Dmin

δi
and Dmin represents x-axis values of Fig. 46. For each (delay-
requirement, number-of-flows) pair, we randomly generate 250
different topologies and measure the acceptance ratios. As
Fig. 4 shows, stricter delay requirements (e.g., less than 300
µs for a set of 20 flows) limit the schedulability (e.g., only
60% of the topology is schedulable). Increasing the number
of flows limits the available resources (e.g., bandwidth) and
thus the algorithm is unable to find a path that satisfies the
delay requirements of all the flows.

B. Experiment with Mininet Topology: Demonstrating that the
End-to-End Delay Mechanisms Work

Experimental Setup: The purpose of the experiment is to
evaluate whether our controller rules and queue configurations
can provide isolation guarantees so that the real-time flows can
meet their delay requirement in a practical setup. We evaluate
the performance of the proposed scheme using Mininet [25]
(version 2.2.1) where switches are configured using Open
vSwitch [5] (version 2.3.0). We use Ryu [7] (version 4.7) as
our SDN controller. For each of the experiments we randomly
generate a Mininet topology using the parameters described
in Table I. We develop flow rules in the queues to enable
connectivity among hosts in different switches. The packets
belonging to the real-time flows are queued separately in
individual queues and each of the queues are configured at
a maximum rate of Bk ∈ [1, 5] Mbps. If the host exceeds the

6Remember our “delay-monotonic” priority assignment where flows with
lower end-to-end delays have higher priority.

7

configured maximum rate of Bk, our ingress policing throttles
the traffic before it enters the switch7.

To measure the effectiveness of our prototype with mixed
(e.g., real-time and non-critical) flows, we enable [1,3] non-
critical flows in the network. All of the low-criticality flows
use a separate, single queue and are served in a FIFO manner
– it is the “default” queue in OVS. Since many commercial
switches (e.g., Pica8 P-3297, HPE FlexFabric 12900E, etc.)
supports up to 8 queues, in our Mininet experiments we limit
the maximum number of real-time flows to 7 (each uses a
separate queue) and use the remaining 8th queue for non-
critical flows. Our flow rules isolate the non-critical flows from
real-time flows. All the experiments are performed in an Intel
Xeon 2.40 GHz CPU and Linux kernel version 3.13.0-100.

We use netperf (version 2.7.0) [3] to generate the UDP
traffic8 between the source and destination for any flow fk.
Once the flow rules and queues are configured, we triggered
packets starting at the source sk destined to host tk for each
of the flows fk. The packets are sent at a burst of 5 with 1 ms
inter burst time. All packet flows are triggered simultaneously
and last for 10 seconds.

We assume flows are indexed based on priority, i.e., D1 <
D2 < · · · < D|F | and randomly generate 25 different network
topologies. We set D1 = 100δi µs and increment with 10
for each of the flow fk ∈ F, k > 1 where δi is the diameter
of the graph Gi in the i-th spatial realization of the network
topology. For each topology, we randomly generate the traffic
with required bandwidth Bk ∈ [1, 5] Mbps and send packets
between source (sk) and destination (tk) hosts for 5 times
(each transmission lasts for 10 seconds) and log the worst-
case round-trip delay experienced by any flow.

Experience and Evaluation: In Fig. 5 we observe the impact
of number of flows on the delay. Experimental results are
illustrated for the schedulable flows (viz., the set of flows for
which both delay and bandwidth constraints are satisfied).

The y-axis of Fig. 5 represents the empirical CDF of
average/99th percentile (Fig. 5(a)) and worst-case (Fig. 5(b))
round-trip delay experienced by any flow. The empirical CDF
is defined as Gα() = 1

α

∑α
i=1 I[ζi≤], where α is the total

number of experimental observations, ζi round-trip delay the i-
th experimental observation, and  represents the x-axis values
(viz., round-trip delay) in Fig. 5. The indicator function I[·]
outputs 1 if the condition [·] is satisfied and 0 otherwise.

From our experiments we find that, the non-critical flows
do not affect the delay experienced by the real-time flows and
the average as well as the 99th percentile delay experienced
by the real-time flows always meet their delay requirements.
This is because our flow rules and queue configurations isolate
the real-time flows from the non-critical traffic to ensure that
the end-to-end delay requirements are satisfied. We define the
expected delay bound as the expected delay if the packets are
routed through the diameter (i.e., the greatest distance between
any pair of hosts) of the topology and given by Di(u, v)× δi

7In real systems, the bandwidths allocation would be overprovisioned (as
mentioned earlier), our evaluation takes a conservative approach.

8Remember that most hard real-time systems use UDP traffic [15], [30].

0 5 10 15 20 25 30 35 40

End-to-End Delay (µs)

0.0

0.2

0.4

0.6

0.8

1.0

E
m

p
ir

ic
a
l
C

D
F

Mean Delay
99th Percentile Delay

(a)

0 200 400 600 800 1000 1200

End-to-End Delay (µs)

0.0

0.2

0.4

0.6

0.8

1.0

E
m

p
ir

ic
a
l
C

D
F

Worst-case Delay

(b)

Fig. 5. (a) The empirical CDF of: (a) average and 99th percentile, (b) worst-
case round-trip delay. We set the number of flows fk = 7 and examine 7 ×
25 × 5 packet flows (each for 10 seconds) to obtain the experimental traces.

2 3 4 5 6 7

Number of Flows

5

10

15

20

25

30

35

40
9

9
th

 P
e
rc

e
n
ti

le
 D

e
la

y
 (
µ
s)

Fig. 6. End-to-end round-trip 99th percentile delay with varying number of
flows. For each set of flow fk ∈ [2, 7], we examine fk×25×5 packet flows
(each for 10 seconds).

and bounded by [25δi, 125δi] where Di(u, v) ∈ [25, 125] is
the delay between the link (u, v) in i-th network realization.
As seen in Fig. 5(a), the average and 99th percentile round-
trip delay are significantly less than the minimum expected
round-trip delay bound (e.g., 2 × 25 × 4 = 200 µs). This also
validates the effectiveness of Algorithm 2. Besides, as seen in
Fig. 5, the worst-case delay is also less than the maximum
expected delay bound (e.g., 1000 µs) with probability 1.

In Fig. 6 we illustrate the 99th percentile round-trip delay
(represents the y-axis in the figure) with different number of
flows (x-axis). Recall that in our experimental setup we assume
at most 8 queues are available in the switches where 7 real-
time flows are assigned to each of 7 queues and the other
queue is used for [1, 3] non-critical flows. As shown in Fig.
6, increasing the number of flows slightly decreases quality
of experience (in terms of end-to-end delays). With increasing
number of packet flows the switches are simultaneously pro-
cessing forwarding rules received from the controller – hence,
it increases the round-trip delay. Recall that the packets of a
flow are sent in a bursty manner using netperf. Increasing
number of flows in the Mininet topology increases the packet

8

loss and thus causes higher delay.
For our experiments with Mininet and netperf generated

traffic, we do not observe any instance for which a set of
schedulable flow misses its deadline (i.e., packets arriving
after the passing of their end-to-end delay requirements). Thus,
based on our empirical results and the constraints provided to
the path layout algorithm, we can assert that the schedulable
real-time flows will meet their corresponding end-to-end delay
requirements.

VIII. DISCUSSION

Despite the fact that we provide an initial approach to
leverage the benefits of the SDN architecture to guarantee
guarantee end-to-end delay in safety-critical hard RTS, our
proposed scheme has some limitations and can be extended
in several directions. To start with, most hardware switches
limit the maximum number of individual queues9 that can be
allocated to flows. Our current intent realization mechanism
reserves one queue per port for each Class I flow. This leads
to depletion of available queues. Hence, we need smarter
methods to multiplex Class I flows through limited resources
and yet meet their timing requirements. Our future work will
focus on developing sophisticated schemes for ingress/egress
filtering at each RT-SDN-enabled switch. This will also help
us better identify the properties of each flow (priority, class,
delay, etc.) and then develop scheduling algorithms to meet
their requirements.

In this work we allocate separate queues for each flow
and layout paths based on the “delay-monotonic” policy.
However establishing and maintaining the flow priority is
not straightforward if the ingress policing requires to share
queues and ports in the switches. Many existing mechanisms
to enforce priority are available in software switches (e.g., the
hierarchical token buckets (HTB) in Linux networking stack).
In our experience, enabling priority on hardware switches has
proven difficult due to firmware bugs.

Finally, we do not impose any admission control policy
for the unschedulable (i.e., the flows for which the delay and
bandwidth constraints are not satisfied) flows. One approach
to enable admission control is to allow m out of k (m < k)
packets of a low-priority flow to meet the delay budget by
leveraging the concept of (m, k) scheduling [34] in traditional
RTS.

IX. RELATED WORK

There have been several efforts to study the provisioning a
network such that it meets bandwidth and/or delay constraints
for the traffic flows. Results from the network calculus (NC)
[26] framework offer a concrete way to model the various
abstract entities and their properties in a computer network.
NC-based models, on the other hand, do not prescribe any
formulation of flows that meet given delay and bandwidth
guarantees. For synthesis, the NP-complete MCP comes close
and Shingang et al. formulated a heuristic algorithm [14] for

9e.g., Pica8 P-3297 and HPE FlexFabric 12900E switches support at most
8 queues.

solving MCP. We model our delay and bandwidth constraints
based on their approach.

There are recent standardization efforts such as IEEE
802.11Qbv [19] which aim to codify best practices for provi-
sioning QoS using Ethernet. These approaches focus entirely
on meeting guarantees and do not attempt to optimize link
bandwidth. However, the global view of the network provided
by the SDN architecture allows us to optimize path layouts by
formulating it as an MCP problem.

There have been some prior attempts at provisioning SDN
with worst-case delay and bandwidth guarantees. Azodol-
molky et al. proposed a NC-based model [11] for a single SDN
switch that provides an upper bound on delays experienced
by packets as they cross through the switch. Guck et al.
used mixed integer program (MIP) based formulation [16] for
provisioning end-to-end flows with delay guarantees – they do
not provide a solution of what traffic arrival rate to allocate
for queues on individual switches for a given end-to-end flow.

A QoS-enabled management framework to allow end-to-
end communication over SDN is proposed in literature [37].
It uses flow priority and queue mechanism to obtain QoS
control to satisfy the requirement but did not demonstrate
schedulability under different constraints. A scalable routing
scheme was developed in literature [30] that re-configures
existing paths and calculates new paths based on the global
view and bandwidth guarantees. The authors also present a
priority ordering scheme to avoid contention among flows
sharing the same switch. However, the basic requirement of
the model used in that work (i.e., end-to-end delay being
less than or equal to minimum separation times between two
consecutive messages) limits applicability of their scheme for
a wide range of applications.

Avionics full-duplex switched Ethernet (AFDX) [8], [13],
[24] is a deterministic data network developed by Airbus for
safety critical applications. The switches in AFDX architecture
are interconnected using full duplex links, and static paths
with predefined flows that pass through network are set up.
Though such solutions aim to provide deterministic QoS
guarantees through static routing, reservation and isolation,
they impose several limitations on optimizing the path layouts
and on different traffic flows. There have been studies towards
evaluating the upper bound on the end-to-end delays in AFDX
networks [13]. The evaluation seems to depend on the AFDX
parameters though.

There are several protocols proposed in automotive com-
munication networks such as controller area network (CAN)
[20] and FlexRay [2]. These protocols are designed to provide
strong real-time guarantees but have limitations in how to
extend it to varied network lengths, different traffic flows and
complex network topologies. With SDN architectures and a
flexible QoS framework proposed in this paper, one could
easily configure COTS components and meet QoS guarantees
with optimized path layouts.

Heine et al. proposed a design and built a real-time mid-
dleware system, CONES (COnverged NEtworks for SCADA)
[17] that enables the communication of data/information in

9

SCADA applications over single physical integrated networks.
However, the authors did not explore the synthesis of rules
or path optimizations based on bandwidth-delay requirements
– all of which are carried out by our system. Qian et al.
implemented a hybrid EDF packet scheduler [33] for real-
time distributed systems. The authors proposed a proportional
bandwidth sharing strategy based on number of tasks on a
node and duration of these task, due to partial information of
the network. In contrast, the SDN controller has a global view
of the network, thus allowing for more flexibility to synthesize
and layouts the paths and more control on the traffic.

The problem of end-to-end delay bounding in RTS is ad-
dressed in literature [23]. The authors choose avionics systems
composed of end devices, and perform timing analysis of the
delays introduced by end points and the switches. However,
the proposed approach requires modification to the switches.
Besides the authors do not consider the bandwidth limitations,
variable number of flows and flow classifications.

There is a lot of work in the field of traditional real-time
networking (too many to enumerate here) but the focus on
SDN is what differentiates our work.

X. CONCLUSION

With the proliferation of commercial-off-the-shelf (COTS)
components, designers are exploring new ways of using them,
even in critical systems (such as RTS). Hence, there is a
need to understand the inherent trade-offs (less customization)
and advantages (lower cost, scalability, better support and
more choices) of using COTS components in the design
of such systems. In this paper, we presented mechanisms
that provide end-to-end delays for critical traffic in real-time
systems using COTS SDN switches. Hence, future RTS can
be better managed, less complex (fewer network components
to deal with) and more cost effective.

REFERENCES

[1] Calculating the propagation delay of coaxial cable. https://cdn.shopify.
com/s/files/1/0986/4308/files/Cable-Delay-FAQ.pdf. [Online].

[2] FlexRay Automotive Communication Bus Overview.
[3] The netperf homepage. http://www.netperf.org/netperf/.
[4] Pica8 datasheet. http://www.pica8.com/documents/

pica8-datasheet-48x1gbe-p3297.pdf. [Online].
[5] Production quality, multilayer open virtual switch. http://openvswitch.

org/.
[6] Raspberry Pi 3 Model B. https://www.raspberrypi.org/products/

raspberry-pi-3-model-b/.
[7] Ryu controller. http://osrg.github.io/ryu/. Accessed: 2014-11-01.
[8] ARINC Specification 664, Part 7, Aircraft Data Network, Avionics Full

Duplex Switched Ethernet (AFDX) Network. 2003.
[9] IEEE Standard for Ethernet. IEEE Std 802.3-2012 (Revision to IEEE

Std 802.3-2008), pages 1–3747, Dec 2012.
[10] A. Aydeger, K. Akkaya, M. H. Cintuglu, A. S. Uluagac, and O. Mo-

hammed. Software defined networking for resilient communications in
Smart Grid active distribution networks. In Communications (ICC), 2016
IEEE International Conference on, pages 1–6. IEEE, 2016.

[11] S. Azodolmolky, R. Nejabati, M. Pazouki, P. Wieder, R. Yahyapour, and
D. Simeonidou. An analytical model for software defined networking:
A network calculus-based approach. In Global Communications Con-
ference (GLOBECOM), 2013 IEEE, pages 1397–1402. IEEE, 2013.

[12] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. Gude, N. McKeown,
and S. Shenker. Rethinking enterprise network control. IEEE/ACM
Transactions on Networking (TON), 17(4):1270–1283, 2009.

[13] H. Charara, J. L. Scharbarg, J. Ermont, and C. Fraboul. Methods for
bounding end-to-end delays on an AFDX network. In 18th Euromicro
Conference on Real-Time Systems (ECRTS’06), pages 10 pp.–202, 2006.

[14] S. Chen and K. Nahrstedt. On finding multi-constrained paths. In
Communications, 1998. ICC 98. Conference Record. 1998 IEEE Inter-
national Conference on, volume 2, pages 874–879. IEEE, 1998.

[15] C. M. Fuchs. The evolution of avionics networks from ARINC 429 to
AFDX. Innovative Internet Technologies and Mobile Communications
(IITM), and Aerospace Networks (AN), 65, 2012.

[16] J. W. Guck and W. Kellerer. Achieving end-to-end real-time quality
of service with software defined networking. In Cloud Networking
(CloudNet), 2014 IEEE 3rd International Conference on, pages 70–76.
IEEE, 2014.

[17] E. Heine, H. Khurana, and T. Yardley. Exploring convergence for
SCADA Networks. In ISGT 2011, pages 1–8, Jan 2011.

[18] P. Heise, F. Geyer, and R. Obermaisser. Deterministic openflow:
Performance evaluation of SDN hardware for avionic networks. In
Network and Service Management (CNSM), 2015 11th International
Conference on, pages 372–377. IEEE, 2015.

[19] IEEE. Ieee 802.11qbv standard, 2015.
[20] N. Instruments. Controller Area Network (CAN) Overview.
[21] J. M. Jaffe. Algorithms for finding paths with multiple constraints.

Networks, 14(1):95–116, 1984.
[22] R. Jain and S. Paul. Network virtualization and software defined

networking for cloud computing: a survey. IEEE Communications
Magazine, 51(11):24–31, 2013.

[23] D. Jin, J. Ryu, J. Park, J. Lee, H. Shin, and K. Kang. Bounding
end-to-end delay for real-time environmental monitoring in avionic
systems. In Advanced Information Networking and Applications Work-
shops (WAINA), 2013 27th International Conference on, pages 132–137,
March 2013.

[24] I. Land and J. Elliott. Architecting arinc 664, part 7 (afdx) solutions.
XILINX, 2009.

[25] B. Lantz, B. Heller, and N. McKeown. A network in a laptop: rapid
prototyping for software-defined networks. In Proceedings of the 9th
ACM SIGCOMM Workshop on Hot Topics in Networks, page 19. ACM,
2010.

[26] J.-Y. Le Boudec and P. Thiran. Network calculus: a theory of determin-
istic queuing systems for the internet, volume 2050. Springer Science
& Business Media, 2001.

[27] D. Levin, M. Canini, S. Schmid, and A. Feldmann. Incremental sdn
deployment in enterprise networks. In ACM SIGCOMM Computer
Communication Review, volume 43, pages 473–474. ACM, 2013.

[28] Z. Li, Q. Li, L. Zhao, and H. Xiong. Openflow channel deployment
algorithm for software-defined afdx. In 2014 IEEE/AIAA 33rd Digital
Avionics Systems Conference (DASC), pages 4A6–1. IEEE, 2014.

[29] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner. Openflow: enabling innovation in
campus networks. ACM SIGCOMM Computer Communication Review,
38(2):69–74, 2008.

[30] S. Oh, J. Lee, K. Lee, and I. Shin. RT-SDN: Adaptive Routing and
Priority Ordering for Software-Defined Real-Time Networking. Tech-
nical report. https://cs.kaist.ac.kr/upload files/report/1406868936.pdf
[Online].

[31] S. Oh, J. Lee, K. Lee, and I. Shin. RT-SDN: Adaptive Routing and
Priority Ordering for Software-Defined Real-Time Networking. 2015.

[32] T. Pfeiffenberger and J. L. Du. Evaluation of software-defined network-
ing for power systems. In Intelligent Energy and Power Systems (IEPS),
2014 IEEE International Conference on, pages 181–185. IEEE, 2014.

[33] T. Qian, F. Mueller, and Y. Xin. Hybrid EDF Packet Scheduling for
Real-Time Distributed Systems. In 2015 27th Euromicro Conference on
Real-Time Systems (ECRTS), pages 37–46, July 2015.

[34] P. Ramanathan. Overload management in real-time control applications
using (m, k)-firm guarantee. IEEE Transactions on Parallel and
Distributed Systems, 10(6):549–559, 1999.

[35] O. S. Specification-Version. 1.4. 0, 2013.
[36] J. Spencer, O. Worthington, R. Hancock, and E. Hepworth. Towards

a tactical software defined network. In Military Communications and
Information Systems (ICMCIS), 2016 International Conference on, pages
1–7. IEEE, 2016.

[37] C. Xu, B. Chen, and H. Qian. Quality of service guaranteed resource
management dynamically in software defined network. Journal of
Communications, 10(11):843–850, 2015.

10

https://cdn.shopify.com/s/files/1/0986/4308/files/Cable-Delay-FAQ.pdf
https://cdn.shopify.com/s/files/1/0986/4308/files/Cable-Delay-FAQ.pdf
http://www.netperf.org/netperf/
http://www.pica8.com/documents/pica8-datasheet-48x1gbe-p3297.pdf
http://www.pica8.com/documents/pica8-datasheet-48x1gbe-p3297.pdf
http://openvswitch.org/
http://openvswitch.org/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
http://osrg.github.io/ryu/
https://cs.kaist.ac.kr/upload_files/report/1406868936.pdf

APPENDIX A
DELAY CALCULATIONS

Remember that some of the critical pieces of information
that is required for any such scheme (for ensuring end-to-end
delays) is a measure of the delays imposed by the various
components in the system. Hence, we need to obtain network
delays at each link. We use these estimated delays as the
weights of edges of the network graph in the MCP algorithm
within the experimental setup to obtain solutions. As discussed
earlier, we assume zero queuing delay. The transmission and
propagation delays are a function of the physical properties
of the network topology. However, the processing delay of
an individual switch for a single packet can be empirically
obtained. Here we describe our method to obtain upper-bounds
on each of these delay components.

Estimation of Propagation Delay

The transmission delay is calculated as packet length
bandwidth allocated . In

our experiments we assume the packet length is [25, 125] bytes
and the maximum bandwidth can be allocated allocated in a
specific link is 10 Mbps. Then transmission delay on that link
will be upper bounded by 125×8 bits

10 Mbps = 100 µs. Therefore delay
of the edge, i.e., Dk(u, v), ∀(u, v) ∈ E is upper bounded by
3.6+0.505+100 ≈ 105 µs.

Estimation of Transmission Delay

The propagation delay depends on the physical link length
and propagation speed in the medium. In the physical media,
the speed varies .59c to .77c [1] where c is speed of light in
vacuum. We assume that the length of any link in the network
to be no more that 100 m. Therefore the propagation delay is
upper bounded by 100m

0.66×3×106 = 505 ns in fiber-link media.

Estimation of Processing Delays

We experimented with a software switch, Open vSwitch
(OVS) [5] version 2.5.90 to compute the time it takes to
process a packet within its data path. Since this timing infor-
mation is platform/architecture dependent, we summarized the
hardware information of our experimental platform in Table II.

TABLE II
HARDWARE USED IN TIMING EXPERIMENTS

Artifact Info

Architecture i686
CPU op-modes 32-bit, 64-bit
Number of CPUs 4
Threads per core 2
Cores per socket 2
CPU family 6
L1d and L1i cache 32K
L2 and L3 cache 256K and 3072K, respectively

Fig. 7. Interaction of kernel timing module with the existing OVS architecture.

We modified the kernel-based OVS data path module called
openvswitch.ko to measure the time it takes for a packet
to move from an ingress port to an egress port. We used
getnstimeofday() for high-precision measurements. We
also developed a kernel module called netlinkKernel.ko
that copies the shared timing measurement data structure
between the two kernel modules and communicates it with
a user space program called netlinkUser. We disabled
scheduler preemptions in the openvswitch.ko by using
the system calls get_cpu() and put_cpu(), hence the
actual switching of the packets in the data path is not interfered
by the asynchronous communication of these measurements
by netlinkKernel.ko. We also used compilation flags to
ensure that openvswitch.ko always executes on a speci-
fied, separate, processor core of its own (with no interference
from any other processes, both from the user space or the
operating system). For fairness in the timing measurements
and stabilized output, we disabled some of the Linux back-
ground processes (e.g., SSH server, X server) and built-in
features (e.g., CPU frequency scaling). Figure 7 illustrates the
interaction between the modified kernel data path and our user
space program.

We used the setup described above with Mininet and Ryu
Controller. We evaluated the performance and behavior of
OVS data path under different flows, network typologies and
packet sizes. We executed several runs of the experiment with
UDP traffic with different packet sizes (100, 1000, 1600 bytes).
We observed that average processing time for a single packet
within the software switch lies between 3.2 µs to 4.1 µs with
average being 3.6 µs and standard deviation being 329.61 ns.
These were the values that were used in the path allocation
calculations.

APPENDIX B
QUEUE ASSIGNMENT STRATEGIES: MININET

OBSERVATIONS

We also perform experiments with a two switch, four host
topology similar that of presented in Section III-A using

11

45 46 47 48 49 50
Flow Rate (Mbps)

35

40

45

50

55

60

65

M
e
a
n
 D

e
la

y
 (

m
s)

h2s1->h2s2 Different output queue

h2s1->h2s2 Same output queue

h1s1->h1s2 Different output queue

h1s1->h1s2 Same output queue

45 46 47 48 49 50
Flow Rate (Mbps)

200

250

300

350

9
9

th
 P

e
rc

e
n
ti

le
 D

e
la

y
 (

m
s)

Fig. 8. The mean and 99th percentile per-packet delay for the packets in
the active flows in 25 iterations using a two-host four-switch (see Fig. 2(b))
Mininet topology.

Mininet. The purpose of this experiment is to observe the
performance impact on software simulations (e.g., Mininet
topologies) over the actual ones (hardware switches and ARM
hosts). As we can see in Fig. 8 the trends (e.g., isolating flows
using separate queues results in lower delays) are similar in
both Mininet and hardware experiments – albeit the latencies
are higher due to it being a software simulation and also
affected by other artifacts (e.g., the experiments are involved
in generating traffic on the same machine).

12

	I Introduction
	II Background
	II-1 The Software Defined Networking Model
	II-2 The Switch

	III System Model
	III-A Queue Assignment Strategies

	IV Path Layout: Overview and Solution
	V Algorithm Development
	V-A Path Layout
	V-B Complexity Analysis

	VI Implementation
	VI-A Forwarding Intent Abstraction
	VI-B Bandwidth Allocation for Intents
	VI-C Intent Realization

	VII Evaluation
	VII-A Performance of the Path Layout Algorithms
	VII-B Experiment with Mininet Topology: Demonstrating that the End-to-End Delay Mechanisms Work

	VIII Discussion
	IX Related Work
	X Conclusion
	References
	Appendix A: Delay Calculations
	Appendix B: Queue Assignment Strategies: Mininet Observations

