

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Jan 09, 2025

Accelerating Platform Deployments in the Cloud: A qualitative assessment based on
CORD

Kentis, Angelos Mimidis; Soler, José; Broadbent, Adam; Veitch, Paul

Published in:
Proceedings of Seventh IEEE International Conference on Software Defined Systems

Link to article, DOI:
10.1109/SDS49854.2020.9143912

Publication date:
2020

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Kentis, A. M., Soler, J., Broadbent, A., & Veitch, P. (2020). Accelerating Platform Deployments in the Cloud: A
qualitative assessment based on CORD. In Proceedings of Seventh IEEE International Conference on Software
Defined Systems IEEE. https://doi.org/10.1109/SDS49854.2020.9143912

https://doi.org/10.1109/SDS49854.2020.9143912
https://orbit.dtu.dk/en/publications/a639967f-ddb2-452f-92fc-0972bd5bf302
https://doi.org/10.1109/SDS49854.2020.9143912

Accelerating Platform Deployments in the Cloud:
A Qualitative Assessment Based on CORD

Angelos Mimidis Kentis *, Jose Soler *

* Department of Photonics Engineering
Technical University of Denmark

Lyngby, Denmark
{agmimi, joss}@fotonik.dtu.dk

Adam Broadbent †, Paul Veitch †

† British Telecom
Ipswich, United Kingdom

{adam.broadbent, paul.veitch}@BT.COM

Abstract— Influenced by the success of cloudification of
Information Technology (IT) services, 5th Generation (5G) networks
are also expected to leverage the benefits of virtualization and
network programmability. Doing so will provide the necessary level
of automation and flexibility to meet the stringent requirements of
5G services. Multiple orchestration platforms, tailored towards
Telco cloud-based deployments, have been released (e.g., CORD,
OSM, OPFNV), which facilitate the integration of virtualization and
network programmability. However, these platforms are complex
software stacks, making their deployment a time-consuming and
sometimes challenging task. This paper presents an investigation of
possible deployment best practices using the CORD platform as a
use-case. The results show a considerable reduction in deployment
time (approximately 67%), without an increase in the complexity of
the deployment process. Moreover, this paper includes a list of
“lessons-learned” from using the CORD platform. These lessons will
hopefully help improve future releases of CORD (and similar Telco
cloud platforms).

Keywords—5G, Platform, KPIs, deployment time, NFV, cloud-
native

I. INTRODUCTION

5th Generation (5G) is a highly flexible and programmatic
ecosystem in which to add, remove, scale, and version services
on-demand to cater for changes in the network. This flexibility
will be limited if the platforms which host these services follow
static and monolithic deployment workflows. Moreover, these
platforms have very complex architectures, which makes their
deployment a very time-consuming task. This complexity can act
as a barrier to the adoption of such platforms by Telco Operators,
which may slow down the roll-out of 5G deployments. During the
standardization of the 5G network architecture, many
organizations [1] [2] [3] have defined Key Performance
Indicators (KPIs) for future 5G deployments. The 5th Generation
Infrastructure Public-Private Partnership (5G-PPP) initiative,
defined 12 KPIs [4] split across three categories (related to
business, societal, and performance aspects). The investigation
presented in this paper relates to the second performance KPI
(P2), which states that the average service creation time for 5G
should be reduced from ‘90 hours’ to ‘90 minutes’. Reducing the
time for service deployment as much as possible is crucial for

Telco operators, as it translates to a higher degree of flexibility
for their network deployments and time-to-market for new
services.

The work presented herein is an outcome of the Next
Generation Platform as a Service (NGPaaS) project [5] which
argues that this KPI should not be limited to service deployment
but should include the deployment of the orchestration platforms
which host the 5G services as well. In a sense, NGPaaS argues
that platform deployment is another cloud-native service of the
5G ecosystem. The scope of this paper is two-fold; 1) to provide
a list of deployment best practices for the Central Office Re-
architected as a Datacenter (CORD) platform [6], which can
considerably reduce its deployment time and 2) to present with
several “lessons-learned” from experience with the CORD
platform.

The remainder of this paper is structured as follows. Section
II provides background information on the CORD platform.
Section III presents deployment best-practices. Finally, Section V
provides conclusions on this work together with the lessons
learned from interacting with CORD.

II. THE CORD PLATFORM

In a Telco operator’s infrastructure, a Central Office (CO) or
telephone exchange is the network location at which the
subscriber lines terminate and thus connect to the operator's core
network. While being an integral part of the Telecom
infrastructure for decades, COs impose huge Capital and
Operational Expenditures (CAPEX/OPEX) to the operators.
These expenses mainly originate from the following reasons:

• Since COs terminate the subscriber lines, they must be placed
geographically close to them. , means that a Telco operator
will have to administrate over multiple COs (in the order of
thousands for big Telco operators [6]).

• The variety of access technologies (landline, enterprise, and
mobile), translates to diversity in access infrastructure
between COs, which can increase their management
complexity.

• Traditionally the CO infrastructure comprises special-
purpose and monolithic hardware appliances which suffer
from lack of flexibility and programmability. This
characteristic of COs can force the Telco operator to over-
provision resources, thus increasing the associated costs.

The CORD platform addresses these issues by implementing
a new CO architecture, which promotes network
programmability, flexible service provisioning, centralized
management, and the use of Commercial off the Shelf (COTS)
hardware like x86 servers and white-box switches. CORD
achieves these characteristics by leveraging the paradigms of
Software Defined Networking (SDN), Network Function
Virtualization (NFV), and Cloud. In CORD, the network
functions are virtualized instances (e.g., Virtual machines (VMs)
or containers) hosted on x86 servers and connected via a highly
programmable network fabric. Moreover, the deployment and
management of any network function on a CO is facilitated by a
dedicated and centralized management and orchestration
framework. Finally, since CORD is using open and well-defined
Applications Programming Interfaces (APIs) a single top-level
orchestrator (e.g., ONAP [7]) can manage multiple CORD
instances.

CORD comprises three main functional components: the
XOS orchestrator [8], the Open Network Operating System
(ONOS) [9] SDN Controller (SDNC), and either/both the
Kubernetes [10] and the OpenStack [11] Virtual Infrastructure
Managers (VIMs). The XOS orchestrator receives service
deployment requests from the administrator and orchestrates their
deployment on the available networking and computing
infrastructure via communication with ONOS and
Kubernetes/Openstack. The OpenStack and Kubernetes VIMs
receive and fulfill deployment requests for VM-based and
container-based Virtual Network Functions (VNF) respectively.
Besides deploying containerized VNFs, the Kubernetes VIM is
responsible for the deployment process of the CORD platform
itself, since after release 6.0 of CORD all its functional elements
have been containerized. Finally, the ONOS SDNC is responsible
for receiving and fulfilling network connectivity requests from
XOS (e.g., connecting two VNFs over the network). Figure 1
illustrates the architecture of CORD version 6.0 and the
interactions between its components and actors.

III. DEPLOYMENT BEST PRACTICES

This section presents a series of experiments that demonstrate
that CORD can be deployed within the allotted 90 minutes as
defined in [4]. As stated in the introduction, reducing the
deployment time for both 5G services and platforms is crucial for
Telco operators.

The scope of these experiments is twofold 1) to identify
dependencies between the hardware in the infrastructure and the
deployment time of CORD 2) to identify software deployment

Figure 1: The architecture of the CORD platform

processes that can improve the deployment time of CORD.
Through these experiments two primary influences were
identified:

 1) the effect of the storage medium of the server that hosted
CORD in the deployment time, and

2) the method of fetching and deploying Docker images
throughout the deployment process of CORD.

For the following experiments, the deployment of CORD
was fully automated using Ansible playbooks and Ansible roles.
Doing so created a repeatable and reliable testing environment,
thus increasing the significance of the collected results.
Moreover, all experiments were repeated multiple times and
resulted in consistent time measurements. For reference purposes,
Table 1 provides the hardware specifications of the server, which
was used to deploy the CORD platform.

Table 1: Hardware specifications

CPU 1x Intel(R) Xeon(R) E5-2699 v3 @ 2.30GHz

RAM 32GB

OS Ubuntu 16.04.06 LTS (4.4.0-131-generic)

HDD Samsung HD203WI (2000 GB)

SSD OCZ-VERTEX3 MI (120 GB)

As mentioned, the results highlighted a dependency between
the speed of the storage medium and the deployment time of the
CORD platform. When comparing deployments of CORD over
an SSD and an HDD, there was a deployment improvement of
approximately 50% (45 minutes vs. 1 hour 32 minutes). In Figure
2, column 2 and column 4 illustrate these results. Even though
this section compares deployments over an HDD and an SSD, it
is the actual speed of the storage medium that matters and not the
technology itself. For example, an HDD in a RAID array may
give similar performance to an SSD.

Docker images comprise individual layers, stitched together
by the underlying file system to present a single disk. As part of
the image download process, the Docker agent will fetch these

XOS

OpenStack ONOS

Service
deployment

Conn.
request

VM
deployment

Kubernetes

Container
deployment

VM

VM

Cont

Cont

Cont

Deploy
Update

Deploy
Update
Deploy
Update

Platform
deployment

Network

layers in parallel; however, the process of extracting and verifying
them is a serial operation. During the experiments, this serial
process was a noticeable bottleneck, especially when multiple
CPU cores were available. The work presented herein proposes a
modification to the deployment process of CORD that can
eliminate this bottleneck. Instead of fetching, extracting, and
verifying each Docker image when the associated Docker
container is required, all Docker images should be prefetched in
parallel, before the deployment of any CORD component. 18
different threads were used for this prefetching, with different
performance per thread, depending on the actual network capacity
utilization towards each source. Doing so translates to parallel
processing when extracting and verifying layers belonging to
different Docker images, which improves the overall utilization
of the available CPU cores. On an SSD-based server, an
improvement in deployment time of approximately 32% was
noticed (30 minutes vs. 45 minutes). Columns one and two of
Figure 2 illustrate this improvement. In contrast, on an HDD-
based server, the improvement was only 6.8% (1 hour 26 minutes
vs. 1 hour 32 minutes). Columns three and four of Figure 2
illustrate this improvement. A likely explanation for this behavior
is that the disk IO was acting as a bottleneck when extracting more
than one Docker image.

Figure 2: SSD vs. HDD with and w/o image prefetching

While CORD comprises of 4 functional elements (XOS,
OpenStack, Kubernetes, and ONOS), on deployment these are
decomposed into multiple subcomponents (e.g., Neutron, Nova,
Glance for OpenStack). Thus, it is of interest to investigate which

of these subcomponents are affected the most by the proposed
deployment improvements or have the most significant
contribution to the deployment time of the CORD platform. As
illustrated by the results of Figure 2, the answer to both questions
is the same set of subcomponents, namely the Nova & Neutron
modules of OpenStack and the Kubernetes VIM. For example,
there is a significant impact on the deployment of the Nova &
Neutron subcomponents when deploying over an SSD-based
server. The SSD deployment time is approximately 2:43 minutes
and the HDD deployment time is approximately 28:00 minutes.
Figure 2 provides a comparison between all four experiments
(HDD without prefetch, HDD with prefetch, SSD without
prefetch and SSD with prefetch). Besides, Figure 2 breaks down
the deployment time of each experiment into the individual
subcomponents of the CORD platform.

Comparing a worst-case scenario (HDD no prefetching of
Docker images) to the best-case scenario (SSD with prefetching
of Docker images), an improvement of 66.8% was achieved (30
minutes vs. 1 hour 32 minutes) A final observation is that with
these improvements the deployment of CORD falls to 30 minutes,
well below the 90-minute threshold set by the 5G PPP KPI.

IV. LESSONS LEARNED AND CONCLUSIONS

While the following observations are CORD-specific, they
could translate to other NFV platforms. This is possible because
regardless of their architectural differences, most of the
implementations of NFV platforms are based on similar
workflows and technologies.

Recent years have seen an increase in the involvement of
Telco and cloud operators in open-source projects [12], [13] as
well as in the adoption of such projects in production
environments [14]. However, this move to open-source
components has some issues associated with it. One such issue is
unreliable versioning. For example, while CORD versions 4.1 and
6.0 were stable releases, changes in their code-base led to stability
issues (e.g., changes merged from the master branch, broke a
stable branch). Additionally, in open-source, there is usually an
emphasis on functionality and ease of development over
performance. Which often means that open-source components
are ‘fast enough’ on their own, but once combined into a complex
architecture (e.g., CORD), they aggregate to worse overall
performance. Finally, open-source software comes without any
technical support., which might imply personal involvement for
resolving bugs. On the other hand, the ability to contribute to the
code-base implies the possibility to enhance the software with
desired features. The CORD community is an example of both
cases since they promote personal involvement both for solving
bugs and for enhancing CORD with new features.

As introduced in the previous sections, platforms like CORD
are very complex, which makes their deployment and
management time-consuming, error-prone, and challenging tasks.

However, if they follow a micro-service and containerized
architecture and are properly orchestrated (e.g., via Kubernetes),
then this complexity can be made transparent to the operator. For
example, when comparing CORD version 4.1 and CORD version
6.0 (which introduced container orchestration), a significant
improvement in stability and ease of deployment can be observed.
However, the use of these many individual open-source
components can create hidden/obscure dependencies to the user
or developer. For example, an incorrectly exposed change in an
underlying program (e.g., the XOS orchestrator API), could lead
to cascading failures and obscure errors.

This paper provided a twofold contribution. It provided a list
of deployment best-practices for the CORD platform which can
reduce its deployment time by 66.8%, (from 1 hour 32 minutes to
30 minutes) placing it well below the KPI defined by 5G PPP.
Besides, it listed several “lessons-learned” which came after
extensive use of the CORD platform and which can be useful as
a starting point for improving future releases of CORD or other
similar platforms.

ACKNOWLEDGMENT

This work has been performed in the framework of the
NGPaaS project, funded by the European Commission under the
Horizon 2020 and 5G-PPP Phase2 programmes, under Grant
Agreement No. 761 557 (http://ngpaas.eu).

REFERENCES
[1] “International Telecommunication Union (ITU).” [Online]. Available:

https://www.itu.int/. [Accessed: 26-Jun-2019].

[2] “3rd Generation Partnership Project (3GPP).” [Online]. Available:
https://www.3gpp.org/. [Accessed: 26-Jun-2019].

[3] “5G Infrastructure Public Private Partnership (5G PPP).” [Online].
Available: https://5g-ppp.eu/. [Accessed: 26-Jun-2019].

[4] D. Kennedy, “Euro-5G – Supporting the european 5G initiative,” 2017.

[5] “Next Generation Platfom as a Service.” [Online]. Available:
http://ngpaas.eu/. [Accessed: 02-Jul-2019].

[6] L. Peterson, “CORD : Central Office Re-Architected as a Datacenter,” 2015.

[7] “Open Network Automation Platform (ONAP).” [Online]. Available:
https://www.onap.org/. [Accessed: 20-Jun-2019].

[8] “XOS.” [Online]. Available:

https://wiki.opencord.org/display/CORD/XOS+and+NEM [Accessed:
November 2019].

[9] “Open Networking Operating System (ONOS).” [Online]. Available:
https://onosproject.org/. [Accessed: 20-Jun-2019].

[10] “Kubernetes.” [Online]. Available: https://kubernetes.io/. [Accessed: 04-Jul-
2019].

[11] “OpenStack.” [Online]. Available: https://www.openstack.org/. [Accessed:
04-Jul-2019].

[12] “OCP Members.” [Online].

Available: https://www.opencompute.org/membership/membership-
organizational-directory. [Accessed: 08-Jul-2019].

[13] “Board Members of ONF.” [Online]. Available:
https://www.opennetworking.org/board/. [Accessed: 19-Jul-2019].

[14] “Telefonica and openCORD.” [Online]. Available: https://opencord.org/wp-
content/uploads/2018/01/Day1_Session5_CORD_build-17-Telefonica-use-
cases.pdf.

