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ABSTRACT
Data augmentation is a ubiquitous technique used to provide
robustness to automatic speech recognition (ASR) training.
However, even as so much of the ASR training process has
become automated and more “end-to-end,” the data augmen-
tation policy (what augmentation functions to use, and how
to apply them) remains hand-crafted. We present G(raph)-
Augment, a technique to define the augmentation space as
directed acyclic graphs (DAGs) and search over this space
to optimize the augmentation policy itself. We show that
given the same computational budget, policies produced by
G-Augment are able to perform better than SpecAugment
policies obtained by random search on fine-tuning tasks on
CHiME-6 and AMI. G-Augment is also able to establish
a new state-of-the-art ASR performance on the CHiME-6
evaluation set (30.7% WER). We further demonstrate that
G-Augment policies show better transfer properties across
warm-start to cold-start training and model size compared to
random-searched SpecAugment policies.

Index Terms— Speech Recognition, Data Augmentation

1. INTRODUCTION

Data augmentation [1, 2, 3] is an important component of
deep learning and has demonstrated to be a crucial component
of training deep networks on a wide range of tasks, including
automatic speech recognition (ASR) [4, 5, 6, 7, 8, 9, 10, 11].

While methods for automatically optimizing augmenta-
tion policies have been introduced and studied [12, 13, 14],
previous studies made certain structural assumptions about
how data augmentations are applied. For example, augmenta-
tion searches for images typically assume a hierarchy, where
certain augmentations are assumed to always be applied in ad-
dition to other augmentation operations. The same has been
true for ASR, where assumptions about the meta-structure of
the augmentation are made before searching over parameters
of the augmentations themselves [15].

While such accumulated heuristics are effective for ad-
dressing tasks that have been studied extensively before with
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a set of well-known augmentations, when encountered with
a new task or with a new set of augmentations, one needs
to re-establish the heuristics for designing a good augmen-
tation scheme. For example, in [16], the authors discovered
that SpecAugment [11] did not compose well with multi-style
training augmentation [4, 17], and found that they needed to
ensemble the augmentations to benefit from both.

In this work, we address this problem by a scheme we re-
fer to as G(raph)-Augment, where a stochastic augmentation
policy is parameterized by a directed acyclic graph (DAG)
whose edges are labeled by sampling probabilities and aug-
mentation parameters. By simultaneously searching for the
graph structure and the parameters that label the graph, we
are able to optimize not only the augmentation parameters of
the individual augmentations, but how those augmentations
are being applied. We utilize 17 ASR augmentations in our
search space, details of which can be found in section 3.3.
We use an evolutionary algorithm [18, 19] to optimize these
graphs based on the dev-set performance of the augmentation.

The search is conducted on two “warm-start” tasks, where
we pre-train a Conformer [20] RNN-T [21] model on the
SpeechStew [22] dataset and fine-tune on the CHiME-6 [23]
and AMI [24] corpora. For the AMI task, we remove the
AMI portion of the SpeechStew dataset for pre-training. We
compare the performance of the best discovered G-Augment
policy against the best SpecAugment policy found using ran-
dom search with the same computational budget.1 By doing
so, we are able to arrive at the following results:

• The best G-Augment policy discovered outperforms
the best SpecAugment policy on both tasks.

• The G-Augment policies exhibit better transfer proper-
ties across warm to cold-start training and model size
than the SpecAugment policies.

• By adapting the G-Augment policy for training a very
large (1B parameter) Conformer [20] pre-trained [25,

1Naively, one may deem the comparison between a random search and a
genetic algorithm to be unfair. We, however, must note that the search space
size of G-Augment is much larger than that of SpecAugment (by a factor of
� 1050) in this work, which justifies the comparison in our view.
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26, 27] on YouTube and SpeechStew, we achieve state-
of-the-art performance on CHiME-6.

While we have limited our scope to ASR in this work, G-
Augment is a general framework that can be applied to any
task where augmentation is utilized.

2. RELATED WORKS

Data augmentation is an effective method for improving the
generalization performance of deep learning models. Do-
main specific augmentations have been utilized for a variety
of domains, from image classification [2] to speech recog-
nition [11]. More recently, automated data augmentation
methods have been utilized for increasing the efficacy of data
augmentation for 2D image classification, where a policy is
(meta)-learned using a large search space of possible data
augmentations [13, 28, 29]. Automated data augmentation
methods have been made more efficient for image classifica-
tion [14, 30, 31] and have been extended to other modalities
in vision [32, 33]. Some efforts to apply automated augmen-
tation search for ASR tasks has also shown success [15, 34].

While these previous attempts learned augmentation pa-
rameters such as application probability and distortion mag-
nitude from the data, they used a manually chosen augmen-
tation structure. For example, AutoAugment learned 25 sub-
policies, each with two layers of augmentation. Decisions
such as whether flips and cropping should be applied were
manually made specific to the dataset [14, 30, 31]. For exam-
ple, Cutout [35] was always applied after the AutoAugment
layers on CIFAR-10 [36], but not on reduced SVHN [37]. In
this work, we fully automate the optimization of the data aug-
mentation policy: the graph structure of the policy and param-
eters of individual augmentations that make up the policy are
learned jointly. In addition, we are able to demonstrate posi-
tive transfer of augmentation policies from the search task to
set-ups with different training dynamics and model sizes. To
our knowledge, our work is the first example of an automated
data augmentation approach that outperforms manually de-
signed policies in speech recognition such as SpecAugment.

Methods for searching over graph spaces have been exten-
sively investigated in the context of neural architecture search
[38, 39]. While we choose to use a relatively simple evolu-
tionary algorithm [18, 19] to search over augmentation poli-
cies in this particular work, a variety of methods have been
employed for such searches in the literature [38, 39, 40, 41,
42], an extensive list of which can be found in [43].

3. G-AUGMENT

To search for both how the augmentations are applied and the
parameters of the augmentations themselves, we parameterize
an augmentation policy as a graph with labeled nodes and

edges. Here we describe the details of this parameterization
and the algorithm we employ to search over this space.

3.1. Search Space

We parameterize an augmentation by a directed acyclic
graph (DAG), consisting of a single input node, a single out-
put node and a number N of ensemble nodes. The input node
has only outgoing edges that can connect to ensemble nodes.
The output node connects to a single ensemble node via an
edge, which passes its state to the output. Each node repre-
sents an augmented state of the data, while the edges represent
the augmentations themselves.

Each ensemble node of the graph takes two inputs (Figure
3.1). We denote one of the incoming edges the left edge and
the other the right edge of a given ensemble node for con-
venience. We denote the node connected to the tail of the
left/right edge as the left/right input, respectively. The incom-
ing edges are labeled by sampling probabilities pl and pr that
sum to unity, and quadruples al and ar that represent aug-
mentations. The state of a given node is obtained by applying
the augmentations al/ar to the left/right inputs and sampling
them with probability pl/pr respectively. In other words,

(node state) =

{
al(left input) w/ probability pl,
ar(right input) w/ probability pr.

(1)

We require the graph to be directed and all directed paths
trace back to the input. This is enforced by assigning indices
1, · · · , N to the ensemble nodes, the index 0 to the input node,
and selecting the left/right input indices of node n from [0, n−
1]. The output node is always connected to node N .

The augmentation policy is applied to an input by stochas-
tically back-propagating through the graph. Given an input,
the augmentation to be applied to that input is determined by
starting at the output node and back-propagating through the
graph by randomly selecting the path to travel based on the
selection probability of the edges. The path connecting the
input node to the output node sampled this way represents an
augmentation obtained by sequentially composing the aug-
mentations encountered in the path. The probability of a par-
ticular path being selected is obtained by multiplying the se-
lection probabilities. This process is depicted in figure 3.1
along with pseudo-code. Any AutoAugment [13] policy or
RandAugment policy [14] is representable by such a graph.

To make the search space uniform, we represent an aug-
mentation by a quadruple a = (t, q, x1, x2) where t is a string
denoting the type of augmentation, q is the application prob-
ability (not to be confused with the sampling probability) and
x1 and x2 are the strength parameters for the augmentation.
xi are taken to have 11 discrete integer values from 0 to 10.
We employ 17 augmentations, which we list in section 3.3.
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def node state(node, batch):
if node.is input node():

return batch
choice = tf.random.uniform(shape=batch.shape[0])
choose left = tf.cast(choice < node.p left, tf.bool)
left in = node.a left(node state(node.left node, batch))
right in = node.a right(node state(node.right node, batch))
return tf.where(choose left, left in, right in)

out batch = node state(LAST ENSEMBLE NODE, in batch)

Fig. 1. DAG structured stochastic augmentation policies (left) and pseudocode for applying an augmentation to an input batch
using this structure (right). The first graph illustrates the notation used to express the relationship between nodes. A given
ensemble node has two inputs, denoted the left and right nodes. The edges connecting these nodes are labeled by a selection
probability and an augmentation. The second graph is an example of a policy graph, where three augmentations (a, b and
c) are utilized. Each path represents an augmentation operation whose sampling probability is obtained by the product of
sampling probabilities of the edges of the path. For example, the bold path in the third graph represents the augmentation
Out = a(b(b(In))) and is sampled with a probability of 0.7× 0.2× 0.6.

3.2. Search Method

We use a generational evolutionary algorithm [18, 19] with
binary tournament selection [44] to search the G-Augment
search space, although other methods may be utilized [40, 41,
42, 38, 39]. We use the implementation by [45].

A generational evolutionary algorithm is parameterized
by a population size P and a mutation rate µ. For us, the
population of the first generation is constructed by generating
P random policy graphs by uniformly sampling the search
space. Given a population of generation g, the population for
generation g+1 is constructed via a binary tournament. That
is, P pairs of population members are randomly drawn with
replacement from the population of generation g and the pop-
ulation member with better fitness within each pair is kept to
survive. The population of generation g + 1 is assembled by
taking the surviving P population members and applying mu-
tation with mutation rate µ. In our case, the policy that yields
a lower dev WER on the search ASR task is deemed more
“fit” and survives the selection process.

The particular mutation we apply to graphs follows [39].
We first randomly select a single edge of the graph, randomly
re-select its tail node within the allowed set of nodes, and fi-
nally reset its augmentation quadruple. We then mutate the
selection probabilities and the q, x1 and x2 values of the aug-
mentation parameters of all the other edges with mutation rate
µ. We define a mutation of an augmentation parameter xi to
be a change of ±1 to its value and a mutation of a selection
probability to be a change of ±0.1. For the application prob-
abilities q, a mutation samples a random number uniformly in
the range of [−0.2, 0.2], adds it to the current probability and
clips its value to the allowed range of [0, 1].

3.3. Augmentation Operations

We utilize 17 augmentation operations in our augmentation
policies. We have listed all the augmentations and the signifi-
cance of their two strength parameters xi in table 1.

The identity operation is self-explanatory. Frequency
masking, time masking and the variants thereof have been
discussed in [11, 16]. We introduce two variants of time-
warping [11], where the warping distance parameter is either
absolute or determined with respect to the length of the ut-
terance. Time perturbation uniformly stretches or shrinks the
spectrogram in the time direction, effectively perturbing the
speed of speech. Frequency warping is a warping deforma-
tion applied in the direction of the frequency axis. Cut out
augmentation [35] applies multiple random rectangle masks
to the spectrogram, whose the size and density are controlled
by xi. Frequency shift randomly shifts spectrogram values
of frequency bands up or down, with the multiplicity and
total coverage of shifted frequency bands controlled by xi.
Utterance mixing linearly mixes other utterances in the batch
as background, with background blend ratio of rb. Utter-
ance mixing supports mixing multiple different backgrounds,
as well as randomly shifting background utterances in the
time dimension to introduce further stochasticity. Frequency
noise samples Gaussian noise with a mean of 1.0 and stddev
controlled by x1 for each frequency band, and multiplies
the noise scale vector to the features. Random convolution
convolves input features with a random 2D depth-wise convo-
lution filter that deviates from the identity filter by a random
normal distribution with a standard deviation of 0.1. The
frequency and time size of the filters are controlled by xi.

4. METHODS

In this section, we detail the set-up for G-Augment search
experiments and baseline SpecAugment search experiments
conducted on the warm-started CHiME-6 [23] and AMI [24]
tasks. We then detail the set-up for exploring the transfer
properties of the policies discovered by the search.

All experiments are conducted with ASR models utiliz-
ing a Conformer [20] encoder. The encoder outputs are fed to
RNN transducer [21] with a 2-layer LSTM decoder. We use
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Table 1. Description of the 17 augmentation components utilized in our search space.

Code Name x1 x2

parameter range scale parameter range scale

CO Cut Out mask size [0, 30] linear density ratio [0, 0.5] linear
FM Frequency Mask multiplicity [0, 8] linear masking ratio [0, 1.0] linear
FS Frequency Shift multiplicity [0, 8] linear filter coverage [0, 1.0] linear
FN Frequency Noise max stddev [0, 0.5] linear - - -

FW-L Frequency Warp (Linear) warp ratio [0.0, 1.0] linear - - -
FW-LG Frequency Warp (Log) warp ratio [0.0125, 0.79] log - - -

GN Gaussian Noise noise ratio [0, 1.0] linear - - -
Id Identity - - - - - -

RC Random Convolution filter freq size [0, 50] linear filter time size [0, 50] linear
TP Time Perturb max utterance ratio [0, 0.6] linear - - -

TM-AM Time Mask (Adaptive Multiplicity) multiplicity ratio [0.001, 0.1] log - - -
TM-AS Time Mask (Adaptive Size) size ratio [0.001, 0.316] log - - -
TM-FA Time Mask (Fully Adaptive) multiplicity ratio [0.001, 0.1] log size ratio [0.001, 0.316] log
TW-A Time Warp (Adaptive) utterance length ratio [0.005, 0.5] log - - -
TW Time Warp (Non-Adaptive) size ratio [5, 500] log - - -
M-A Utt Mix A background blend ratio [0, 0.6] linear max background shift [0, 30] linear
M-B Utt Mix B background blend ratio [0, 0.6] linear background multiplicity [0, 5] linear

two models with respective model sizes of 100M and 1B pa-
rameters. We adapt the convention of denoting the two mod-
els as ConformerL and ConformerXXL following [27].

4.1. Search Experiments

The augmentation policies are optimized on a “search task”
that can be undertaken with a manageable amount of re-
sources, since training and evaluation on the task must be
conducted many times. We find warm-started training of the
ConformerL model on small corpora (CHiME-6 and AMI)
adequate for this purpose.

4.1.1. Pre-training

The ConformerL model is prepared for the warm-start task
by training on the SpeechStew dataset [22]. The SpeechStew
dataset consists of seven public speech corpora—AMI [24],
Common Voice [46], English Broadcast News2, LibriSpeech
[47], Switchboard/Fisher3, TED-LIUM v3 [48, 49] and Wall
Street Journal4. The utterances from these datasets are mixed
randomly and batched for training. We discard the AMI por-
tion of the dataset when preparing the model for the warm-
start task on AMI. The model is trained by 100k steps with
a batch size of 8192 on these datasets. Further details on the
training parameters can be found in section 3 of [22].

4.1.2. Search Task: Warm-start Training

We use two warm-start tasks for policy search, where we fine-
tune the pre-trained ConformerL models of the previous sec-
tion on the CHiME-6 [23]/AMI [24] datasets.

2Linguistic data consortium (LDC) datasets LDC97S44, LDC97T22,
LDC98S71 and LDC98T28.

3LDC datasets LDC2004T19, LDC2005T19, LDC2004S13,
LDC2005S13 and LDC97S62.

4LDC datasets LDC93S6B and LDC94S13B.

Given an augmentation policy A we wish to evaluate, we
fine-tune the pre-trained models with input augmented by A
for 30k steps via Adam optimization with β1 = 0.9, β2 =
0.98. We use a cosine learning rate schedule with 5k warm up
steps and 2.5e-5 peak learning rate. This schedule reduces the
variance of the final performance of the model, as the learning
rate approaches zero by the end of training time. We train
with a batch size of 256. We use the normalized word error
rate (WER) of the development set computed at the final step
of training to judge the fitness of the policy A.

For the CHiME-6 task, a global dropout rate of 0.5 is ap-
plied to all residual layers (attention, feed-forward, convo-
lution), as well as feed-forward layers. For AMI, we use a
global drop-out rate of 0.1. AMI comes with two dev/test
sets—the ihm and sdm1 sets. We use the dev WER over both
sets to evaluate the fitness.

4.1.3. G-Augment Policy Search

The G-Augment policy search is conducted using Vizier [50],
a distributed black-box optimization tool. The implementa-
tion of [45] of the generational evolutionary algorithm ex-
plained in section 3.2 is utilized to optimize the policy. We
use a population size P = 32, a mutation rate of µ = 0.8,
and employ 64 parallel workers for 2000 trials. The search
space is defined to be over augmentation graphs with N = 25
ensemble nodes where any of the 17 augmentations of section
3.3 can be used. Each trial consists of training the warm-start
task 4.1.2 with an augmentation policy suggested by the al-
gorithm, and judging the fitness by the dev-set WER of the
trained network. Each trial requiring ∼ 10 hours to complete,
a search experiment expends a total of 20k hours when run on
8 Google Cloud TPU chips, amounting to 160k TPU hours.

4.1.4. Baseline: SpecAugment Random Search

As a baseline, we conduct a random search over adaptive
SpecAugment parameters with the equivalent compute bud-
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get of 160k TPU hours. This policy is obtained by composing
a frequency mask and a time mask augmentation with adap-
tive multiplicity (see table 1). The random search over the
four strength parameters of these two augmentations is con-
ducted across 2000 trials.

4.2. Policy Transfer Experiments

Here we define some tasks for which transfer properties of an
augmentation policy can be investigated.

4.2.1. Cold-start Training

We train ConformerL models on CHiME-6 and AMI from
scratch without pre-trained initialization. Cold-start training
trains with batch size 4096, using a transformer schedule with
10k warm-up steps and peak learning rate 2e-3. We use global
dropout rate of 0.5/0.1 for CHiME-6/AMI respectively.

4.2.2. Larger Models

We also study transfer of the CHiME-6 augmentation pol-
icy to pre-trained ConformerXXL models. We have two
set-ups for preparing the models, which have 10x param-
eters compared to the ConformerL. The first is the public
set-up where the model is trained using wav2vec 2.0 [25] pre-
training on the LibriLight dataset [51] then further trained
with the SpeechStew dataset. The other is the BigSSL [27]
set-up where the model is trained with wav2vec 2.0 using
an unlabeled YouTube dataset and further fine-tuned on a
pseudo-labeled [26, 52] YouTube dataset.

4.2.3. Magnitude Tuning for Larger Models

Following [14], we experiment with further tuning the over-
all magnitude of a policy when adapting it for training larger
models. We use magnitude scaling, where we scale the mag-
nitudes of all augmentations in the policy by a factor and
round to the nearest integer. We consider scaling factors in
the range of [0.6, 1.4] in increments of 0.1. We also consider
magnitude increment, where we increment all magnitudes by
an integer value within in [−4, 4]. The magnitudes are clipped
within the range [0, 10].

5. RESULTS

5.1. Search Task Performance

We find that given the same computational budget, the
G-Augment policies perform better than random-searched
SpecAugment policies both for the CHiME-6 and AMI search
tasks, as presented in tables 2 and 3. This comparison is es-
pecially stark for CHiME-6, where the random search is not
able to find a overall-beneficial SpecAugment policy.

5.2. Policy Transfer to Cold-Start Training

The results for the transfer properties of the augmentation
policies to cold-start training are presented in tables 2 and 3.
We find that the G-Augment policies transfer well to the cold-
start training task. Also, the G-Augment policies show bet-
ter performance against the random-searched SpecAugment
baseline even on the transfer task. The transfer compares
especially well for CHiME-6, where the random-searched
SpecAugment policy turns out to be especially detrimental
when applied to the cold-start task.

Table 2. CHiME-6 WERs (%) of ConformerL warm and
cold-started models. The augmentation policies compared
were obtained by searching on the warm-start task.

Method Warm-start Cold-start

dev eval dev eval

No Augmentation 32.2 39.4 63.3 64.2

With Augmentation
Manually Tuned SpecAugment [22] 33.1 40.6 70.0 66.7
Random-Searched SpecAugment 32.0 40.2 69.9 65.1
G-Augment Policy 31.7 38.5 62.0 61.6

Table 3. AMI eval set WERs (%) of ConformerL warm and
cold-started models. The augmentation policies compared
were obtained by searching on the warm-start task.

Method Warm-start Cold-start

ihm sdm1 ihm sdm1

No Augmentation 10.5 25.3 27.3 43.7

With Augmentation
Random-Searched SpecAugment 9.7 23.4 23.7 40.5
G-Augment Policy 9.3 23.3 23.3 40.1

5.3. Policy Transfer to Larger Models

We next evaluate how well the G-Augment and random-
searched SpecAugment policies transfer to larger models on
the CHiME-6 task. We observe that no augmentation training
provides a very strong baseline for this task.

Table 4. CHiME-6 WERs (%) from fine-tuning the Con-
formerXXL pre-trained with public data.

Method dev eval

No Augmentation 30.7 39.3

With Augmentation
Random-Searched SpecAugment 32.9 39.6
G-Augment Policy 31.3 38.6

+ Magnitude tuning 30.9 38.2

In table 4, we present the results for policy transfer ex-
periments to the public set-up. While the G-Augment policy
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compares favorably against the random-searched SpecAug-
ment policy, we find that the performance is overall neutral.
Upon applying a magnitude scaling factor of 0.8, we are able
to demonstrate improvement on the eval set.

We find that magnitude tuning is also necessary in order
to gain meaningful improvement for the YouTube pre-trained
set-up. We apply a magnitude increment of +1 to the G-
Augument policy to achieve SoTA performance on CHiME-6
with 30.7% eval WER. Our results are summarized in table
5, where we compare our results against reported SoTA num-
bers in the literature. The last column of the table coincides
with the status of overall SoTA performance on CHiME-6.

Table 5. Comparing CHiME-6 WERs (%) in three settings—
ConformerL performance, ConformerXXL performance only
utilizing additional public data and ConformerXXL perfor-
mance without restrictions on the pre-training data.

L XXL Public XXL Any

dev eval dev eval dev eval

Previous SoTA [22, 27] 33.1 40.6 31.9 38.9 26.2 31.0
G-Augment 31.7 38.5 30.9 38.2 26.0 30.7

6. DISCUSSION

Search Space Sizes: The SpecAugment search space utilized
has the size 114 and 2000 random search trials cover close to
14% of the search space. We find that the G-Augment search
space considered is incomparably large to the SpecAugment
search space used. For a crude estimate of a lower-bound
of this search space, let us first assume that the application
probability q is quantized to have 11 values. Ignoring the
graph structure search (assuming a linear graph structure), the
selection probabilities (always assuming left edge selection),
the second strength argument, the identity augmentation and
even the order of augmentations while also imposing that all
the augmentation parameter used should be distinct, we are
still left with a search space size of

(
M

N−1

)
≈ 1055 where

N −1 = 24 is the number of left edges and M = 16∗11∗11
is the number of triples (t, q, x1).

Reducing the Search Cost: In this work, we used an out-
of-the-box search algorithm to demonstrate feasibility of our
method. It would be interesting to apply cost-reduction meth-
ods for evolutionary search for G-Augment such as popula-
tion based learning [30], functional equivalence checking or
hurdles [53] to reduce the computational cost.

CHiME-6: We find that SpecAugment is surprisingly inef-
fective for CHiME-6, and discovering a good SpecAugment
policy for this task is challenging.

Policy Analysis: Here we present the policies discovered for
CHiME-6 and AMI. The graphs obtained are plotted in fig-
ure 2 where the dotted/solid lines have been used to indicate

the left/right connections, respectively. The parameters asso-
ciated to each edge have been listed in tables 6 and 7.

Fig. 2. Augmentation policy graphs discovered for CHiME-6
(left) and AMI (right). The dotted lines denote the left con-
nections, while solid lines denote the right connections.

Table 6. CHiME-6 Policy parameters.
Node 1 2 3 5 11 13 15 20 25

pl 0.5 0.5 0.0 0.5 0.5 0.9 0.8 0.4 0.5
tl Id TP TM-AM TM-AS FW RC M-B M-B M-A
ql 1.0 0.39 0.25 0.45 0.65 0.14 0.53 0.96 0.67
x1,l 4 7 9 5 4 6 4 2 9
x2,l 4 6 2 7 10 8 3 4 6

pr 0.5 0.5 1.0 0.5 0.5 0.1 0.2 0.6 0.5
tr M-A M-A Id FN TP FN Id FS TP
qr 0.17 0.004 0.47 0.75 0.05 0.28 0.87 0.67 0.24
x1,r 2 4 2 9 5 8 9 7 3
x2,r 1 4 0 8 0 9 9 4 9

We can observe that only a single time-masking augmen-
tation is used in the CHiME-6 policy and no frequency mask-
ings are utilized. This should be contrasted with the AMI pol-
icy where time and frequency maskings are amply utilized.

Table 7. AMI Policy parameters.
Node 1 2 3 4 6 9 11 16 18 20 25

pl 0.9 0.1 0.1 0.3 0.9 0.3 0.3 0.1 0.0 0.2 0.8
tl TM-AM FM TM-AM FS TM-AM TM-AS TM-FA TM-FA TM-AS TM-AM TM-AS
ql 1.00 0.77 0.46 0.19 0.17 0.36 0.76 0.99 0.56 0.64 0.30
x1,l 8 1 9 4 9 5 6 7 4 8 5
x2,l 7 10 5 4 9 5 3 1 3 4 9

pr 0.1 0.9 0.9 0.7 0.1 0.7 0.7 0.9 1.0 0.8 0.2
tr CO M-B TW-A Id FN FW TW FW M-A TM-AS FS
qr 0.31 0.74 0.52 0.49 0.92 0.61 0.04 0.42 0.64 0.40 0.10
x1,r 5 9 5 9 1 0 5 8 9 6 4
x2,r 3 10 0 8 2 5 9 6 2 1 7

7. CONCLUSION

We have presented G-Augment, a framework to simultane-
ously optimize the structure of a data augmentation policies
along with its parameters with an evolutionary algorithm.
G-Augment structures augmentation policies as a directed
acyclic graph, enabling a definition and discovery of stochas-
tic policies with a hierarchical structure. While we have
demonstrated the utility of G-Augment for ASR tasks, it may
be employed for any task in which the optimization of aug-
mentation policies can lead to improvement in performance.
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