arXiv:1701.01676v1 [cs.NI] 6 Jan 2017

SD-CPS: Taming the Challenges of Cyber-Physical
Systems with a Software-Defined Approach

Pradeeban Kathiravelu
INESC-ID Lisboa / Instituto Superior Técnico
Universidade de Lisboa
Rua Alves Redol 9, Lisboa 1000-029, Portugal
Tel: (+351) 21 310 0300
Fax: (+351) 21 314 5843
pradeeban.kathiravelu @tecnico.ulisboa.pt

Abstract—Cyber-Physical Systems (CPS) revolutionize various
application domains with integration and interoperability of
networking, computing systems, and mechanical devices. Due to
its scale and variety, CPS faces a number of challenges and
opens up a few research questions in terms of management,
fault-tolerance, and scalability. We propose a software-defined
approach inspired by Software-Defined Networking (SDN), to
address the challenges for a wider CPS adoption. We thus
design a middleware architecture for the correct and resilient
operation of CPS, to manage and coordinate the interacting
devices centrally in the cyberspace whilst not sacrificing the
functionality and performance benefits inherent to a distributed
execution.

I. INTRODUCTION

While the Internet of Things (IoT) [1] motivates for a sce-
nario where there are many smart devices that are all connected
together and are accessible pervasively in the Internet, reality
is still far from this. We do have several networks of things,
where the smart devices (or the “things”) are interconnected to
form network of devices, or connected to an existing enterprise
network. However, one needs not to have the Internet of Things
literally, as it is not necessary to connect everything to the
Internet, the single unified network of networks. It is not
only unnecessary, but also counter-intuitive to have everything
connected and open beyond what is necessary, due to security
and privacy reasons.

Cyber-Physical Systems (CPS) fix the shortcomings and
limitations in the definition of IoT and similar terms, in
clearly defining the common larger ground of theories and
practice where the physical/mechanical systems intersect and
deeply intertwine with the cyber/computer systems [2]. While
sharing the core architecture with IoT [3]], CPS is defined as
a pure interdisciplinary mechanism, with applications ranging
from smart homes [4] to smart cities [S]. Though CPS is a
term that is coined relatively in recent times, there have been
research and implementation efforts on the topic even before
the inception of the term [6].

Due to the scale and variety in its implementation and
devices, CPS faces a set of challenges in design and prac-
tice [7], including: i) unpredictability of the execution envi-
ronments [8]], i1) communication and coordination within the

Luis Veiga
INESC-ID Lisboa / Instituto Superior Técnico
Universidade de Lisboa
Rua Alves Redol 9, Lisboa 1000-029, Portugal
luis.veiga@inesc-id.pt

system [9]], iii) security, distributed fault-tolerance, and recov-
ery upon system and network failures [[10], iv) decision making
in the large-scale geo-distributed execution environments, V)
modelling and designing the systems [[11]], and vi) management
and orchestration of the intelligent agents.

The challenges are imposed from both the core domains
of CPS, including networking, distributed systems, or the
physical systems involved, as well as the challenges that
manifest due to the co-existence and interdependencies of the
cyberspace and physical devices in CPS. A unified approach is
necessary to address the challenges that prevent or hinder the
seamless adoption, applicability, and reusability of the CPS
principles and constructs pervasively.

Software-Defined Networking (SDN) offers reusability and
management capabilities, among many other improvements, to
networks by separating the control layer as a unified controller,
away from the distributed network’s data forwarding elements.
There have been recent researches on leveraging SDN in the
implementation of CPS. SDN has been proposed to improve
the resilience of multinetworks in CPS [12]. SDN has been
leveraged to secure the CPS networks through SDN-assisted
emulations [[13]] and improve the resilience [14] of CPS.

We propose to tackle the current and foreseen future chal-
lenges of CPS through a middleware architecture following a
software-defined approach. We call the proposed approach for
CPS, “Software-Defined Cyber-Physical Systems (SD-CPS)”.
Designed as a middleware platform inspired by the logically
centralized control offered by the SDN controllers, SD-CPS
aims to tackle the core challenges of CPS as an architectural
enhancement.

II. AN ARCHITECTURE TO
TAME THE CHALLENGES OF CPS

This section looks into the design of the proposed SD-
CPS approach, and how it attempts to tackle the identified
core challenges of CPS [7], including modelling, incremental
building and testing, execution in a sandbox and production
environments, scalability, reusability of services through ser-
vice compositions, fault-tolerance, and resilience.

Current software-defined approaches can broadly be catego-
rized into: 1) approaches that extend or use SDN and SDN con-
trollers, and ii) approaches that follow a similar architecture
or motivation of SDN while not actually leveraging SDN as it
is. SD-CPS employs a hybrid approach: It leverages the SDN
when SDN is already a part of the deployment architecture of
the CPS; however it does not make SDN a pre-requisite, to
ensure a wider adoption.

A. SD-CPS Controller APIs

The core of SD-CPS is a controller deployment, that con-
trols the “cyber” of the CPS and centrally orchestrates the
CPS elements. SD-CPS controller consists of a deployment of
multiple SDN controllers and further software components to
manage the CPS. The control plane communicates with the
underlying network through OpenFlow and other SDN south-
bound protocol implementations, while communicating with
the devices that are non-compliant with OpenFlow through
a similar approach inspired by OpenFlow. This ensures that
while SD-CPS has SDN at its core, it is not limited to software-
defined networks with SDN switches that are still far from
widespread in IoT and CPS settings. SD-CPS devises its
APIs, adapting that of SDN [15] for the extended distributed
controller deployment for CPS. Figure [I] depicts the SD-CPS
controller along with the larger SD-CPS ecosystem.

SD-CPS Controller Northbound o> i
MOM
SES Protocols
Tenant
” Users
- x . c| |8 ¢
25 s |8 |2, = B2 [ES| | =
[£ <] = o = = <
s ® 3 c %5 = = 2 > 8 3
€ o o © as S ® S © 0 o
O E 2 n y = = ag (5= 2
Q3 3 |lo | 25 2 o5 8| | B
sEl|=||E |SE|| S Ol €% | & =
°5 e o ..E. » = é ol &8 e @S
] ° <] o L s o ©
O o = o » o S5 = s
3 2 » e c o ° -
= @ o Z s 2
£ ol F = £
3 S £
°
(7] 2 <
?j | Software-Defined Sensor Networks #q
A fa]
& a

Controller Farm: Federated SDN
Controller Deployment

SD-CPS Controller Southbound

SDN
Protocols

MOM
Protocols

Fig. 1. Controller of the “Cyber” of SD-CPS

The Northbound API communicates with the tenant appli-
cations, and takes into account the user involvement and hu-
man interaction into the CPS. It allows management of smart
devices in a tenant-aware manner respecting the tenant intents
and system policies as defined from the application layer. It
consists of typical SDN northbound protocols including REST
and Message-Oriented Middleware (MOM) [16] protocols
such as Advanced Message Queuing Protocol (AMQP) [17]
or MQTT(formerly, Message Queue Telemetry Transport) [18]]
for the tenant processes to interact with the controller. As
MOM protocols are long researched for use with networks

of wireless sensors and actuators [19], [20], extending SDN
with MOM increases its applicability, in addition to scalability.

The Southbound API controls the data plane elements
which are physical devices in addition to the regular SDN
switches. It handles the communication, coordination, and
integration of the network data plane consisting of the CPS
devices with the control plane. The southbound consists of
typical SDN southbound implementations such as OpenFlow
protocol [21] and additional light-weight protocols such as
MOM protocols for the communication with the physical
devices.

The Westbound API enables inter-control communica-
tion among the controllers in SD-CPS, as well as inter-
domain communications across multiple SD-CPS controller
deployments, through their westbound. The controller farm
provides a federated deployment of controllers in each SD-
CPS control plane consisting of multiple SDN controllers
that have protected access to the internal storage of each
other. Hence multi-domain networks can be controlled in a
centralized, yet multi-tenanted manner, i.e. without sharing the
single controller. This offers multi-tenancy and tenant isolation
in the CPS networks which typically have to share the network
for the data and control flows unlike the traditional data center
networks that can have dedicated bandwidth for each. Thus the
controller farm and the westbound API facilitate the execution
and interoperability of various entities in SD-CPS, coordinated
by SDN controllers, legacy network controllers, and the other
controllers of physical devices and cyberspace.

The Eastbound API is leveraged by the administrators to
configure and manage the controller deployment itself. By
offering a restricted access to the tenant space in the internal
data store of the controller, sensors and actuators in a sensor
network can efficiently collaborate and communicate with one
another and with the controller. This produces a Software-
Defined Sensor Network, that can control sensor networks
and heterogeneous smart devices, extending a controller farm
of SDN controllers with lightweight southbound MOM proto-
cols. Equipped with i) the global view of the system from the
SDN controller, and ii) scalability of the control plane from the
controller farm, the Software-Defined Sensor Network makes
flow and process decisions based on the tenant preferences
and system policies from the cyberspace application layer.

B. SD-CPS Core Enablers

SD-CPS architecture adheres to the functions and attributes
of CPS while not sacrificing the capabilities of CPS and
to maintain backward compatibility with existing CPS ar-
chitectures. This can be articulated in a 5C level architec-
ture [22]] in a bottom-up approach: i) Software-Defined Sensor
Networks representing the Smart Connection Level stays
the core bottom-most element in the 5C level architecture
which is responsible for plug & play of sensor networks. SD-
CPS further leverages the controller farm to offer a teather-
free communication for the network. ii) Data-to-Information
Conversion Level handles multi-dimensional data analytics.
SD-CPS Software-Defined Service Composition visualizes the

analytics as microservices and executes the multi-dimensional
data correlation as service compositions. iii) Cyber Level
supported by the SD-CPS modelling sandbox offers a twin
representation for the physical devices and their cyber coun-
terpart with identification and memory across time, offering
data mining capabilities in the cyber representation for deci-
sion making. iv) Cognition Level targets the human aspects
with modelling, simulation, and visual aspects of CPS. The
Software-Defined Simulations enable integrated visualization
and synthesis for the Cognition Level. and v) Configuration
Level offers self-configuration and adjustment for resilience,
optimization, and healing capabilities as the top-most layer of
the architecture.

1) Software-Defined Service Composition: CPS networks
share the data and control flows over the same network
bandwidth, despite the heterogeneity in data flow of various
CPS and devices. Hence in order to isolate the bandwidth
allocation, the controller farm is leveraged to offer a tenant-
aware virtual network allocation. This provides differentiated
QoS for various applications and devices sharing the net-
work. The execution is broken into sub executions to enable
parallel and independent executions. This Software-Defined
Service Composition enables executions as microservices in
the control plane. Leveraging the potential multiple alternative
execution paths that exist in the devices’ execution path and
those that are enabled by the virtual tenant network allocation,
Software-Defined Service Composition enables breaking down
complex computations into distributed service executions that
can be executed in parallel in controller and CPS devices’
firmware with differentiated priority and control.

Through a common API and an SDN-based approach,
SD-CPS Software-Defined Service Composition enables web
services to be composed through various distributed execution
paradigms such as MapReduce [23] and Dryad [24], in addi-
tion to the traditional web services engines to fit the require-
ments of the CPS. It further allows the services detection and
execution to be dynamic, to balance the load across various
services nodes. It does so by leveraging the network load
information readily available to the SDN controller, as well as
the service-level information such as requests on the fly and
the requests in the queue that are available to the web services
engine, and the services deployment information available to
the web services registry.

2) Modelling Sandbox: The SD-CPS modelling sandbox
offers modelling and orchestrating capabilities, thus using the
controller as a sandbox in modelling the complex CPS in
real world. Software-Defined Simulations bring the sim-
ulations of SDN systems close to the systems that they
model, where the system being simulated is separated from
the simulated application logic. Following a software-defined
approach, Software-Defined Simulation models and continu-
ously and iteratively designs the CPS. Thus the simulation
in cyberspace will be closer to the execution in the cyber-
physical deployment. The modelling sandbox further offers
dynamic management capabilities to heterogeneous systems
by providing a software-defined approach to orchestrate var-

ious stages of development, from simulations, emulations, to
physical deployments.

C. Resilience in SD-CPS

Ensuring resilience in CPS is a primary goal of SD-CPS.
SD-CPS attempts to leverage the global knowledge of the en-
tire CPS network to ensure that the elements of the connected
CPS are efficiently leveraged in ensuring correct and high
performance execution.

Computation power is often rare at the physical location to
perform complex computations. Hence, computation-intensive
algorithms of the physical devices is delegated to the cy-
berspace and executed as a composition of microservices,
choosing virtual execution spaces in the controller environ-
ment. The microservice-based execution avoids repeated com-
putation efforts. The data flow goes through various inter-
mediaries in a traditional workflow. The workflows can be
sent through the potential alternatives to ensure load balancing
and fair resource utilization. The availability and readiness of
redundancy in execution alternatives enables workflows to be
executed in a distributed and parallel manner when possible.

Figure 2] models a wireframe of the underlying system of
CPS with data flow between two smart devices, with multiple
potential paths. The origin and destination nodes are the start
and the end nodes of a communication caused by a distributed
computation. In a data center network, these nodes are hosts or
servers, while the intermediate nodes are traditionally switches
that connect the large underlying network. However, due to the
heterogeneous nature of CPS, origin and/or destination can
be smart mobile devices or virtual execution spaces in the
controller, while intermediate and/or destination nodes can be
surrogate nodes such as computer servers. Without sacrificing
the details, SD-CPS views this as a connected network.

Links and Nodes

L o X

- Unhealthy

O-00

- Healthy

Destination

Fig. 2. Execution as a Service Composition and Alternative Execution Paths

In addition, the path redundancy makes CPS fault-tolerant
and ready to handle unexpected failures and congestion. With
the dynamic traffic of network flows, a few service or network
nodes and links may become congested. Moreover, some
nodes may be prone to failures. SD-CPS attempts to identify
the congested, malfunctioning, or malicious nodes and links
(that are highlighted and differentiated as unhealthy in Figure 2]
for the ease of reference) through its southbound API.

When an intermediary is identified as failed or slow, SD-
CPS enforces a partial redundancy in the data flows to ensure
correctness and end-to-end delivery. SD-CPS approach creates
subflows by diverting or cloning parts of the flows, and sends
them towards a node known as the clone destination. In case
1, the clone destination is same as the original destination.

However, case 2 has a clone destination that differs from
the original. Here the cloned subflow is sent towards an
intermediate node on the original path connecting the origin
and destination. The flow is recomposed afterwards. The case
2 approach minimizes unnecessary redundancy when it is
possible to recompose the flow at the clone destination or an
intermediate node. When such a recompose of flows is impos-
sible at an intermediate node due to the technical difficulties or
due to the nature of the congestion or network failure itself, the
flow is eventually recomposed when it reaches the destination
host as in the case 1.

D. Security in SD-CPS

It is essential to secure the controller in SD-CPS for a
correct execution, as an unprotected controller will become
a vulnerability on its own. General researches on improving
the SDN security are and will be relevant and applicable here,
with further extensions for the southbound API for the CPS.

The centralized control avoids the potentials for a network
segmentation. Thus, with the global knowledge of the CPS,
the SD-CPS controller mitigates the risks of resource scarcity
or external attacks in the intermediate nodes in the under-
lying network and system. Moreover, the awareness of the
application and network enables the controller to differentiate
the quality of service (QoS) offered to the tenant applications
based on the importance or service-level agreements (SLA).

Nevertheless, distributed fault-tolerance and recovery upon
system and network failures are handled efficiently using
the controller as a centralized arbiter in the network. As
reported for the traditional networks, threats on confidentiality,
integrity, availability, and consistency are inherent to the
network, and are not introduced by SDN itself [25]. The
vulnerability in privacy due to the co-existence and shared
space of tenants, and issues in scale are caused by poor
implementation than the design of SDN. SD-CPS avoids
these through the highly available, multi-tenanted, federated
controller deployment, designed as the controller farm.

III. CURRENT PROTOTYPE

We prototyped SD-CPS with OpenDaylight [26] Beryllium
as the core SDN controller, Oracle Java 1.8.0 as the program-
ming language, and ActiveMQ 5.14.2 [27] as the message
broker of MOM protocols.

A. Modelling and Scaling CPS with SD-CPS

The scale and complexity of the CPS increase due to either
the larger number of devices and components, or their hetero-
geneity. Typically, the controller is the element with the high-
est processing power in the SD-CPS ecosystem. It manages
the communication and coordination across all the entities,
including the CPS, humans, and the tenant applications. The
federated controller deployment ensures smooth scaling and
decision making in the large-scale execution environments. As
the controller itself is multi-tenanted with protected access to
multiple domains or tenant spaces, management and orchestra-
tion of the intelligent agents and their data in the cyberspace
are handled seamlessly with scale.

Through Software-Defined Simulations, the designed sys-
tems are initially modelled as simulations that are still co-
ordinated by the centralized controller in the same way the
physical system that it models is coordinated. Hence, the
simulations function as a virtual proxy for the system that
is being designed. The systems are in practice implemented
once in simulation, and then in physical deployment, reusing
the same single effort, having controller as a unified execution
space. As the modelling sandbox functions as a controlled
modelling space of the designed CPS, unpredictability of the
execution environment is significantly reduced.

Figure [3] represents how the systems are modelled in the
sandbox environment of SD-CPS controller. The controller
farm of SD-CPS orchestrates both the physical systems and
their simulated counterparts in the cyberspace. With a one-to-
one mapping between the simulated virtual intelligent agents
and interdependent components of the physical system, the
interactions are modelled and closely monitored in the con-
trolled sandbox environment before the decisions are loaded
into the physical space.

ESandbox with modeled CPS agents :

Virtual
elligent

i model

0a Interadtions
Interactions

01

Orchest

Physical Space
| Smart Device

Controller Farm
SD-CPS Controller Cyberspace

Fig. 3. Modelling with SD-CPS Approach

The model follows the Software-Defined Simulations and
orchestration approach, and attempts to minimize the code
duplication by executing the real code from the controller,
instead of having a simulation or model running custom code
independent of the real execution. As the controller is devel-
oped in a high-level language such as Java, SD-CPS enables
deployment of custom applications as controller plugins to
alter or reprogram the behaviour of CPS. The physical system
loads the decisions from the cyberspace. A multi-tenanted
execution space ensures modelling of multiple CPS in parallel.

B. Implementation Details

SD-CPS extends and leverages our previous work as the
core enablers of the software-defined approach for CPS.
Smart Connection and Data-to-Information Conversion
Levels: CHIEF [28] designs the controller farm, a federated
deployment of SDN controllers, to manage scalable multi-
domain cloud networks. Initially designed for community net-
work clouds, CHIEF was exploited as the SD-CPS controller
farm for any large scale network composed of multiple tenants
with heterogeneous devices and access. In addition to the
network management, CHIEF offers auxiliary services such
as throttling and network monitoring through its event-based
extended SDN architecture. SD-CPS extends Mayan [29] to

offer Software-Defined Service Composition for microservices
representing the CPS executions. Cassowary [30] designs
Software-Defined Sensor Networks for smart buildings lever-
aging SDN and MOM protocols. We extend Cassowary to
facilitate a wider adoption of SDN with loose coupling to the
underlying network or SDN switches.

Cyber and Cognition Levels: SDNSim [31]] offers
Software-Defined Simulations. Built on top of SDNSim,
SENDIM [32] enables systems to be designed and deployed
seamlessly across various realizations and deployments. Orig-
inally developed for cloud and data centers, SENDIM is
extended for CPS, IoT, or any software-defined systems and
networks, as the modelling sandbox of SD-CPS.

Configuration Level: Core configuration data is stored in
the controller by exposing its persistent in-memory data store
through the REST and MOM protocol implementations of SD-
CPS northbound API. The data store of SD-CPS extends the
OpenDaylight controller data tree.

C. Feasibility Assessment

Through a few simulations and microbenchmarks, we
demonstrated that SD-CPS increases the potential scale of the
CPS. SD-CPS controller performance was increased through
the deployment of controller farm [28]]. A near-linear perfor-
mance growth with the number of controller instances up to
a maximum value followed by a near-logarithmic growth was
observed [29]. The reduced performance gain is due to idling
controllers for each service execution. Hence, the performance
gain depends on the problem size and its distribution as
services in service composition. Furthermore, the modelling
sandbox reduces the time in modelling as it offers a dual reality
of cyber-physical spaces for simulations and designs.

IV. RELATED WORK

Use cases of SDN have been steadily spanning beyond the
traditional networks, from sensor networks to smart buildings.
SDN and OpenFlow: Wireless Sensor Networks
(WSN) [33] have the requirement to be context-aware. They
need to handle a larger control traffic due to their dynamic
nature compared to data center networks, while having to share
the bandwidth among control and data traffic. Sensor Open-
Flow (SOF) [34] identifies the benefits of a Software-Defined
WSN, leveraging SDN for WSN. SOF increases manageability
of WSN and adapts to policy changes of wireless networks and
mobile devices.

Albatross [35]] discusses the challenges faced by distributed
systems, and aims to mitigate them by leveraging SDN. The
challenges such as split-brain scenarios and violations in
consistency and availability that are addressed by Albatross
are relevant for CPS too. However, while CPS is a distributed
system, it has its own peculiar challenges due to its diverse
nature in implementation and devices as we discussed earlier.

Smart Environments and CPS: Software-Defined Envi-
ronment (SDE) [36]], [37]] focuses on factors such as 1) resource
abstraction based on capability, ii) workload abstraction and

definition based on policies, goals, and, business/mission ob-
jectives, iii) workload orchestration, and iv) continuous map-
ping and optimization of workload and the available resources.
SDN controller and physical and virtual SDN switches remain
the heart of SDE. The control of compute, network, and
storage is built atop a virtualized network.

Software-Defined Buildings (SDB) [38]] envision a Building
Operating System (BOS) which functions as a sandbox envi-
ronment for various device firmwares to run as applications
atop it. The BOS spans across multiple buildings in a campus,
than confining itself to a single building. SDB and SDE archi-
tectures can be extended for CPS. However, they cannot cater
for CPS by themselves due to the variety and heterogeneity
in the architecture and requirements of CPS compared to the
environments controlled by SDB and SDE.

Software-Defined Internet of Things (SDIoT):
SDIoT [39] proposes a software-defined architecture for IoT
devices by handling the security [40], storage [41], and net-
work aspects in a software-defined approach. SDIoT proposes
an IoT controller composed of controllers of software-defined
networking, storage, security, and others. This controller op-
erates as an orchestrating middleware between the data-as-a-
service layer consists of end user applications, and the physical
layer consists of the database pool and sensor networks.

Multinetwork INformation Architecture (MINA) self-
observing and adaptive middleware [42] has been extended
with a layered SDN controller to implement a controller
architecture for IoT [43]. Various research and enterprise use
cases are proposed and implemented, including SDIoT for
smart urban sensing [44], and end-to-end service network
orchestration [45]. While sharing similarities with IoT, CPS
is set to address a larger set of problems with more focus on
ground issues on interoperability of cyber and physical spaces
and dimensions in a CPS. Hence, SD-CPS differs in scope to
that of SDN for IoT researches such as SDIoT, though they
share similar motivation.

V. CONCLUSION AND FUTURE WORK

In this paper we presented SD-CPS, an approach and
architecture that aims to mitigate the application and design
challenges faced by CPS. SD-CPS leverages the SDN switches
and controllers when available, while employing an approach
motivated by SDN even during the absence of SDN switches.
Hence it remains compatible with and applicable to existing
CPS deployments that do not have SDN. SD-CPS opens up
many research avenues on envisioning and improving SDN for
CPS architectures and evaluating implementation alternatives.
As a future work, the proposed approach should be deployed
in various CPS and tested for its efficiency in addressing the
identified shortcomings.

Acknowledgements: This work was supported by national funds through Fundagdo
para a Ciéncia e a Tecnologia with reference UID/CEC/50021/2013 and a PhD grant
offered by the Erasmus Mundus Joint Doctorate in Distributed Computing (EMJD-DC).

REFERENCES

[11 F. Xia, L. T. Yang, L. Wang, and A. Vinel, “Internet of things,”
International Journal of Communication Systems, vol. 25, no. 9, p. 1101,
2012.

[2]
[3]
[4]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

E. A. Lee, “The past, present and future of cyber-physical systems: A
focus on models,” Sensors, vol. 15, no. 3, pp. 4837-4869, 2015.

L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,”
Computer networks, vol. 54, no. 15, pp. 2787-2805, 2010.

S. Munir and J. A. Stankovic, “Depsys: Dependency aware integration
of cyber-physical systems for smart homes,” in Cyber-Physical Systems
(ICCPS), 2014 ACM/IEEE International Conference on. IEEE, 2014,
pp. 127-138.

J. Pacheco, C. Tunc, and S. Hariri, “Design and evaluation of resilient
infrastructures systems for smart cities,” in Smart Cities Conference
(ISC2), 2016 IEEE International. 1EEE, 2016, pp. 1-6.

P. Leitao, A. W. Colombo, and S. Karnouskos, “Industrial automation
based on cyber-physical systems technologies: Prototype implementa-
tions and challenges,” Computers in Industry, vol. 81, pp. 11-25, 2016.
E. A. Lee, “Cyber physical systems: Design challenges,” in 2008 11th
IEEE International Symposium on Object and Component-Oriented
Real-Time Distributed Computing (ISORC). 1EEE, 2008, pp. 363-369.
, “Computing foundations and practice for cyber-physical systems:
A preliminary report,” University of California, Berkeley, Tech. Rep.
UCB/EECS-2007-72, 2007.

M. Persson and A. Hakansson, “A communication protocol for differ-
ent communication technologies in cyber-physical systems,” Procedia
Computer Science, vol. 60, pp. 1697-1706, 2015.

A. Cardenas, S. Amin, B. Sinopoli, A. Giani, A. Perrig, and S. Sastry,
“Challenges for securing cyber physical systems,” in Workshop on future
directions in cyber-physical systems security, 2009, p. 5.

P. Derler, E. A. Lee, and A. S. Vincentelli, “Modeling cyber—physical
systems,” Proceedings of the IEEE, vol. 100, no. 1, pp. 13-28, 2012.
Z. Qin, N. Do, G. Denker, and N. Venkatasubramanian, “Software-
defined cyber-physical multinetworks,” in Computing, Networking and
Communications (ICNC), 2014 International Conference on. 1EEE,
2014, pp. 322-326.

D. Antonioli and N. O. Tippenhauer, “Minicps: A toolkit for security
research on cps networks,” in Proceedings of the First ACM Workshop
on Cyber-Physical Systems-Security and/or PrivaCy. ACM, 2015, pp.
91-100.

X. Dong, H. Lin, R. Tan, R. K. Iyer, and Z. Kalbarczyk, “Software-
defined networking for smart grid resilience: Opportunities and chal-
lenges,” in Proceedings of the 1st ACM Workshop on Cyber-Physical
System Security. ACM, 2015, pp. 61-68.

M. Jarschel, T. Zinner, T. HoBfeld, P. Tran-Gia, and W. Kellerer,
“Interfaces, attributes, and use cases: A compass for sdn,” IEEE Com-
munications Magazine, vol. 52, no. 6, pp. 210-217, 2014.

E. Curry, “Message-oriented middleware,” Middleware for communica-
tions, pp. 1-28, 2004.

S. Vinoski, “Advanced message queuing protocol,” IEEE Internet Com-
puting, vol. 10, no. 6, p. 87, 2006.

D. Locke, “Mq telemetry transport (mqtt) v3. 1 protocol specification,”
IBM developerWorks Technical Library], available at http://www. ibm.
com/developerworks/webservices/library/ws-mgqtt/index. html, 2010.

U. Hunkeler, H. L. Truong, and A. Stanford-Clark, “Mgqtt-s—a pub-
lish/subscribe protocol for wireless sensor networks,” in Communication
systems software and middleware and workshops, 2008. comsware 2008.
3rd international conference on. 1EEE, 2008, pp. 791-798.

M. Collina, G. E. Corazza, and A. Vanelli-Coralli, “Introducing the
qgest broker: Scaling the iot by bridging mqtt and rest,” in 2012 IEEE
23rd International Symposium on Personal, Indoor and Mobile Radio
Communications-(PIMRC). 1EEE, 2012, pp. 36-41.

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69-74, 2008.

J. Lee, B. Bagheri, and H.-A. Kao, “A cyber-physical systems archi-
tecture for industry 4.0-based manufacturing systems,” Manufacturing
Letters, vol. 3, pp. 18-23, 2015.

J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107-113,
2008.

M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:
distributed data-parallel programs from sequential building blocks,” in
ACM SIGOPS Operating Systems Review, vol. 41, no. 3. ACM, 2007,
pp. 59-72.

L. Schehlmann, S. Abt, and H. Baier, “Blessing or curse? revisiting
security aspects of software-defined networking,” in 10th International

[26]

[27]

(28]

[29]

(30]

[31]

[32]

(33]

[34]

(35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Conference on Network and Service Management (CNSM) and Work-
shop. 1EEE, 2014, pp. 382-387.

J. Medved, R. Varga, A. Tkacik, and K. Gray, “Opendaylight: Towards
a model-driven sdn controller architecture,” in Proceeding of IEEE
International Symposium on a World of Wireless, Mobile and Multimedia
Networks 2014, 2014.

B. Snyder, D. Bosnanac, and R. Davies, ActiveMQ in action. Manning,
2011, vol. 47.

P. Kathiravelu and L. Veiga, “Chief: Controller farm for clouds of
software-defined community networks,” in 2016 IEEE International
Conference on Cloud Engineering Workshop (IC2EW), April 2016, pp.
1-6.

P. Kathiravelu, T. G. Grbac, and L. Veiga, “Building blocks of mayan:
Componentizing the escience workflows through software-defined ser-
vice composition,” in Web Services (ICWS), 2016 IEEE International
Conference on. 1EEE, 2016, pp. 372-379.

P. Kathiravelu, L. Sharifi, and L. Veiga, “Cassowary: Middleware
platform for context-aware smart buildings with software-defined sensor
networks,” in Proceedings of the 2nd Workshop on Middleware for
Context-Aware Applications in the loT. ACM, 2015, pp. 1-6.

P. Kathiravelu and L. Veiga, “Software-defined simulations for con-
tinuous development of cloud and data center networks,” in OTM
Confederated International Conferences” On the Move to Meaningful
Internet Systems”. Springer, 2016, pp. 3-23.

——, “Sendim for incremental development of cloud networks: Sim-
ulation, emulation and deployment integration middleware,” in Cloud
Engineering (IC2E), 2016 IEEE International Conference on. 1EEE,
2016, pp. 143-146.

K. Romer and F. Mattern, “The design space of wireless sensor net-
works,” IEEE wireless communications, vol. 11, no. 6, pp. 54-61, 2004.
T. Luo, H-P. Tan, and T. Q. Quek, “Sensor openflow: Enabling
software-defined wireless sensor networks,” IEEE Communications Let-
ters, vol. 16, no. 11, pp. 1896-1899, 2012.

J. B. Leners, T. Gupta, M. K. Aguilera, and M. Walfish, “Taming
uncertainty in distributed systems with help from the network,” in
Proceedings of the Tenth European Conference on Computer Systems.
ACM, 2015, p. 9.

C. Dixon, D. Olshefski, V. Jain, C. DeCusatis, W. Felter, J. Carter,
M. Banikazemi, V. Mann, J. M. Tracey, and R. Recio, “Software defined
networking to support the software defined environment,” IBM Journal
of Research and Development, vol. 58, no. 2/3, pp. 3—1, 2014.

C.-S. Li, B. Brech, S. Crowder, D. Dias, H. Franke, M. Hogstrom,
D. Lindquist, G. Pacifici, S. Pappe, B. Rajaraman et al., “Software
defined environments: An introduction,” IBM Journal of Research and
Development, vol. 58, no. 2/3, pp. 1-1, 2014.

S. Dawson-Haggerty, J. Ortiz, J. Trager, D. Culler, and R. H. Katz,
“Energy savings and the “software-defined” building,” IEEE Design &
Test of Computers, vol. 29, no. 4, pp. 56-57, 2012.

Y. Jararweh, M. Al-Ayyoub, E. Benkhelifa, M. Vouk, A. Rindos et al.,
“Sdiot: a software defined based internet of things framework,” Journal
of Ambient Intelligence and Humanized Computing, vol. 6, no. 4, pp.
453-461, 2015.

M. Al-Ayyoub, Y. Jararweh, E. Benkhelifa, M. Vouk, A. Rindos et al.,
“Sdsecurity: a software defined security experimental framework,” in
2015 IEEE International Conference on Communication Workshop
(ICCW). 1EEE, 2015, pp. 1871-1876.

A. Darabseh, M. Al-Ayyoub, Y. Jararweh, E. Benkhelifa, M. Vouk,
and A. Rindos, “Sdstorage: a software defined storage experimental
framework,” in Cloud Engineering (IC2E), 2015 IEEE International
Conference on. 1EEE, 2015, pp. 341-346.

Z. Qin, L. TIannario, C. Giannelli, P. Bellavista, G. Denker, and
N. Venkatasubramanian, “Mina: A reflective middleware for managing
dynamic multinetwork environments,” in 2014 IEEE Network Opera-
tions and Management Symposium (NOMS). 1EEE, 2014, pp. 1-4.

Z. Qin, G. Denker, C. Giannelli, P. Bellavista, and N. Venkatasubrama-
nian, “A software defined networking architecture for the internet-of-
things,” in 2014 IEEE network operations and management symposium
(NOMS). 1EEE, 2014, pp. 1-9.

J. Liu, Y. Li, M. Chen, W. Dong, and D. Jin, “Software-defined internet
of things for smart urban sensing,” IEEE Communications Magazine,
vol. 53, no. 9, pp. 55-63, 2015.

R. Vilalta, A. Mayoral, D. Pubill, R. Casellas, R. Martinez, J. Serra,
C. Verikoukis, and R. Muifoz, “End-to-end sdn orchestration of iot
services using an sdn/nfv-enabled edge node,” in Optical Fiber Commu-
nication Conference. Optical Society of America, 2016, pp. W2A-42.

	I Introduction
	II An Architecture to Tame the Challenges of CPS
	II-A SD-CPS Controller APIs
	II-B SD-CPS Core Enablers
	II-B1 Software-Defined Service Composition
	II-B2 Modelling Sandbox

	II-C Resilience in SD-CPS
	II-D Security in SD-CPS

	III Current Prototype
	III-A Modelling and Scaling CPS with SD-CPS
	III-B Implementation Details
	III-C Feasibility Assessment

	IV Related Work
	V Conclusion and Future Work
	References

