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Abstract—3D graphical functions in cars enjoy growing popu-
larity. For instance, analog instruments of the instrument cluster
are replaced by digital 3D displays as shown by Mercedes-Benz in
the F125 prototype car. The trend to use 3D applications expands
into two directions: towards more safety-relevant applications
such as the speedometer and towards third-party applications,
e.g., from an app store. In order to save cost, energy, and
installation space, all these applications should share a single
GPU. GPU sharing brings up the problem of providing real-time
guarantees for rendering content of time-sensitive applications
like the speedometer. To solve this problem, we present a real-time
GPU scheduling framework which provides strong guarantees for
critical applications while still giving as much GPU resources to
less important applications as possible, thus ensuring a high GPU
utilization. Since current GPUs are not preemptible, we use the
estimated execution time of each GPU rendering job to make the
scheduling decisions. Our evaluations show that our scheduler
guarantees given real-time constraints, while achieving a high
GPU utilization of 97 %. Moreover, scheduling is performed
highly efficient in real-time with less than 10 s latency.

Keywords—Real-time, GPU scheduling, 3D rendering, automotive
HMI, embedded systems

I. INTRODUCTION

Innovations in cars are mainly driven by electronics and
software today [1]. In particular, graphical functions and appli-
cations enjoy growing popularity as shown by the increasing
number of displays integrated into cars. For instance, the
head unit (HU) uses the center console screen to display the
navigation system, or displays integrated into the headrests of
the front seats to display multimedia content. Another recent
trend in modern cars is to replace the analog instruments of
the instrument cluster (IC) by digital 3D displays, for instance
as shown in the Mercedes Benz F125 prototype car [2].

Although, in the beginning, graphical output was mainly
2D content such as movies or 2D maps, the amount of 3D
graphics is steadily increasing [3, 4]. For example, modern
navigation systems display 3D city models. Also, the instru-
ments of the vehicle are rendered 3D objects with reflections
and shadows to imitate physical instruments as close as possi-
ble. Again, a “bird’s eye view” with a virtual 3D model of the
car and its surroundings supports the driver during parking. To
render such complex scenes with high frame rates, graphical
processing units (GPUs) are integrated into cars.

Traditionally, each system such as the HU or IC uses dedi-
cated hardware platforms with integrated GPUs for rendering.
However, separate hardware platforms increase cost, energy
consumption, and space requirements. Therefore, there is a
strong incentive to consolidate hardware, and ultimately share
a single GPU between several applications.

For different kinds of applications, the OEMs have specific
quality requirements. A few examples for 3D applications are
listed next, sorted from stringent requirements to soft require-
ments. 1) Safety relevant IC applications such as displaying
instruments [2, 3] or parking assistant — stutter-free, latency-
bound, high frame rates. 2) OEM applications like navigation
system — decent quality is important, but low latency and high
frame rates are less relevant. 3) Third-party software such
as applications from an app store [5—7] or a web browser
executing WebGL which are no longer quality-assured by the
OEM - best effort, using the remaining GPU resources.

Thus, for future cars, a single hardware platform with a
powerful 3D GPU shall be able to render the 3D content
of different applications with quite different requirements. A
key requirement for safe GPU sharing in automotive scenarios
is to provide real-time guarantees for 3D rendering of safety
relevant applications. For instance, deterministic time bounds
for presenting warning messages must be guaranteed.

Providing such real-time guarantees requires GPU schedul-
ing algorithms. Compared to CPU scheduling, GPU scheduling
is challenging since currently GPUs do not support preemp-
tion. Without preemption, we explicitly need to consider the
execution time of rendering jobs to ensure that low priority
(non-safety critical) rendering jobs do not prevent the timely
execution of high priority (safety critical) jobs. To this end,
we have proposed models to estimate the execution time of
rendering jobs in [8]. In this paper, we utilize these models to
design GPU scheduling algorithms considering in addition to
the job execution time several other parameters like the priority
of the rendering jobs, screen refresh rate, and target frame rate.
In summary, we make the following contributions: 1) A system
architecture and framework for 3D GPU scheduling that uses
execution time prediction of GPU rendering jobs. 2) A priority-
based real-time scheduling concept that specifically addresses
desired frame rates of dynamic rendering jobs and bitblitting
aligned to the vertical synchronization of the displays. 3) An
implementation of the framework and the proposed 3D GPU
scheduling concepts. 4) An evaluation showing the confor-
mance of the implementation compared to the setup, a high
GPU utilization of about 97 %, and less than 10 ps scheduling
latency.

The rest of this paper is structured as follows. In Sec. II we
discuss related work. In Sec. III we present our system model
and expound the relevant automotive requirements in Sec. I'V.
Our concept is explained in Sec. V. In Sec. VI we explain our
implementation and evaluate it in Sec. VII. We conclude with
a summary and an outlook on future work in Sec. VIIL
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II. RELATED WORK

Real-time GPU scheduling must guarantee the timely exe-
cution of rendering tasks. In general, preemption is one of
the basic mechanisms that facilitate the implementation of
scheduling concepts. Although preemption mechanisms are
foreseen by GPU driver frameworks such as the Windows
Display Driver Model ([9, WDDM]), the implementation of
this functionality is optional and no maximum delay between
preemption request and completion is guaranteed, making them
insufficient for the implementation of real-time scheduling. On
the other hand, non-preemptive scheduling approaches typi-
cally assume a static set of applications and time requirements.

Bautin et al. [10] developed a system called Graphics
Engine Resource Manager (GERM) which targets fairness in
GPU multitasking, using a priority-based scheduler. However,
this approach does not support frame-based deadlines nor GPU
execution time reservation.

Kato et al. developed a real-time GPU scheduler called
TimeGraph [11] which is based on scheduling policies defined
by the user. Each application gets periodically a budget of GPU
execution time assigned. The scheduling is not aware of frames
Therefore, this approach cannot guarantee an maximum delay
for rendering a frame, nor guarantee certain frame rates.

Yu et al. [12] propose a resource management framework
called Virtualized GPU Resource Isolation and Scheduling
(VGRIS) targeted at cloud gaming systems. This approach
introduces a delay after the SwapBuffers command, which
represents the finished execution of one frame. It only supports
a coarse-grained time resolution since only fully rendered
frames are measured and scheduled rather than GPU com-
mand groups. They assume that the rendering behavior of
the applications is well known. Thus, they use a cooperative
scheduling scheme where applications release the GPU by
using SwapBuffers. However, if an application never calls
SwapBuffers, it would get infinite GPU execution time.

Works like [13] provide real-time GPU scheduling for
GPGPU which is actually easier to solve, since the GPGPU
frameworks like CUDA or OpenCL offer much better control
of the execution. Therefore, such scheduling concepts work
without changing the GPU driver. Unfortunately, they do not
support the 3D rendering pipelines of GPUs.

III. SYSTEM MODEL

Before we present our technical contributions, we first in-
troduce our system model and assumptions. Rendering using
a GPU is a hierarchical process where applications commit
command groups (CGs), i.e., batches of GPU commands,
to the GPU. For this purpose, applications typically use a
standardized graphics API such as OpenGL or DirectX. This
abstraction layer is implemented by the GPU driver which
is partitioned into a set of user-space shared libraries, and
a kernel-space part (e.g., a kernel module). The user-space
part keeps track of the graphics API’s state, compiles shader
programs, and creates GPU binary code. The kernel-space part
initializes the GPU hardware, ensures isolation between differ-
ent processes, switches between different rendering contexts
and performs event handling (e.g., signals a process, that GPU
execution has finished). The components and interfaces of our
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Figure 1. 3D GPU scheduling system model

system are depicted in Fig. 1. Basically, the system consists of
three layers, namely, application-layer, user-space driver, and
kernel-space.

The graphic application (e.g., “App. 17) uses the native
GPU drivers for rendering (@ in Fig. 1). Since the GPU is not
preemptive, the GPU scheduler needs to know the execution
time of each CG in advance. To this end, the Execution
Time Predictor predicts the execution time and attaches it to
the CG (c.f., [8] for suitable concepts). From the OpenGL
commands, the Native 3D GPU Driver in user space creates a
GPU command batch in a command buffer (@) and eventually
notifies the kernel about it (®). The kernel-space 3D driver
accesses this data (@) and places an entry in the 3D GPU’s
Command Queue (®). From there, the GPU fetches the CGs
and renders them into the application’s dedicated off-screen
Render Buffer.

The Compositor is responsible for copying the contents of
the off-screen render buffers at the right place into the screen
buffer. To achieve this, it waits for a synchronized notification
from the GPU scheduler. Modern TFT displays operate at
a constant screen refresh rate, typically 60 Hz. The display
is connected to a display interface which streams the screen
content (e.g., using HDMI) to the display at this refresh rate.
If the content of the screen buffer changes while its content is
streamed, this effect would be visible to the user as tearing.
Tearing is a visual artifact where parts of multiple consec-
utive frames are stringed together on the display. In order
to prevent this unwanted effect, GPU drivers support vertical
synchronization (vsync) which allows to update the content
of the screen buffer after its content was fully streamed and
before streaming starts again, thus avoiding those unwanted
artifacts. The driver notifies each time a vsync event occurs,
which is used by the GPU scheduler to create compositing
tasks (i.e., a set of application windows needing update). After
the compositor receives a task, it uses the API calls of the 2D
GPU to create a 2D GPU command batch and commit it to the
2D kernel-space driver (®), which puts it into the 2D GPUs
command queue. From there, the 2D GPU fetches and executes
the commands which bitblit (i.e., copy) to the determined place
on the screen buffer which is read by the IPU and displayed
on the connected display screens (@). Next, we describe the
requirements for 3D GPU scheduling in automotive scenarios.



IV. REQUIREMENTS

Requirements for rendering in automotive scenarios stem from
several sources (cf., [14]):

e Direct legal requirements. Example: as regulated by Ger-
man law (StVZO §57 [15]), the speedometer must be
visible and display the current speed.

e Implicit requirements from standards and automotive
guidelines like [16, ISO 26262] and [17]. Example: Max-
imum delays for updates of the screen for applications
used while driving.

e OEM-defined requirements. Example: The speedometer
shall be rendered stutter-free at 60 FPS.

It must be noted, that the user (e.g., the driver of a vehicle) is
not allowed to freely customize the system behavior. The two
major aspects of GPU rendering are 1) Guaranteed location
and visibility of applications® graphical contents — in [18, 19]
we have proposed access control mechanisms for safe display
sharing. 2) Guaranteed real-time 3D rendering. Next, we
discuss in detail the requirements to guarantee real-time 3D
rendering which necessitate 3D GPU scheduling.

From the mentioned requirements, we derive the priority
as first crucial parameter of each 3D application. The priority
is used to guarantee preference to more important or more
safety-critical applications. For instance, in an automotive HMI
system, the speedometer would get high priority, the navigation
system medium priority, and custom third-party applications
would get low priority.

As pointed out in Sec.IIl, the driver notifies about each
vsync event. A vsync event represents the time when com-
positing starts. The compositor obviously can only bitblit those
frames which have finished before compositing starts, i.e.,
the vsync event. For the applications, this means that vsync
events are actually deadlines for 3D rendering, in order to
make the content appear on the display in time. We denote
the time interval at which vsync events occur as the frame
period. As presented in [14] (Requirement “R4.2 — Rendering
Time Constraints”), an application has a desired maximum
latency between two consecutive frames. Depending on the
desired latency, applications therefore have to define an integer
multiple — called framestride — of the frame period which
does not exceed the desired maximum latency. To this end,
the framestride is the second crucial parameter of each 3D
application. Additionally, the framestride serves as a desired
frame rate (measured in FPS, i.e., frames per second). For a
screen refresh rate of 60 Hz, a framestride of 1 represents
60 uniformly distributed FPS, a framestride of 2 represents
30 uniformly distributed FPS, a framestride of 3 represents
20 uniformly distributed FPS, etc. However, it is important to
note, that a frame rate typically is much less expressive than
a framestride. A frame rate just denotes the number of frames
finished per second in average. If just a single application
is running (which is the typical scenario on today’s end-user
systems), frames are usually quite uniformly distributed. How-
ever, in a multi-application scenario—as we have in automotive
HMI systems—the GPU scheduler is required to ensure that
frames are uniformly distributed.

The goal of our scheduling algorithm is, to guarantee
the desired framestride for as many of the highest priority

applications as possible. Or, in other words, to schedule the
CG with the smallest possible priority, such that no deadline
of any higher priority application can be violated hereby.
Additionally, the GPU utilization shall be as high as possible,
i.e., the amount of time the GPU is idle shall be very low.
This goal ensures the strict requirements of high priority
applications can be met, which well-matches the automotive
requirements for 3D scheduling (cf., [14]).

V. SCHEDULING CONCEPTS

In this section, we present our system architecture and schedul-
ing algorithm. Next, we discuss the required components of the
GPU scheduler and their interaction. Then, we discuss espe-
cially the scheduling parameters and the scheduling algorithm.
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Figure 2. GPU scheduling architecture

A. System Architecture

Our architecture is presented in Fig.2. As discussed earlier,
non-preemptive real-time 3D GPU scheduling requires the
execution times of GPU commands to be known in advance.
The Execution Time Prediction estimates the execution time of
each command group (CG) in user space in a shared library
located between the user space program and the 3D GPU
driver in the user space. Its implementation uses the concepts
of [8]. The 3D GPU driver in user space commits the CGs
to the kernel space driver module where they are dispatched
within the system call execution. Dispatching means that the
command and associated data from the user space process
are verified and inserted into the GPU command queue in
a specific format understood by the GPU. The GPU then
executes the CGs exactly in the order in which they were
inserted. If the GPU Scheduler is enabled (i.e., by loading
the scheduler kernel module), it registers with the GPU Driver
kernel module. This changes the driver behavior such that
commands are no longer directly dispatched but forwarded to
the GPU scheduler module instead. For each application, the
GPU scheduler maintains a queue for managing commands.
The Scheduling Algorithm uses these queues, as well as the
parameters, such as priority, framestride, the timestamps
of the vsync events, and the internal state (e.g., the next target



deadline) to calculate the next CG to dispatch. Eventually,
the selected CG gets dispatched using the dispatch function
of the GPU Diriver. The Execution Time Monitor keeps track
of all the relevant timestamps, e.g., when a command was
inserted, when it was submitted to the GPU, and when it has
finished execution. These timestamps are used by the scheduler
to trigger the Scheduling Algorithm to submit new commands
but also for accounting of already consumed GPU resources.

B. Scheduling Algorithm

As mentioned in Sec.IV each application has a priority and
framestride. However, to use only these two parameters for
scheduling, would imply a negative impact on the GPU uti-
lization. If a low-priority application did submit its CGs faster
than a high-priority application, scheduling any of the lower-
priority applications now could cause a high-priority command
to get dispatched too late since the dispatched low-priority
command cannot be preempted. Such a delayed submission
can be due to unfortunate CPU scheduling or different CPU
execution time of the application code. Moreover, each time an
application enqueues a swapbuffers command, it gets delayed
at least until the next vsync event occurs. Thus, the vsync
events are a knowledge horizon which makes it impossible to
estimate what comes beyond. Since low-priority applications
often cannot be scheduled, this means that the GPU would
inevitably be idle for a significant percentage of time. To
exemplify the mentioned disadvantage, we depict in Fig.3 a
possible situation where both aspects can be observed. The
Lines P2 and P1 depict the enqueued CGs, in which estimtated
execution times are represented by the length of the yellow
bars and the beginning of the blue arrow lines represent the
time at which the applications submitted the CGs, respectively.
In this example, the scheduler first receives two command
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Figure 3. Example for simple priority-based scheduling

groups CG1 and CG2 from the lower-priority process P1. The
Scheduling Algorithm immediately executes (“a”) and detects
that the higher-priority process P2 did not yet finish its frame
and did not submit the next CG. In order to eliminate the risk of
P2 not meeting its deadline, the scheduler must not schedule
CG1 or CG2 from P1. After CG3 from P2 is received, the
scheduler immediately dispatches it (“b”). After this CG has
finished execution, the scheduler checks again at “C”. However,
the CG1 of P1 would not finish before vsync event 2 (red
dotted line). In the worst case, P2 could submit CGs for the
next frame directly after vsync event 2 and demand almost
all of the available GPU time. Thus, again CG1 must not be
scheduled. While providing strong guarantees to high-priority
applications is maintained, the GPU is idle most of the time
due to the lack of knowledge about the execution times of high-
priority CGs not received yet. In order to increase the GPU
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Figure 4. Example for scheduling using etpf

utilization (i.e., reduce the GPU idle time), we introduce the
demanded execution time per frame (etpf) of an application.
The idea is, to tell the scheduler the amount of GPU execution
time it is supposed to reserve for each frame of an application.
For future frames and while not all CGs of the current frame
were received, the scheduler reserves the respective amount
of GPU execution time for the application. The etpf can
be determined as part of the software assessment performed
by the OEM. To facilitate different rendering scenes of an
application, the etpf can be updated during runtime using
a system call. It might be objected, that the etpf is hard
to determine for an arbitrary third-party application, where
no software assessment takes place. However, in automotive
scenarios, third-party applications will have the lowest (or at
least a very low) priority assigned. For the lowest-priority
application, the etpf value is irrelevant, since the etpf of an
application only impacts applications that have lower priority.
Additionally, applications can also use etpf = 0 if priority-
based scheduling of the current frame—without reservations
for future frames—is sufficient. In Fig.4 we depict the same
sequence of received commands as in Fig. 3 to explain how the
scheduler can benefit from an etpf parameter. We assume that
P2 uses etpf = 4. At “@”, the scheduler checks, whether CG1
(the only command group available then) can be scheduled,
i.e., whether the higher-priority process P2 thereby cannot miss
its deadlines. To this end, it checks whether the estimated
execution time of CG1 plus the etpf of P2 end before P2’s
deadline (vsync event 2, red dotted line). Since this is the
case, CGl is dispatched. After CG1 is finished, at “b”, CG3
is available and immediately dispatched, since, otherwise, P2
would miss its deadline. After CG3 is finished, the scheduler
checks at “c” whether the time when CG2 would finish leaves
at least the etpf of P2 before vsync event 3 (not depicted).
Since this is the case, CG2 can be dispatched. We observe that
using etpf can drastically reduce GPU idle time.

To summarize, each application has the following scheduling
parameters. Each of these parameters can be changed during
runtime and immediately affects the applications CGs.

e Unique priority

e Desired framestride (screen refresh rate divided by
framestride represents the number of uniformly dis-
tributed frames per second)

e Demanded execution time per frame, called etpf

Next, we explain the scheduling which consists of four
steps: 1) Command submission by applications. 2) Update the
scheduling data (Lines 1 to 6). 3) Select the CG with the lowest
possible priority (Lines7 to 33). 4) Dispatch the selected
CG (Lines 34 to 39). The first step—depicted in Listing 1—



is executed by an application thread. The Scheduling Algo-
rithm—depicted in Listing 2—is executed by the scheduler
kernel thread and consists of Steps 2 through 4. Each step is
explained in the following. Variables representing vsync event
numbers have “#” as a suffix.

1) Command submission by applications: In Listing 1 we
depict the code executed if an application submits a new CG.

Listing 1. submit_command(CG)

1CG.Q.enqueued += CG.predET

2 if CG.is_swapbuffers

3 CG.Q.res = CG.Q.enqueued

4 sleep until next frame period begins

5 else

6 CG.Q.res = max(CG.Q.etpf, CG.Q.enqueued)

In Linel we increment the aggregated execution time by
the CG’s predicted execution time. If the CG contains a
swapbuffers command, the amount of demanded execution
time per frame, the etpf, is no longer needed and the predicted
values of enqueued are used (Line 3), and, additionally, the
process sleeps until the next frame period begins (Line4).
The process will then be woken up, triggered by the interrupt
handler of the display driver running each time a vsync event
occurs. The corresponding vsync event is the same as the one
calculated in Line 5 of Listing 2. If the CG does not contain a
swapbuffers command, at least the etpf of the CGs queue Q
is used as reserved time res (Line 6).

Listing 2. schedule_next (selects and dispatches next CG)

1 for each CG finished in the meanwhile:

2 busyUntil += CG.measuredET — CG.predET

3 if CG.is_swapbuffers

4 CG.Q.target# = CG.Q. framestride +

5 max (CG. desired#, CG. finished #)

6 CG.Q.desired# = CG.Q. target#

7 tRef = max(busyUntil, NOW) + SDdelay — t(current#)
8 res[] = Qdis = 0

9 for p = n TO 1:

10 if Q[p] not empty:

11 accounted = tRef + Q[p].predET

12 can_schedule = true

13 for i = current# TO (current# + VSM):

14 accounted += res|[i]

15 if ((fPeriod * (i + 1)) < accounted):
16 AND (res[i] > 0):

17 can_schedule = false

18 break

19 if can_schedule:

20 Qdis = Q[p]

21 else

22 if (Qdis = 0) AND (res[current#] = 0):
23 for ps = (p — 1) TO I:

24 if Q[ps].predET < (fPeriod — tRef)
25 Qdis = Q[ps]

26 break

27 break

28 Q[ps].target# = max(Q[ps]. target#,

29 current# + (tRef / fPeriod))

30 res [Q[ps].target#] += Q[ps].res — Q[ps].disp

31 for i = (Q[ps].target# + Q[ps]. framestride)

32 TO (current# + VSM) STEP Q[ps]. framestride :
33 res[i] += Q[ps].etpf

34 if Qdis > 0:

35 dispatch (Qdis)

36 busyUntil = max(busyUntil, NOW) + Qdis.predET
37 if Qdis.is_swapbuffers:

38 Qdis . dispatched = 0
39 Qdis.res = Qdis.etpf
40 Qdis . target# += Qdis.framestride

2) Update the scheduling data: When the scheduler selects
the CG to dispatch, it uses the predicted execution times to
calculate until when the GPU will be busy (Line 36) and until
which vsync period the CG finishes (Line 40). After the GPU,
which executes the CGs concurrently, has finished execution
of some CGs, the scheduler uses the measured execution time
to update those values. First, the scheduling algorithm updates
scheduling times using the finish times of command groups
(CGs) that have finished since the last run of the scheduler
(Line 1). The variable busyUntil holds the timestamp at which
the GPU will become idle. Using the measured execution time
of the CG, we correct a possible prediction error in busyUntil
(Line 2). If the finished CG was a swapbuffers command,
which means that the respective process just completed a
frame, and the application did not meet its desired deadline, its
next deadline is deferred such that the desired framestride is
the distance between the finished and the next frame (Lines 4
to 6). The desired vsync event (desired#, Line 6) is used for
monitoring and evaluating the correctness of the algorithm,
since desired#<target# implies a missed deadline.

3) Select the CG with the lowest possible priority: Our
scheduling algorithm guarantees that it will never dispatch
a CG that could violate a deadline of any other application
which has higher priority. In order to provide lower-priority
applications as much GPU resources as safely possible, it
selects the lowest possible priority which can be scheduled
safely, i.e., without violating higher-priority deadlines. This
ensures, that low-priority applications also get GPU resources,
while higher-priority applications scheduled later still finish
in time. The variable tRef (Line7) holds the timestamp at
which the next selected CG starts executing, either based on
busyUntil, or—if the GPU is idle—based on the current time.
We perform time calculations relative to the start of the current
vsync period time(current#). The delay of the scheduling
algorithm itself plus the delay introduced by dispatching are
denoted by SDdelay and postpones tRef. In Line 9 we iterate
through all available scheduling queues (cf., Fig.2 on the left),
ordered from highest to lowest priority. If a queue Q[p] is not
empty (Line 10), it might be a candidate for dispatching. The
variable accounted (Line 11) holds the time at which the GPU
would finish when dispatching Q[p].

Next, we calculate accounted (Line 11), that is, the time
at which this candidate is expected to finish. We initially set
can_schedule to true and then check in the for-loop starting
at Line 13 whether reservations of higher-priority applications
prohibit dispatching Q[p], in which case we set can_schedule
to false (Line 17) and break the loop. In order to limit the
number of vsync periods we have to look into the future,
we define VSM as the maximum value allowed for the
framestride. In Line 14 we add for each vsync period i
the reserved execution times of all higher-priority applications
which must be finished before the end of period i. If the
available time is smaller than the accounted time for any period
1, where res[i]>0, the candidate is not scheduled, since at least
one deadline of a higher-priority application could be missed
then. However, if no reservation was made (i.e., res[i]=0),
dispatching Q[p] may extend beyond the respective deadline
without violating deadlines of higher-priorities. The available
time is calculated by the number of periods multiplied by the
duration of a period, i.e., fPeriod * (i+1) (Line 15). If Q[p]
can be scheduled, it is preserved in Qdis (Line20). If Q[p]



cannot be scheduled, typically a schedulable higher-priority
applications exists, i.e., Qdis > 0, and we leave the main loop
(Line 27). However, if no schedulable application was found
and no time is reserved for the current period (Line 22), instead
of letting the GPU idle, we check if the remaining time of the
current period is long enough to execute a lower-priority app
(Line 25) .

Our calculation of the table of reserved time per period
(res) guarantees that we never schedule a CG which violates
a higher-priority deadline. However, a lower-priority is not
guaranteed to be scheduled in every situation where it does
not provoke a higher-priority deadline miss, although, in
most situations, the algorithm will schedule it. To provide a
guaranteed scheduling whenever possible, the full sequence
of future CGs must be known to the scheduler, which is
unfortunately not feasible, since only the execution time of
already submitted CGs is available. In the Lines28 and 29,
we check if the current value of the target deadline sequence
number (Q[p].target#) still can be met. If not, it is postponed to
the earliest possible deadline in the future, which is the current
sequence number plus the time tRef represented as number of
periods.

In the Lines30 to 33 we merge the execution times of
the current queue Q[p] into res to reserve the requirements
and prevent that scheduling one of the lower-priority queues
checked next can result in a deadline miss of Q[p]. For the
current frame we reserve the res time minus the disp time
(Line 30). The res field holds the reserved execution time, i.e.,
the aggregated execution time of the commands of the current
frame. If the application did not yet enqueue a swapbuffers
command, at least its eptf is reserved (cf., Listing 1, Line 6).
The variable disp holds the aggregated execution time of CGs
already dispatched for the current frame. For all future frames,
with the framestride as step size, we use the etpf value of
the respective queue, as reserved time, as explained earlier in
this section.

4) Dispatch the selected CG: Finally, in the Lines34 to
39, we dispatch the selected CG. We call the dispatch function
of the GPU driver which provides us with the time at which
the CG was actually submitted to the GPU. This time is
used to set busyUntil to the expected finish time of the
dispatched CG (Line 36). If the dispatched commands contains
a swapbuffers command (Line 37), we additionally reset the
res and disp execution times (Lines 38+39) and increment the
target deadline. Thus, the next time the algorithm executes,
the etpf of Qdis is correctly accounted for the next target
deadline.

Since the algorithm depends on assumed execution times,
the correct behavior obviously depends on the correctness
of those values. In particular, the SDdelay must be chosen
well, i.e., using the upper bound. Additionally, the predicted
execution time predET must not underestimate the real exe-
cution time. Moreover, the size of the GPU command queue,
i.e., the maximum number of pending CGs (MPCG), is an
important parameter, which has to be considered for predET.

'We check only the current period, since we assume that in typical scenarios
at least one higher-priority application has etpf > 0 and framestride = 1,
which implies res[current# + 1] > 0. In the unlikely case that this as-
sumption is wrong, the algorithm can be improved by additionally considering
future periods without reserved time.

For MPCG = 1, the GPU is idle while the scheduler runs
or dispatches, i.e., for up to SDdelay of time. Therefore, the
assumed execution time on the GPU plus SDdelay is used
for predET. For MPCG > 1, since we do not know the
future sequence of dispatching in advance, we assume the
worst case for each CG. To this end, we calculate predET
= MAX(SDdelay / assumed_et).

VI. IMPLEMENTATION

In this section we describe the interface our scheduler uses to
interact with the native driver, and the compositor interface.

A. Hardware platform

We implemented the GPU scheduling concept described in
Sec. V for a Freescale i.MX6 platform. It contains four ARM
CPU cores, a Vivante GC2000 GPU for 3D rendering, a
Vivante GC355 GPU for 2D compositing, and an IPU. As
operating system we used Linux 3.14.

B. Dispatching commands

The native user space driver uses system calls to submit
different types of commands to the kernel space driver. The
majority of these commands are not executed by the GPU,
and thus do not have to be dispatched by the GPU scheduler;
for instance, commands query driver information, allocate
memory, or alter driver behavior. The commands which need
to be dispatched by the scheduler are the submission of:

e Synchronization points (called Sync Events)
e GPU Command Groups (CGs)
e Detach commands if a process explicitly disconnects

Without our modifications, the native driver directly dispatches
those commands while in system call context synchronously.
This means, that after having submitted a CG, the application
is blocked until the CG has been dispatched. Simple scheduling
approaches like [10-12] delay this dispatching individually
for the respective processes. However, such a synchronous
scheduling is inherently not aware of more than only one
undispatched CG, whereas each frame is rendered by multiple
CCs. This is a major drawback which justifies our approach
of asynchronous dispatching. More precisely, the scheduler
does not know the predicted execution time of a complete
frame until all but the last (i.e., the swapbuffers) CG has been
dispatched. Therefore, the execution time needed to render the
whole frame could only be estimated by the etpf. However,
the etpf can be smaller than what the application submits (e.g.,
etpf = 0), which would inevitably result in not dispatching
lower-priority applications or potentially cause deadline misses
of higher-priority applications. Additionally, the etpf can be
bigger than what an application submits, in which case lower-
priority applications could not benefit if the scheduler does not
know it. Therefore, we implemented asynchronous dispatching
where—in the system call context—the CG is just forwarded to
the GPU scheduler which enqueues it and then the system call
immediately returns. Thus, the application is able to submit
its CGs as fast as possible without having to wait until they
actually get dispatched. The GPU scheduling algorithm, which
runs in a dedicated kernel thread, later dispatches the CG from
those queues. A major difficulty of the implementation was, to



allow dispatching by a process different than the originating
process and at an unexpected point in time. In more detail, the
dispatch function expects that it has access to a couple of data
structures allocated by the user space application. If the system
call returns, the user space application might free this data or
reuse it for other purposes. While the process is in system call
context, we therefore create copies of the relevant memory
blocks and use these copies later while dispatching. This
includes the CG’s command buffers, the Sync Event queues,
and the GPU State Deltas’. Thus, instead of performing the
memory copy operations in the dispatch function, we moved
the copy operations ahead. When dispatched by the scheduler
thread, the dispatch function then just uses the existing copies.
Where possible (i.e., where the data size is constant), we
used the Linux kernel Slab allocator. Additionally, we make
dispatching aware of the effective process and thread id which
is obviously no longer the current real process or thread id,
since the scheduler kernel thread is now the caller. Note,
that asynchronous dispatching is about as fast as concurrent
synchronous dispatching, since most of the dispatch code is
protected by mutexes, which prevent concurrent execution
anyway.

C. Time measurement and prediction

In order to do real-time scheduling we need to know the exact
time when each of the CGs started and finished execution.
The GPU operates asynchronously to the main CPU. To
synchronize CPU execution with GPU execution, typically
interrupts are used. To this end, dedicated GPU commands
are used, which—when executed—emit an interrupt. These
commands are called Sync Events and used whenever the
application (e.g., for glFinish()) or the driver internally (e.g., to
enter power saving state) need it. We patched the GPU Driver
(kernel space), so that after each execution of a CG, a Sync
Event is submitted. However, dispatching one CG can submit
multiple Sync Events which necessitates counting the number
of submitted Sync Events and to precisely count the number
of received interrupts to determine when each CG is finished.
Moreover, dispatching (and thus Sync Event submission) takes
place concurrently to GPU execution, such that when receiving
an interrupt we do not know whether the CG has finished, since
the corresponding dispatch could concurrently submit more
Sync Events. Therefore, we notify the scheduler module right
before the last Sync Event of the CG is submitted to the GPU.
The scheduler then marks the number of expected interrupts
as complete, and—after receiving the expected number of
interrupts—the CG is marked as finished, with the correct
finish timestamp, obtained using the cpu_clock(0) function.

The applications submit their CGs accompanied by the
expected execution times. As mentioned at the end of Sec. V-B,
it is crucial for correct scheduling, that the predicted execution
time is accurate. Therefore, our implementation adds a small
percentage linearly to the predicted execution time as a safety
margin to compensate for slightly underestimated predictions.
As explained earlier, we calculate the effective predicted exe-
cution time considering the delay of scheduling and dispatch
SDdelay, and the MPCG (maximum pending CGs).

2A State Delta is a set of GPU commands updating GPU-internal state
registers and is used to update the Context Buffer associated with the
application. The Context Buffer is executed each time a GPU context switch
occurs.

D. GPU Scheduler interface

Our patch to the 3D GPU Driver kernel module “galcore”
allows a separate GPU scheduler kernel module to be loaded
and hooked into its functionalities. Next, we describe which
functions of the driver are accessible by the GPU scheduler,
then we describe how the scheduler module attaches to the
driver and which callbacks it uses.

The GPU scheduler uses multiple new, exported func-
tions of the driver to interact with the GPU. On mod-
ule load, the scheduler initially calls mxc_gpusched_register,
which enables the GPU scheduling mode of the patched
native driver. To dispatch a CG, the scheduler calls
mxc_gpusched_dispatch. After the user space process has
exited and all of its previous CGs were executed, the GPU
driver calls mxc_gpusched_detach_process which frees all data
related to that process. Eventually, the scheduler module can
be unloaded and then calls mxc_gpusched_unregister to notify
the driver that the GPU scheduler mode should be disabled. As
depicted in Fig. 2, after the GPU scheduler module is loaded,
the driver forwards all new CGs received by applications
directly to the scheduler instead of dispatching them. The GPU
scheduler is then called by the driver at multiple occasions
which are, grouped by origin, depicted in Fig.5. For each
type of occasion, the scheduler module implements a dedicated
callback method. An application which wants to access the

Application Scheduler Driver
vsync_cb
attach
exit before
_process _commit diSpatCh event_cb

_submit

attached before_event_submit

current_pid

submit .
_command current_tid
Figure 5. Scheduler interface callbacks

GPU for the first time, makes a system call which attaches
to the kernel-space driver. Then, this application is known
to the driver, and, also, due to the callback, to the GPU
scheduler. The application can now submit CGs which calls
submit_command. If the process exits or gets killed, the GPU
scheduler—after all its commands have finished—releases its
resources. The scheduler calls the dispatch function of the
driver to submit a CG to the GPU. While the dispatch function
executes, the driver gives a callback for each Sync Event
submitted to the GPU. This is required, since this directly
corresponds to the number of interrupts which will be emitted
by the GPU and the scheduler has to count that many interrupts
before it can detect that this CG is finished. Furthermore, the
native driver at some places queries the pid (process id) or the
tid (thread id) on which behalf it schedules. Directly before
starting the main execution of the CG, another callback tells
the GPU scheduler when exactly the CG was submitted. At any
point in time, the driver can notify about interrupts emitted
by the 3D GPU (event_cb) or by the display device driver
(vsync_cb).



E. Compositor interface

For compositing we implemented a simple interface which
consists of a system call that waits until the next vsync event
occurs. The Compositor passes a pointer along with the system
call. Before the call returns, our implementation copies the
list of all windows which were completed before the vsync
event to this pointer address. The Compositor then takes this
list and bitblits each window at the desired place. Although
compositing is not the main focus of this work, we imple-
mented a simple full compositing approach to demonstrate that
compositing easily integrates with our GPU scheduler.

E Concurrency

In our implementation, many threads run concurrently and
therefore need to be synchronized. Implementing this in an
efficient way was a major challenge. In Fig. 6 we have depicted
the different components and the events they are signaling
or waiting for. For all of them we used the completions
from the Linux kernel which provide better efficiency than
semaphores. An application thread which submits a new CG
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Figure 6. Scheduler thread concurrency synchronization

might be blocked if its associated CG queue (CG-Q), which
holds 64 entries, is full. After the GPU has finished an entry, it
potentially wakes up the waiting thread. The size of the global
GPU queue (MPCG) limits the number of pending CGs. The
scheduler thread runs in a loop where it first waits until the
GPU queue has free slots, then it waits for a wake-up event and
eventually executes the algorithm described in Sec. V-B. The
scheduler waits for a wake-up event only if in its previous run
no schedulable CG was found, which means that further loops
of the algorithm would also fail. To this end, the scheduler
thread sleeps until the next frame period starts or a new CG is
enqueued, either directly by the application or by the kernel on
process exit. After the application has inserted a swapbuffers
CQG, it sleeps until its next frame period begins (cf., Listing 1,
Line 4). Additionally, the compositor process waits for a vsync
event where application windows are waiting to be bitblitted.

Besides the completions mentioned before, we occasionally
use atomic variables and memory barriers where necessary.
Additionally, we replaced all mutex instances by rt_mutex
instances which provide priority-inheritance, and significantly
reduce latency jitter. This was primarily relevant for debugging
output in both, the driver and the scheduler module, since
all debug output is serialized using a global mutex. Two
special concurrency issues are explained next. The driver uses
a global mutex which protects each access to one of the drivers
context structs. Contexts are accessed if a process attaches or
detaches and also while dispatching commands. With GPU
scheduling this is a drawback, since an attaching process can
temporarily delay the scheduler kernel thread which dispatches

or executes a detach command. In our algorithm, this would
increase the delay of scheduler and dispatching (SDdelay in
Line 7 of Listing2) by an relatively high and hard to estimate
amount of time. We therefore decided to disable this mutex
complex completely while in scheduler mode. This is possible,
since attaching creates a new context which cannot cause a
conflicting access. All other places are just executed by the
scheduler thread, which means that no concurrency can occur
while in scheduling mode.

A similar drawback exists with the global event queue
mutex. It is locked if new Sync Event objects are reserved
before the Sync Event command is sent to the GPU and also
after the GPU has executed the Sync Event and the associ-
ated actions are executed. Executing the associated actions
is performed by a worker thread of the native driver which
is triggered by the ISR. If GPU scheduling is active, Sync
Event reservation is done by the scheduler kernel thread. Thus,
the worker thread could delay the scheduler kernel thread by
hardly predictable amounts of time. We replaced this mutex by
a lock-free implementation which uses a modified execution
sequence and one read and one write memory barrier.

VII. EVALUATION

In this section, we evaluate the effectiveness, the achieved GPU
utilization, and the efficiency of our scheduling approach.

A. Setup

As hardware platform for our evaluations we used a Freescale
1.MX6 SABRE Automotive Platform. The board features a
quad core ARM CPU running at 800 MHz and 2GB of
RAM. Its SOC contains a Vivante GC2000 GPU for 3D
rendering, and a Vivante GC355 GPU for 2D compositing.
We used a Yocto 1.8 system image based on Linux ker-
nel 3.14.28 with preempt-rt patches and the recent Vivante
driver V5.0.11.p4.25762. As SDdelay (delay of scheduler and
dispatcher) we used 150ps. To prevent underestimating the
execution time, the predicted execution time values include a
safety-margin of 5%. By default, we used M PCG = 2 (i.e.,
up to two pending GPU commands were allowed), V.SM = 6
(i.e., the maximum allowed framestride), and evaluated each
scenario for 240s. In the presented results we skipped the
first 30s, since the applications rarely submitted CGs while
initializing. The priorities of the daemon threads of the native
kernel driver were increased from 0 to 40. The interrupt service
routine of the 3D driver was executed with priority 95, while
our scheduler kernel thread had priority 46. All user-space
applications were running at default priority and “nice” level.
All evaluated applications were using OpenGL ES 2.0 and
EGL as graphics APIs. Since power-management of CPU and
GPUs potentially increases latency, it was disabled.

B. Effectiveness

In this subsection, we evaluate the effectiveness of our schedul-
ing approach by showing that given deadlines are met for
high-priority applications, while low-priority applications can
utilize the remaining GPU resources. We used a set of identical
applications, namely the glmark2-es2 “build” benchmark scene
rendering the “bunny” model, which has a fast CPU execution
time and a precisely predicted GPU execution time. This
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ensures that applications do not miss deadlines just because
they submitted their CGs too late due to non-prioritized CPU
scheduling. We executed 10 applications in parallel, each with
etpf = bms. In Fig. 7 we depict the results if each application
has framestride = 1. For each priority (corresponding
to an application instance), we show the percentage of met
deadlines and the achieved frame rate. We observe that the
deadlines of the priorities 10 and 9 are always met with
the requested framestride of 1, which implies a framerate
of 60FPS. Priority 8 met its deadlines in about 75% of
the cases where its CGs interleaved into the CGs of the
higher priority applications. Priorities lower than 7 were never
admitted due to the high amount of execution time reserved
for higher-priority applications. We additionally evaluated the
same scenario using framestride = 2 for each application,
cf., Fig. 8. In this case, we observe the expected effect that the
framerates drop to 30 FPS, and 6 applications (priorities 10 to
5) met all deadlines, since the GPU scheduler now interleaves
the CGs in intervals of 33.3 ms (2 periods) instead of 16.6 ms
(1 period). Thus, the number of applications which fully met
deadlines more than doubles compared to framestride = 1.
The scheduler effectively improves interleaving of the CGs
and admits more CGs. Additionally, if all applications have
framestride = 1, during a short period of time directly after
a new vsync period starts, all queues are empty, thus making
the GPU idle (about 0.5 to 1.0 ms each period).

We also evaluated a more sophisticated, mixed scenario,
consisting of the set of applications and parameters depicted in
TableI. In Fig. 9 we depict the summarized results. We observe
that the priorities 9 to 4 almost always meet their deadlines.
The few missed deadlines of priorities 9 and 8 are caused
by the Execution Time Predictor which often underestimated
the CGs of Quake 3, by a couple of milliseconds. While
this is not the fault of the scheduling algorithm, it makes

Table 1. APPLICATION SETUP FOR MIXED SCENARIO

Prio | Framestride | ETPF | Application type Resolution
9 1 2.4 ms | Automotive speedometer 456x456
8 1 2.4 ms | Automotive tachometer 456x456
7 2 2.3 ms | Glmark2-es2 “shading” 720x540
6 3 2.5 ms | Glmark2-es2 “texture” 720x540

5+4 2 0 ms | Glmark2-es2 “build” (“bunny”) | 720x540
3 2 0 ms | Quake 3 demo “four” 1440x540

1+2 1 0 ms | es2gears demo 1280x720

clear, that accurate execution time prediction is important. The
priority 7 did not suffer, since its deadlines were later, due
to higher framestride. The priority 6 met its deadlines at
about 99.9 % of its CGs, since framestride = 3 always left
enough margin to its deadlines to cope with the high prediction
errors of Quake 3. In contrast to the priorities 7 and 6, the
priorities 5 and 4 suffered additionally from etpf = 0, since
for future frames no execution time was reserved for them.
Priorities 2 and 1 still got GPU resources, namely the resources
which could not be used by Quake 3 (priority 3), since the
long running or overestimated CGs of Quake 3 would violate
deadlines of the priorities 9 to 4. In those cases, the remaining
time of a period was used for the lowest priorities 2 and 1, as
explained in (cf., Line 22-25 of Listing 2). The embedded GPU
is too slow for Quake 3, since even if running stand-alone,
Quake 3 achieves only about 20 FPS. Quake 3 therefore gets
a fair share of the GPU resources and can render at 11.4 FPS.
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C. GPU Utilization

Next, we evaluate the achieved GPU utilization. We denote
the GPU utilization G PU.yi(t from, tto) as the time the GPU
is effectively busy during period [t ,om, o] in relation to the
length of this period. To measure GPU,;;, we used again
the set of applications depicted in Tablel. We evaluate the
maximum number of pending GPU commands (M PC'G). The
results are depicted in Fig.10. With a M PCG = 1, the
average utilization is about 93 %. This is due to the fact,
that after the GPU has finished executing a command group,
it stays idle while the scheduler selects and dispatches the
next command group. This effect gets almost eliminated using
M PCG = 2, where the utilization is about 97.2 % on average,
since most CGs run longer than SDdelay (150ps) and the
next CG is submitted to the GPU before the current one is
finished. However, increasing to M PCG = 3 shows no further
improvement. Since higher values of M PCG accumulate
errors of the execution time prediction, M PCG = 2 is the
best value for our scenarios.
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D. Scheduler Efficiency

Finally, we evaluate the CPU execution time consumed by the
scheduling algorithm. We used a varying number of “es2gears”
applications at a resolution of 1024x768, framestride = 2,
and etpf = 1.5ms. In Fig. 11, we show the average execution
time of the algorithm and minimum and maximum values. We
observe that the execution time shows a linear dependency on
the number of active processes with a small slope. On average,
the algorithm stayed below 10 ps and never exceeded 110 ps. In
contrast, the execution time needed to dispatch a CG increased
on average from about 50 us for a single application to about
90us for 20 applications. Thus, we conclude that the CPU
overhead introduced by our scheduler is small.
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VIII. SUMMARY AND FUTURE WORK

In modern cars, 3D graphical functions enjoy growing popular-
ity. In order to save cost, energy, and installation space, appli-
cations of different criticality should share a single GPU. This
requires a GPU scheduler which provides real-time guarantees
for time-sensitive applications like speedometer and tachome-
ter. In this paper, we presented a GPU scheduling frame-
work for non-preemptive 3D scheduling, providing strong
real-time guarantees while still efficiently using the available
GPU resources. Our scheduling algorithm uses application-
specific frame deadlines and the estimated execution time of
GPU Command Groups to dispatch commands to the GPU
without requiring preemption. Our evaluation on an embedded
automotive platform shows that—assuming correct execution
time prediction—real-time constraints are guaranteed and a
high GPU utilization about 97 % is achieved. The execution
time of the scheduling algorithm is less than 10 us on average,
thus, the introduced overhead is low. As part of future work, we
want to improve the accuracy of the execution time prediction.
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