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Abstract

This paper presents, in the context of multi-channel ASR, a
method to adapt a mask based, statistically optimal beamform-
ing approach to a speaker of interest. The beamforming vector
of the statistically optimal beamformer is computed by utilizing
speech and noise masks, which are estimated by a neural net-
work. The proposed adaptation approach is based on the inte-
gration of the beamformer, which includes the mask estimation
network, and the acoustic model of the ASR system. This al-
lows for the propagation of the training error, from the acoustic
modeling cost function, all the way through the beamforming
operation and through the mask estimation network. By using
the results of a first pass recognition and by keeping all other
parameters fixed, the mask estimation network can therefore be
fine tuned by retraining. Utterances of a speaker of interest can
thus be used in a two pass approach, to optimize the beamform-
ing for the speech characteristics of that specific speaker. It
is shown that this approach improves the ASR performance of
a state-of-the-art multi-channel ASR system on the CHiME-4
data. Furthermore the effect of the adaptation on the estimated
speech masks is discussed.
Index Terms: robust ASR, multi-channel ASR, speaker adap-
tation, acoustic beamforming, CHiME-4

1. Introduction
The performance of automatic speech recognition (ASR) sys-
tems has shown significant improvements over the last decade.
Those have especially been driven by the utilization of deep
learning techniques [1]. Nevertheless the performance of sys-
tems dealing with realistic noisy and far-field scenarios is still
significantly worse than the performance of close talking sys-
tems on clean recordings [2, 3]. Multi-channel ASR systems
are often used in those scenarios to improve recognition ro-
bustness. In these systems the effect of noise, reverberation
and speech overlap is mitigated by utilizing spatial information
through beamforming [4].

Usually beamforming is done in a separate preprocessing
step before applying the ASR system to the enhanced signal,
which is obtained from the output of the preprocessing [5]. A
general formulation for beamforming is the filter-and-sum ap-
proach [6, 7], where the single channels are summed up after
applying a separate linear filter to each one. Usually those filters
are derived such that an objective criterion on the signal level,
such as signal-to-noise ratio (SNR), is optimized. Popular ap-
proaches are the delay and sum (DAS) [4], minimum variance
distortionless response (MVDR) [8] and generalized eigenvalue
(GEV) [9] beamforming methods. Most systems submitted to
the CHiME and REVERB challenges [10, 11, 12] follow one or
more of these approaches.

The objective used to optimize the preprocessing thus dif-
fers from the objective of the acoustic model training. Even
before the introduction of deep neural network (DNN) hybrid
systems in ASR, the optimization of the preprocessing towards
the goal of speech recognition was proposed e.g. in [13].
The success of deep learning also motivated the integration of
the beamforming operation into the acoustic model. E.g. in
[14, 15] the filters of the filter-and-sum beamforming are es-
timated by a neural network based on input features derived
from the multi-channel input signal. Even learning the com-
plete multi-channel preprocessing, starting from the raw time
signal, has been shown to work [16, 17, 18]. The advantage of
those approaches is, that the preprocessing is not optimized for
a proxy measure like SNR at the output of the beamformer, but
directly towards the criterion for acoustic model training. But
thus far, a very large amount of training data is necessary to
obtain satisfying performance with those approaches.

Lately the performance of statistically optimal beamform-
ers was improved by using neural networks to estimate speech
and noise masks, which are then used to compute the beam-
forming vectors [19, 20, 8]. This approach has worked well
for many submissions to the 4th CHiME challenge [5, 21, 22].
One problem of that approach is the need for target masks in the
mask estimator training, which usually requires stereo data (the
noisy and its respective clean signal) to create the target masks
for training. Since this type of data is much more difficult to
collect than only the noisy data, training of the mask estimator
is usually done on simulated signals, which can lead to a mis-
match between training and test data. To solve this problem,
the authors of [23] proposed to integrate the mask based, statis-
tically optimal beamforming with the acoustic modeling of the
ASR system. This enables the propagation of the training error
all the way through the acoustic model and the mask estimator
network in the preprocessing. Therefore the mask estimator can
be trained based on the training criterion of the acoustic model
training.

In this paper, the approach of integrating the mask based,
statistically optimal beamformer with the acoustic model is uti-
lized to adapt the mask estimation to the speech characteristics
of a speaker of interest in a two pass recognition approach.

The rest of the paper is organized as follows. An overview
of the integrated system is given in Section 2. Furthermore an
alternative approach to [23] for the propagation of the gradients
through the eigenvalue problem of the beamformer is presented.
Section 3 describes the experimental setup of a state-of-the-art
system for the CHiME-4 speech recognition task followed by
the experimental results in Section 4.
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Figure 1: Overview of the integrated system. The grey blocks
indicate modules with trainable parameters.

2. System overview
The system used in this work integrates the acoustic beam-
former, usually called front-end, with the acoustic model of the
ASR system, usually called back-end, very similarly to the in-
tegration described in [23]. Figure 1 gives an overview of the
integrated system. Yt,f is the input in the short-time Fourier
transform (STFT) domain, recorded from an array of M micro-
phones. It consists of a speech component Xt,f and a noise
component Nt,f :

Yt,f = Xt,f + Nt,f (1)

Where Yt,f ,Xt,f ,Nt,f ∈ CM , t is the time frame index and
f is the frequency bin index.

The main difference to the system introduced in [23] will
be described in Section 2.3, whereas the acoustic beamformer
and acoustic model are described in Sections 2.1 and 2.2, re-
spectively. During a first pass decoding a hidden Markov
model (HMM)-state sequence sT1 is obtained for the input sig-
nal YT,F

1,1 , where T and F are the number of time frames and
frequency bins of the signal. Section 2.4 describes the utiliza-
tion of the state sequence to adapt the acoustic beamformer to a
certain speaker.

2.1. GEV beamformer

The main purpose of the front-end is to denoise the input signal.
Here this is achieved by acoustic beamforming [6, 7]:

Ŝt,f = wH
f ·Yt,f (2)

Where Ŝt,f ∈ C is an estimate of the speech component, ob-
tained by applying the beamforming vector wf ∈ CM . (·)H
denotes the Hermitian transpose.

For this work we use the GEV beamformer with blind ana-
lytic normalization (BAN), as described in [9] and which is also
used in [23]. The beamforming vector of the GEV beamformer
is derived by maximizing the a posteriori SNR:

w
(GEV)
f = argmax

wf

wH
f ΦXX,fwf

wH
f ΦNN,fwf

(3)

Where ΦXX,f and ΦNN,f are the spatial covariance matrices
of speech and noise, respectively. This results in the generalized
eigenvalue problem

ΦXX,fW = ΦNN,fWΛ (4)

with w
(GEV)
f being the eigenvector corresponding to the largest

eigenvalue.
The spatial covariance matrices Φνν,f for ν ∈ {X,N}

are computed by applying a mask λ(ν)
t,f to the recorded multi-

channel signal Yt,f

Φνν,f =
1∑T

t=1 λ
(ν)
t,f

T∑
t=1

λ
(ν)
t,fYt,fY

H
t,f (5)

A mask estimating neural network is used to estimate λ(X)
t,f

and λ(N)
t,f . For both, speech and noise, one mask is estimated

for every channel, λ(ν)
t,f is then computed as the median mask,

which contains the element-wise median of the channel depen-
dent masks, as described e.g. in [19].

The BAN post-filter, as described in [9], is a frequency de-
pendent scaling of the GEV beamforming vector, such that the
final beamforming vector used here is:

w
(OPT)
f = w

(BAN)
f ·w(GEV)

f (6)

With w(BAN)
f ∈ C being the scaling factor described in [9].

2.2. Acoustic model

The acoustic model is a bidirectional long short-term memory
(BLSTM) hybrid model using log-mel filterbank features as in-
put. Apart from the features, the training pipeline is the same as
for the speaker independent model described in [5].

2.3. Beamformer integration into acoustic model

Training of the integrated system presented in Figure 1 is done
according to standard error back propagation. The gradient
computation for the propagation through the acoustic model,
feature extraction, linear filtering of the beamformer, BAN and
mask estimator network are straight forward. To propagate the
gradient through the computation of the principal eigenvector
of

Φf = Φ−1
NN,fΦXX,f (7)

as required for computing the beamforming vector w
(GEV)
f ac-

cording to Equation 4, the derivatives of the eigenvalue problem
w.r.t. ΦNN,f and ΦXX,f are derived in [24] and used in [23].

In contrast, here the principal eigenvector of Equation 7
is approximated by applying the QR-algorithm as presented in
[25]. A matrix Ak is decomposed by the QR-decomposition



into a product of a unitary matrix Qk and an upper triangular
matrix Rk:

Ak = QkRk (8)

With k being the iteration index, Ak+1 is then computed as

Ak+1 = RkQk (9)

It is shown in [25], that AK converges to an upper triangular
matrix as K → ∞. The diagonal of AK then contains the
eigenvalues of A0 and

∏K
k=0Qk contains the respective eigen-

vectors. This QR-algorithm is used here to approximate the
principal eigenvector of Φf by setting

A0 = Φf (10)

The algorithmic differentiation of the QR decomposition is
outlined in [26] and applied here in the error back propagation.

2.4. Speaker adaptation of mask estimator

After a first pass recognition an optimal sequence of HMM
states sTt is obtained from the decoding process for each of
the evaluation segments of the speaker of interest. Those align-
ments are then used as training targets for an adaptation training
of the integrated system. Of the system shown in Figure 1, only
the parameters of the mask estimator are adjusted in the adap-
tation training. The parameters of the remaining pipeline are
kept fixed, such that only the mask estimator network is tuned
towards optimizing the cost function of the integrated system.
Therefore the mask estimator and thus the computation of the
beamforming vector are optimized for the speech characteristics
of the speaker of interest.

Even though this work is using the GEV beamformer with
BAN, it is noteworthy that the proposed speaker adaptation
method is equally applicable to the mask based MVDR beam-
former that is presented in [20], by changing the initialization
of A0 in Equation 10 and omitting the BAN.

3. Experimental setup
The proposed speaker adaptation scheme for the acoustic beam-
former is evaluated on the data of the CHiME-4 speech recogni-
tion task [11]. The CHiME-4 dataset features real and simulated
16 kHz, multi-channel audio data recorded with a six channel
microphone array arranged around a tablet device. Based on the
5k WSJ0-Corpus recordings and simulations have been done
with four different kinds of real-world background noise. The
training set contains approximately 18 h of data per channel
recorded from 87 different speakers. Results are provided for
the real development and real evaluation set of the 6-Channel
track. Both sets contain audio of 4 speakers each, of which
2 are male and 2 are female, with no overlap between devel-
opment and evaluation set. The amount of data per speaker is
approximately 0.7 h in the development set and around 0.5 h in
the evaluation set.

The acoustic model used in the experiments is a BLSTM
network, with 5 layers and 600 units per layer. Different to
the system in [5], the input features are 80 dimensional log-mel
filterbank features computed in the STFT domain employing
a blackman window with a window size of 25ms and a frame
shift of 10ms. The input features are unnormalized, but a linear
layer with 80 units, employing batch normalization, was added
as a first layer to the network. This results in a marginally bet-
ter baseline system over the one described in [5]. The initial
training of the acoustic model is done as described in [5], where

at first alignments for the training set are computed on the data
of the close talking microphone by using a Gaussian mixture
model (GMM)-HMM trained only on the data of the close talk-
ing microphones of the training set. Those alignments can then
be used for all other channels, since the data is recorded sam-
ple synchronized. The training of the BLSTM acoustic model
is done by using the unprocessed audio data of the single chan-
nels. This has been demonstrated to be beneficial in many sub-
missions to the 3rd and 4th CHiME challenge e.g. in [27].

The mask estimator network used in the experiments is sim-
ilar to the one described in [19]. It consists of a BLSTM layer
with 256 units followed by two fully connected layers with 512
units and ReLU activations and another fully connected layer
with 402 units and sigmoid activation. Thus the resolution of
the estimated masks in frequency is lower than described in
[19]. This is due to the adjustment of the dimensions of the
masks to the discrete Fourier transform (DFT) size of the fea-
ture extraction pipeline of the ASR system used here. The input
of the mask estimation network is the magnitude spectrum of a
single channel. The output of the network is the concatenation
of the noise mask and the speech mask. During decoding the
outputs of the different channels, of one utterance, are grouped
and the median masks are calculated. Those are then applied to
all channels to estimate the spatial covariance matrices as de-
scribed in Section 2.1. The initial mask estimation network is
trained on the simulated training data as described in [19]. In
contrast to [19], only the provided baseline configuration of the
simulation is used and no additional data augmentation is done.
The number of iterations of the QR-algorithm described in Sec-
tion 2.3 is fixed to 5.

The decoding is done with the 5-gram language model pro-
vided as a baseline language model with the CHiME-4 dataset.
In a post processing step a recurrent neural network (RNN)
language model lattice rescoring is done. The RNN language
model is a 3 layer long short-term memory (LSTM) with high-
way connections. Details about the language model and lattice
rescoring can be found in [5].

In addition to the acoustic beamforming described in Sec-
tion 2.1, the baseline beamforming algorithm of the CHiME-4
task (BFIT) is used to provide baseline results. Apart from the
beamforming algorithm, the exact same pipeline as described
above is used.

The hyper-parameters for the speaker adaptation training
such as the learning rate were tuned on the development set and
applied to the evaluation set.

4. Experimental results

4.1. Baseline systems

Table 1 shows an overview of the experimental results. It shows,
that using the GEV front-end described in Section 2.1 yields
an improvement of about 20% - 30% relative over the base-
line system with the BFIT front-end. Joint training of the GEV
front-end and acoustic model further improves the performance
another 5% relative. Those results are in line with the results
reported in [23]. When comparing the mask output of the mask
estimator before and after joint training only minor differences
in the masks can be observed. This is in line with the suggestion
of the authors of [23], that a majority of the performance in-
crease stems from the adaptation of the acoustic model towards
the specific front-end.



Table 1: Average WER (%) for the described systems for differ-
ent stages of the integrated training.

System Dev Eval
System

id
Front-

end
Joint

training
Speaker
adapted

0 BFIT - -
4.36 7.17

1
GEV

3.46 5.18
2 + 3.32 4.84
3 + 3.09 4.58

4.2. Speaker adapted beamforming

Table 1 shows an overall improvement of WER after speaker
adaptation and Table 2 shows that improved performance is ob-
tained for the majority of the speakers with an improvement in
WER of up to 11% and 15% relative for single speakers of the
evaluation and development set, respectively. Figure 2 shows
an example of the estimated speech mask before and after the
speaker adaptation. It can be seen, that the speech mask after
speaker adaptation shows a stronger emphasis on the fundamen-
tal frequency and the harmonics. This can be seen repeatedly
between the time marks of 2 s and 3 s. At time mark 4 s a pat-
tern of fundamental frequency and harmonics can be seen in the
mask after adaptation, which is not present in the mask before
adaptation and which can also hardly be spotted in the input sig-
nal or the clean signal. This could indicate an increased bias of
the mask estimator towards this kind of pattern.

Table 2: WER (%) of separate speakers for the jointly trained
system and the speaker adapted system

Sys.
id

Dev Eval
F01 F04 M03 M04 F05 F06 M05 M06

2 4.19 3.23 2.77 3.07 6.88 4.09 3.83 4.58
3 3.55 3.20 2.48 3.14 6.35 4.09 3.38 4.48

5. Conclusion
This work describes a method for speaker adaptation of mask
based beamforming in a multi-channel ASR system. The basis
of the adaptation method is the integration of the statistically
optimal beamforming with the acoustic model to allow the back
propagation of the training errors through the complete system,
which has been previously introduced in [23]. Here an alter-
native solution for the back propagation of the errors through
the computation of the beamforming vector, based on the QR-
algorithm, is presented. The system is then used in a two pass
approach to adapt the mask estimator to a speaker of interest
during the decoding phase. It was shown that this adaptation
method results in speech masks which show a stronger empha-
sis on the fundamental frequency and harmonics of the speaker.
Furthermore a relative ASR improvement, for single speakers
of the real evaluation data of the CHiME-4 ASR task, of up to
11% relative was shown.
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