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Abstract— Influenced by the success of cloudification of 
Information Technology (IT) services, 5th Generation (5G) networks 
are also expected to leverage the benefits of virtualization and 
network programmability. Doing so will provide the necessary level 
of automation and flexibility to meet the stringent requirements of 
5G services. Multiple orchestration platforms, tailored towards 
Telco cloud-based deployments, have been released (e.g., CORD, 
OSM, OPFNV), which facilitate the integration of virtualization and 
network programmability.  However, these platforms are complex 
software stacks, making their deployment a time-consuming and 
sometimes challenging task. This paper presents an investigation of 
possible deployment best practices using the CORD platform as a 
use-case. The results show a considerable reduction in deployment 
time (approximately 67%), without an increase in the complexity of 
the deployment process. Moreover, this paper includes a list of 
“lessons-learned” from using the CORD platform. These lessons will 
hopefully help improve future releases of CORD (and similar Telco 
cloud platforms). 

Keywords—5G, Platform, KPIs, deployment time, NFV, cloud-
native 

I.  INTRODUCTION  

5th Generation (5G) is a highly flexible and programmatic 
ecosystem in which to add, remove, scale, and version services 
on-demand to cater for changes in the network. This flexibility 
will be limited if the platforms which host these services follow 
static and monolithic deployment workflows. Moreover, these 
platforms have very complex architectures, which makes their 
deployment a very time-consuming task. This complexity can act 
as a barrier to the adoption of such platforms by Telco Operators, 
which may slow down the roll-out of 5G deployments. During the 
standardization of the 5G network architecture, many 
organizations [1] [2] [3]  have defined Key Performance 
Indicators (KPIs) for future 5G deployments. The 5th Generation 
Infrastructure Public-Private Partnership (5G-PPP) initiative, 
defined 12 KPIs [4] split across three categories (related to 
business, societal, and performance aspects). The investigation 
presented in this paper relates to the second performance KPI 
(P2), which states that the average service creation time for 5G 
should be reduced from ‘90 hours’ to ‘90 minutes’. Reducing the 
time for service deployment as much as possible is crucial for 

Telco operators, as it translates to a higher degree of flexibility 
for their network deployments and time-to-market for new 
services.  

The work presented herein is an outcome of the Next 
Generation Platform as a Service (NGPaaS) project [5] which 
argues that this KPI should not be limited to service deployment 
but should include the deployment of the orchestration platforms 
which host the 5G services as well. In a sense, NGPaaS argues 
that platform deployment is another cloud-native service of the 
5G ecosystem. The scope of this paper is two-fold; 1) to provide 
a list of deployment best practices for the Central Office Re-
architected as a Datacenter (CORD) platform [6], which can 
considerably reduce its deployment time and 2) to present with 
several “lessons-learned” from experience with the CORD 
platform. 

The remainder of this paper is structured as follows. Section 
II provides background information on the CORD platform. 
Section III presents deployment best-practices. Finally, Section V 
provides conclusions on this work together with the lessons 
learned from interacting with CORD. 

II. THE CORD PLATFORM 

In a Telco operator’s infrastructure, a Central Office (CO) or 
telephone exchange is the network location at which the 
subscriber lines terminate and thus connect to the operator's core 
network. While being an integral part of the Telecom 
infrastructure for decades, COs impose huge Capital and 
Operational Expenditures (CAPEX/OPEX) to the operators. 
These expenses mainly originate from the following reasons: 

• Since COs terminate the subscriber lines, they must be placed 
geographically close to them. , means that a Telco operator 
will have to administrate over multiple COs (in the order of 
thousands for big Telco operators [6]). 

• The variety of access technologies (landline, enterprise, and 
mobile), translates to diversity in access infrastructure 
between COs, which can increase their management 
complexity. 



• Traditionally the CO infrastructure comprises special-
purpose and monolithic hardware appliances which suffer 
from lack of flexibility and programmability. This 
characteristic of COs can force the Telco operator to over-
provision resources, thus increasing the associated costs. 

The CORD platform addresses these issues by implementing 
a new CO architecture, which promotes network 
programmability, flexible service provisioning, centralized 
management, and the use of Commercial off the Shelf (COTS) 
hardware like x86 servers and white-box switches. CORD 
achieves these characteristics by leveraging the paradigms of 
Software Defined Networking (SDN), Network Function 
Virtualization (NFV), and Cloud. In CORD, the network 
functions are virtualized instances (e.g., Virtual machines (VMs) 
or containers) hosted on x86 servers and connected via a highly 
programmable network fabric. Moreover, the deployment and 
management of any network function on a CO is facilitated by a 
dedicated and centralized management and orchestration 
framework. Finally, since CORD is using open and well-defined 
Applications Programming Interfaces (APIs) a single top-level 
orchestrator (e.g., ONAP [7]) can manage multiple CORD 
instances. 

CORD comprises three main functional components: the 
XOS orchestrator [8], the Open Network Operating System 
(ONOS) [9] SDN Controller (SDNC), and either/both the 
Kubernetes [10] and the OpenStack [11] Virtual Infrastructure 
Managers (VIMs). The XOS orchestrator receives service 
deployment requests from the administrator and orchestrates their 
deployment on the available networking and computing 
infrastructure via communication with ONOS and 
Kubernetes/Openstack. The OpenStack and Kubernetes VIMs 
receive and fulfill deployment requests for  VM-based and 
container-based Virtual Network Functions (VNF) respectively. 
Besides deploying containerized VNFs, the Kubernetes VIM is 
responsible for the deployment process of the CORD platform 
itself, since after release 6.0 of CORD all its functional elements 
have been containerized. Finally, the ONOS SDNC is responsible 
for receiving and fulfilling network connectivity requests from 
XOS (e.g., connecting two VNFs over the network). Figure 1 
illustrates the architecture of CORD version 6.0 and the 
interactions between its components and actors. 

III. DEPLOYMENT BEST PRACTICES 

This section presents a series of experiments that demonstrate 
that CORD can be deployed within the allotted 90 minutes as 
defined in [4]. As stated in the introduction, reducing the 
deployment time for both 5G services and platforms is crucial for 
Telco operators.  

The scope of these experiments is twofold 1) to identify 
dependencies between the hardware in the infrastructure and the 
deployment time of CORD 2) to identify software deployment  

 

Figure 1: The architecture of the CORD platform 

processes that can improve the deployment time of CORD. 
Through these experiments two primary influences were 
identified: 

 1) the effect of the storage medium of the server that hosted 
CORD in the deployment time, and  

2) the method of fetching and deploying Docker images 
throughout the deployment process of CORD.  

For the following experiments, the deployment of CORD 
was fully automated using Ansible playbooks and Ansible roles. 
Doing so created a repeatable and reliable testing environment, 
thus increasing the significance of the collected results. 
Moreover, all experiments were repeated multiple times and 
resulted in consistent time measurements. For reference purposes, 
Table 1 provides the hardware specifications of the server, which 
was used to deploy the CORD platform. 

Table 1: Hardware specifications 

CPU 1x Intel(R) Xeon(R) E5-2699 v3 @ 2.30GHz 

RAM 32GB  

OS Ubuntu 16.04.06 LTS (4.4.0-131-generic) 

HDD Samsung HD203WI (2000 GB) 

SSD OCZ-VERTEX3 MI (120 GB) 

 

As mentioned, the results highlighted a dependency between 
the speed of the storage medium and the deployment time of the 
CORD platform. When comparing deployments of CORD over 
an SSD and an HDD, there was a deployment improvement of 
approximately 50% (45 minutes vs. 1 hour 32 minutes). In Figure 
2, column 2 and column 4 illustrate these results. Even though 
this section compares deployments over an HDD and an SSD, it 
is the actual speed of the storage medium that matters and not the 
technology itself. For example, an HDD in a RAID array may 
give similar performance to an SSD. 

Docker images comprise individual layers, stitched together 
by the underlying file system to present a single disk. As part of 
the image download process, the Docker agent will fetch these 
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layers in parallel; however, the process of extracting and verifying 
them is a serial operation. During the experiments, this serial 
process was a noticeable bottleneck, especially when multiple 
CPU cores were available. The work presented herein proposes a 
modification to the deployment process of CORD that can 
eliminate this bottleneck. Instead of fetching, extracting, and 
verifying each Docker image when the associated Docker 
container is required, all Docker images should be prefetched in 
parallel, before the deployment of any CORD component. 18 
different threads were used for this prefetching, with different 
performance per thread, depending on the actual network capacity 
utilization towards each source. Doing so translates to parallel 
processing when extracting and verifying layers belonging to 
different Docker images, which improves the overall utilization 
of the available CPU cores. On an SSD-based server, an 
improvement in deployment time of approximately 32% was 
noticed (30 minutes  vs. 45 minutes). Columns one and two of 
Figure 2 illustrate this improvement. In contrast, on an HDD-
based server, the improvement was only 6.8% (1 hour 26 minutes 
vs. 1 hour 32 minutes). Columns three and four of Figure 2 
illustrate this improvement. A likely explanation for this behavior 
is that the disk IO was acting as a bottleneck when extracting more 
than one Docker image. 

 

Figure 2: SSD vs. HDD with and w/o image prefetching  

While CORD comprises of 4 functional elements (XOS, 
OpenStack, Kubernetes, and ONOS), on deployment these are 
decomposed into multiple subcomponents (e.g., Neutron, Nova, 
Glance for OpenStack). Thus, it is of interest to investigate which 

of these subcomponents are affected the most by the proposed 
deployment improvements or have the most significant 
contribution to the deployment time of the CORD platform. As 
illustrated by the results of Figure 2, the answer to both questions 
is the same set of subcomponents, namely the Nova & Neutron 
modules of OpenStack and the Kubernetes VIM. For example, 
there is a significant impact on the deployment of the Nova & 
Neutron subcomponents when deploying over an SSD-based 
server. The SSD deployment time is approximately 2:43 minutes 
and the HDD deployment time is approximately 28:00 minutes.  
Figure 2 provides a comparison between all four experiments 
(HDD without prefetch, HDD with prefetch, SSD without 
prefetch and SSD with prefetch). Besides, Figure 2 breaks down 
the deployment time of each experiment into the individual 
subcomponents of the CORD platform. 

Comparing a worst-case scenario (HDD no prefetching of 
Docker images) to the best-case scenario (SSD with prefetching 
of Docker images), an improvement of 66.8% was achieved (30 
minutes  vs. 1 hour 32 minutes) A final observation is that with 
these improvements the deployment of CORD falls to 30 minutes, 
well below the 90-minute threshold set by the 5G PPP KPI.  

IV. LESSONS LEARNED AND CONCLUSIONS 

While the following observations are CORD-specific, they 
could translate to other NFV platforms. This is possible because 
regardless of their architectural differences, most of the 
implementations of NFV platforms are based on similar 
workflows and technologies. 

Recent years have seen an increase in the involvement of 
Telco and cloud operators in open-source projects [12], [13] as 
well as in the adoption of such projects in production 
environments [14]. However, this move to open-source 
components has some issues associated with it. One such issue is 
unreliable versioning. For example, while CORD versions 4.1 and 
6.0 were stable releases, changes in their code-base led to stability 
issues (e.g., changes merged from the master branch, broke a 
stable branch). Additionally, in open-source, there is usually an 
emphasis on functionality and ease of development over 
performance. Which often means that open-source components 
are ‘fast enough’ on their own, but once combined into a complex 
architecture (e.g., CORD), they aggregate to worse overall 
performance. Finally, open-source software comes without any 
technical support., which might imply personal involvement for 
resolving bugs. On the other hand, the ability to contribute to the 
code-base implies the possibility to enhance the software with 
desired features. The CORD community is an example of both 
cases since they promote personal involvement both for solving 
bugs and for enhancing CORD with new features.   

As introduced in the previous sections, platforms like CORD 
are very complex, which makes their deployment and 
management time-consuming, error-prone, and challenging tasks. 



However, if they follow a micro-service and containerized 
architecture and are properly orchestrated (e.g., via Kubernetes), 
then this complexity can be made transparent to the operator. For 
example, when comparing CORD version 4.1 and CORD version 
6.0 (which introduced container orchestration), a significant 
improvement in stability and ease of deployment can be observed. 
However, the use of these many individual open-source 
components can create hidden/obscure dependencies to the user 
or developer. For example, an incorrectly exposed change in an 
underlying program (e.g., the XOS orchestrator API), could lead 
to cascading failures and obscure errors. 

This paper provided a twofold contribution. It provided a list 
of deployment best-practices for the CORD platform which can 
reduce its deployment time by 66.8%, (from 1 hour 32 minutes to 
30 minutes) placing it well below the KPI defined by 5G PPP. 
Besides, it listed several “lessons-learned” which came after 
extensive use of the CORD platform and which can be useful as 
a starting point for improving future releases of CORD or other 
similar platforms. 
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