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Vulnerabilities of Power System Operations to Load
Forecasting Data Injection Attacks

Yize Chen, Yushi Tan, Ling Zhang and Baosen Zhang

Abstract—We study the security threats of power system
operation brought by a class of data injection attacks upon load
forecasting algorithms. In particular, with minimal assumptions
on the knowledge and ability of the attacker, we design attack
data on input features for load forecasting algorithms in a black-
box approach. System operators can be oblivious of such wrong
load forecasts, which lead to uneconomical or even insecure
decisions in commitment and dispatch. To our knowledge, this
paper is the first attempt to bring up the security issues of load
forecasting algorithms, and shows that accurate load forecasting
algorithm is not necessarily robust to malicious attacks. More
severely, attackers are able to design targeted attacks on system
operations strategically with additional topology information. We
demonstrate the impact of load forecasting attacks on two IEEE
test cases. We show our attack strategy is able to cause load
shedding with high probability under various settings in the 14-
bus test case, and also demonstrate system-wide threats in the
118-bus test case with limited local attacks.

I. INTRODUCTION

Load forecasting plays an important role in the planning
and operations of electric grids. As a cornerstone application
for utilities and operators, it provides future load information
which is utilized for various decision-making problems such
as unit commitment, reserve management, economic dispatch
and maintenance scheduling [1]. Consequently, the accuracy
of forecasted loads directly impacts the cost and reliability of
system operations [2].

Because of its fundamental importance, there are always
strong incentives to improve short-term forecasting methods,
especially under higher penetration of renewables. The driving
factors of load variations are heterogeneous, including temper-
ature, weather, temporal and seasonal effects (e.g., weekday
vs. weekend) and other socioeconomic factors. Thus, load
forecasting algorithms can be regarded as finding a nonlinear
and complex mapping between the (potentially high dimen-
sional) driving factors to the forecasted time series of load
values. Over the past decades, a myriad of load forecasting
algorithms have been proposed and adopted. See, for example,
[1], [3] and the references within. Statistical and machine
learning techniques, such as support vector regression [4],
ARIMA [5] and neural networks [6] have been applied to short
term load forecasting and implemented in practice. The recent
advances in deep learning and data sciences opened the door to
utilizing more input features and deeper model architectures to
further improve load forecasting accuracy and provided some
of the best performances to date [7]–[9]. In most of the load
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forecasting studies, forecast accuracy has been regarded as the
holy grail for researchers.
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Fig. 1: The schematic of normal power system operations (a)
and proposed black-box attacks on load forecasting (b). Without
knowledge about the forecast model’s parameters, the attacker injects
designed small, undetectable data perturbations into weather forecasts
to induce abnormal system operations.

However, despite the critical role of forecasting algorithms
and the long pursuit of forecast accuracy, the robustness
and security issues have been overlooked to some extents.
As the forecasting methods become more complex, they are
also more susceptible to cybersecurity threats. In the previous
research on cyber-security of power systems [10], [11], where
state estimation [12], [13], communication [14], and electricity
market [15], [16] threats and countermeasures are rigorously
evaluated. However, the vulnerabilities of load forecasting
algorithms are rarely discussed [17], [18], while this does not
mean load forecasting is less vulnerable nor the consequences
of attacks are less severe. For instance, forecasting models
normally make use of weather forecasts inputs coming from
external services/APIs, while such inputs can be exposed to
adversarial modification and the model performance may be
severely impacted by such malicious changes. Recently, there
has been a hot debate on the security of machine learning
models [19], and researchers found that small noises injected
to the inputs can severely impact model performances [20].
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In this paper, we look into the security threats in general
load forecasting algorithms. By taking the perspective of an
attacker and developing attack strategies on load forecasting
algorithms, we conduct damage analysis of the proposed
attacks. We consider the scenario where attacker adversarially
injects false data into the input features of forecasting algo-
rithms, and examine to what extent such attacks could impact
the performance of load forecasting models. Specifically, we
investigate false data injection attacks on the temperature data.
It is an important input to load forecasting algorithms and
is mostly obtained from external services/APIs. Therefore it
is easier for attackers to inject perturbations on temperature
data than to attack the state estimation [13] or market clearing
algorithms [15]. The potential damage of load forecasting
attacks can be significant, leading to increases in system
operation costs and maybe even more catastrophic events such
as load shedding.

In Figure 1, we show the schematic of threats and proposed
attacks to systems. Our work is different from most related
work in two aspects: most of the studies in forecasting lack
security and robustness considerations, while most of the
studies in power system security evaluate attacks with certain
level of knowledge about the targeted system or unconstrained
capabilities. In contrast to previous attacks research that
assume full knowledge of system configuration and strong
capabilities of attackers on implementing attacks (see, e.g.
[12], [13], [15]), we take a restrictive setting of both the
attacker’s knowledge and capabilities. Under our setup, the
attacker does not need to know any parameter of the targeted
load forecasting algorithms, and could only inject constrained
perturbations into input temperatures to avoid detection. We
develop a simple data-driven attack strategy for finding the
injected perturbations onto the original temperature data. Sur-
prisingly, we find the proposed attacks significantly degrade
the performance of a class of (accurate) load forecasting
algorithms. With only few degrees of perturbations injected
into input temperatures, the load forecasting algorithm’s output
deviates drastically from original accurate forecasts.

To further illustrate security issues brought by load forecast-
ing attacks, we embed the load forecasting algorithms into
canonical power system operation case studies considering
network constraints and power balance. We consider both
cases when attacker possesses and does not possess addi-
tional information on system topology and parameters. For
the former case where the attacker can strategically inject
data perturbations under certain attack budgets, we design
a greedy algorithm to compromise a subset of nodal load
forecasts to cause targeted damages such as uneconomical
generation, infeasible line flows and generator schedules, and
load shedding. Simulations based on real-world load datasets
on the IEEE 14-bus and 118-bus systems demonstrate the
system operation vulnerabilities by only maliciously changing
the temperature by a few degrees.

This study illustrates the need to look at other properties
in addition to forecast accuracy, and the need for more
comprehensive analysis when developing and applying load
forecasting techniques. We demonstrate that accuracy may not
mean robustness, and a wrong forecast of load potentially leads

to costly operation decisions or system damage. Specifically,
we make the following contributions in this work:
• To the best of our knowledge, this work is the first to

evaluate the security issues of load forecasting procedures
in power system operations. Starting with the setup for
load forecasting along with its role in power system oper-
ations (Sec. II), data vulnerabilities of current forecasting
methods are formulated and discussed (Sec. III).

• Black-box attack algorithm gradient estimation
is proposed to generate hard-to-detect, adversarial input
data for load forecasting algorithms (Sec. III).

• We show that the strategically designed adversarial in-
jections upon input features could target either increased
system operating costs or load shedding. The resulting
optimization formulation of the attack problem maybe of
independent interest (Sec. IV).

• Case studies of power system operations on standard
IEEE test cases using real-world load data reveal the
prevalent vulnerabilities of current forecasting techniques
and demonstrate potential damages on power system
operations via proposed attacks (Sec. V).

Compared to our prior work [18] which works on single bus
vulnerabilities analysis, we bring out both the load forecasting
threats and the attack strategies on power networks. Extensive
numerical simulations also verify such load forecasting vulner-
abilities generally exist in power networks operations. We also
make our code open source as a public package for evaluating
load forecasting robustness and security1. Due to the space
limits of submission, we refer to the preprint for more details
on attack implementations and thorough tests on various load
forecasting algorithms [21].

II. PRELIMINARIES

In this section, we briefly describe the notations and setup
for load forecasting algorithms, and illustrate how load fore-
casting serves as an important component of system operation
in day-ahead commitment and real-time dispatch.

A. Load Forecasting

To set up and find parameters of the short-term load
forecasting algorithm for a specific region, the system
operator needs to collect a training dataset Dtr =
{(Xt−H , ...,Xt);Lt+k}Tt=1 based on available historical data.
Here Lt+k ∈ [0, 1] are scalars representing scaled nodal load
values and H is the history horizon [1]. The model’s forecast
horizon is denoted by k and ranges from one hour to one day
in short-term forecasts. Xt−i ∈ [0, 1]d, i = 0, ...,H are scaled,
d-dimensional input feature vectors. Feature vector Xt includes
historical records of load, weather forecasts including temper-
ature, weather indicators (e.g., sunny, rainy or cloudy) and sea-
sonal indicator variables such as weekdays/weekends and hour
of the day [9]. We express it as Xt := {Lt,Xtempt ,Xindext },
where Lt is the load history records; Xtempt is the temperature
value vector of current and neighboring regions, which could
be acquired from either system historical records or weather

1https://github.com/chennnnnyize/load forecasts attack

https://github.com/chennnnnyize/load_forecasts_attack
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forecast API; Xindext are a collection of indicators including
weather characteristics, seasonal factors and time factors.
In the task of load forecasting, one is interested to find a
function parameterized by θ: fθ(·), which learns the mapping
from (Xt−H , ...,Xt) to future loads L̂t+k. The mean absolute
error (MAE) is widely used to measure the performance of fθ,
which is defined by the average L1 norm of difference between
forecasted loads L̂t+k and ground truth Lt+k. The schematic
of load forecasting model is depicted in Figure 1(a).

We note that vulnerability analysis conducted by this paper
is not constrained to certain forecasting algorithms. As long
as the model output is sensitive with respect to input features,
our proposed attack methods would be able to alter load
patterns maliciously. For the discussion hereafter, we make
use of an Recurrent Neural Networks (RNN) [6]–[9], which
is a widely adopted forecast algorithm to model the temporal
dependencies between feature inputs and forecasted values.

B. System Operations Model

For a N -bus power network with set of loads D and set
of generators G, we consider the system operation setting
consisting of a day-ahead planning stage using load forecasts
and a real-time operational stage using actual load.

1) A unit commitment (UC) model considering reserve
margins, startup and shutdown cost, minimum up/down
time constraints and ramping constraints is used to create
a commitment schedule Gt, t = 1, ...T based on the day-
ahead load forecasts L̂t, t = 1, ...T ;

2) For each time t, the dispatch of the scheduled units pt
and the actual dispatch costs C1(pt) are calculated ac-
cording to a basic Economic Dispatch (ED) model [22]
based on the actual load Lt and generation schedule Gt.

The actual daily operation costs are calculated via summing
the 24-hour dispatch costs and the startup and shutdown costs.
When ED based on the day-ahead commitment does not have a
feasible solution, load shedding is used to maintain the balance
between supply and demand. The shedded loads LSt also
incur costs C2(LSt). Note that under perfect forecasts, the
generation schedule Gt can minimize real-time dispatch costs.

III. ATTACK STRATEGIES

In this section, we first describe the objective and constraints
for implementing load forecast attacks. We then illustrate
how an attacker is able to design white-box attack with
known load forecasting model parameters. Finally we describe
under the black-box setting, how data injection attacks can be
implemented even though the attacker only has limited query
access to the load forecasting model.

A. Objective of Attacker

The attacker’s goal is to distort the forecasted load as much
as possible in a certain direction, e.g., to either increase or
decrease forecasted values. Consider the task of training an
accurate load forecasting models, where estimation of θ is

given by minimizing the L1-norm of the difference between
model predictions and ground truth values:

min
θ

1

T

T∑
t=1

||fθ(Xt−H , ...,Xt)− Lt+k||1 (1)

where during training, ground truth of historical records on
Xt and Lt+k are used; during testing and real-world system
implementations, we are using Xt which are coming from
weather forecast as input features. Once the model is learned,
it can be applied in a rolling-horizon fashion.

In order to distort the output forecast values from the trained
model based on (1), the attacker actually has two choices of
inserting attacks: to attack Xt or to attack θ. While trained
model θ itself is often safely kept by the operators, system
operator has to use external data such as weather forecasts
Xtempt as input features for fθ. This actually provides a
backdoor for the attacker, whose goal is to inject perturbations
into the weather forecasts coming from external services.
By generating adversarial input data X̃

temp

t for fθ(·), model
predictions are modified adversarially. We use γ = {−1, 1}
to denote the chosen attack direction by attackers. If γ = 1
(γ = −1), the attacker tries to find X̃ to decrease (increase) the
load forecasts values. Since load values are always positive,
the attacker’s goal is to find X̃ that minimizes the value of
γfθ(X̃t−H , ..., X̃t).

B. Attacker’s Knowledge

We consider two attack scenarios, white box and black-
box attacks. In the white-box settings, the attacker is assumed
to know exactly the model parameters θ. This is a strong
assumption in the sense that load forecast model fθ(·) is
fully exposed to the attacker. On the contrary, in the black-
box setting, the attacker only knows which family of load
forecasting model has been applied (e.g., NN or RNN), but is
blind to the forecasting algorithms and has no knowledge of
any parameters of fθ. We assume the attacker only has query
access to the load forecasting model2. That is, the attacker
could query the implemented load forecasting model by using
different values of input features for a limited number of times,
and then try to get insights on how fθ works.

C. Attacker’s Capability

From the attacker’s perspective, it is necessary to construct
attack injections while avoid being detected by the system
operators’ bad data detection algorithms. We consider several
realistic constraints for attacker’s capability: it could be upper
bounded by the maximum number of perturbed entries in
the input data, by the average deviations on all features, or
by the largest deviation from the clean data. Mathematically,
the attacker wants to keep ||X̃tempt − Xtempt ||p bounded,
where p can take different values such as 0, 1,∞ to express
certain norm constraints corresponding to different detection
countermeasures.

2Such query access assumption is possible in many forecast-as-a-Service
businesses, e.g., SAS energy forecasting and Itron forecasting.
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In summary, we formulate the model of attackers as the
following optimization problem:

min
X̃temp

t−H ,...,X̃temp
t

γfθ(X̃t−H , ..., X̃t) (2a)

s.t. ||Xtempt−i − X̃
temp

t−i ||p ≤ ε, i = 0, ...,H (2b)

Note that there is a parallel between the forecast problem
(1) and attack problem (2), where the objective’s optimization
directions and optimization variables are exactly in the oppo-
site directions: forecasting model works on model parameters
to minimize forecast errors, while attacker works on model
inputs to maximize the errors to targeted directions. However,
due to lack of model knowledge in the black-box setting, it is
a challenging task for attackers to find efficient attack input
X̃
temp

via (2). In the next subsection, we will show a black-
box attack method generally working with attacker’s knowl-
edge coming from query access to the forecast algorithm.

D. Black-Box Attack

Under the case of white-box where model parameters are
known to the attacker, it is possible to find the attack input
via solving (2). For the convenience of notations, we omit the
superscript on X in some of the following paragraphs, and in-
troduce the generalizable attack methods not only suitable for
attacking temperature forecasts, but also suitable for injecting
false data into other features.

Since most state-of-the-art load forecasting algorithms use
complex models such as neural networks, the attacker’s prob-
lem (2) is nonconvex and furthermore, there is no closed-
form solution for X̃t−H , ..., X̃t. Nevertheless, an attacker can
still find some attack vectors iteratively by taking gradients
with respect to each time step’s temperature values. Even
though this may not find the optimal solution to (2), because
of the highly nonconvex nature of the forecasting model, a
slight (suboptimal) perturbation of the input features would
drastically change the forecast output.

Based on (2), we define a loss function L with respect to
each time step’s feature X̃t−i, i = 0, ...,H . Then the attacker
iteratively takes gradients of L to find the adversarial input
X̃t−i. The constraints in (2b) is included in the loss function
using a log-barrier:

L (X̃t−i) = γfθ(X̃t−H , ..., X̃t)−β log(ε−||Xtempt−i −X̃
temp

t−i ||p)
(3)

where β is the weight of the barrier term. Since there are a
large number of parameters and input features in many load
forecasting algorithms, it can be computationally expensive
to compute the exact gradient values for each input feature.
We follow a simpler method in [19] to only update the attack
features based on the sign of the gradient at each iteration j:

X̃
(j+1)

t−i = X̃
(j)

t−i − α · sign(OX̃(j)
t−i

(L (X̃
(j)

t−i))) (4)

where α controls the step size for updating adversarial tem-
perature values. The resulting adversarial temperature vector
is obtained by applying (4) for several times.

Under the black-box setting where OX̃(j)
t−i

(L (X̃
(j)

t−i)) is not
able to compute, we assume attacker is able to query the load
forecasting algorithm for a limited number of times, and it
is still possible to construct adversarial temperature inputs by
using queries to estimate the gradients. In Figure 1(b) we show
the schematic on generating adversarial temperature instances
via querying. For k-th dimension of the input feature at time
stamp t − i, X̃

j+1

k,t−i, the attacker needs to query the load
forecasting system on each feature entry to calculate the two-
sided estimation of the gradient of fθ:

OX̃k,t−i
fθ(X̃) ≈ fθ(X̃ + δek)− fθ(X̃− δek)

2δ
(5)

where ek is a d-dimensional vector with all zero except 1
at k-th component, and δ takes a small value for gradient
estimation. Once the gradient is estimated for each dimension
of temperature features, we can follow the same method of (4)
to iteratively build the adversarial features using the estimated
gradient vectors:

X̃
(j+1)

t−i = X̃
(j)

t−i − αγ · sign(OX̃t−i
fθ(X̃

(j)
)). (6)

To satisfy norm constraints on the allowed perturbation of
X̃, the attacker projects the adversarial data back into the
pre-defined norms after each iterative attack step. As shown
in Figure 2, the output load forecasts deviate a lot from
the ground truth values, while temperature perturbations are
constrained within attacker’s capability. In [23], techniques
on reducing number of queries are discussed for attacking an
image classifier, which may also further improve the query
efficiency of load forecasting attacks.

IV. ATTACKS ON SYSTEM OPERATIONS

In this section, we illustrate the attacks on load forecasting
input features could further threaten power system operations,
and propose a realistic attack strategy for the attacker under
attack budgets on number of compromised nodal forecasts.

A. Attack Objectives

We assume the attacker could only inject constrained attacks
in the day-ahead planning stage. Under the day-ahead load
forecasts L̂td for |D| loads in the networks, the UC problem is
to find the generation schedule and dispatch for |G| generators
while satisfying reserve and system operation constraints:

min
u,p

C(p) + S(u) (7a)

s.t.
∑
g∈G p

t
g =

∑
d∈D L̂

t
d, ∀t ∈ T (7b)

utip
min
g ≤ ptg ≤ utgpmax

i , ∀g ∈ G, ∀t ∈ T (7c)

fmin
l ≤ f tl ≤ fmax

l ,∀l ∈ F,∀t ∈ T (7d)∑
g∈g(d) p

t
g +

∑
k∈δ(d) f

t
k = L̂td, ∀d ∈ D, t ∈ T (7e)

utg − ut−1g = ztg − ytg, ∀g ∈ G, t ∈ T (7f)∑t
τ=t−tup

g +1 z
τ
g ≤ xtg, ∀g ∈ G,∀t ∈ T (7g)∑t

τ=t−tdn
g +1 z

τ
g ≤ 1− xtg, ∀g ∈ G,∀t ∈ T (7h)

−Rdn
g ≤ pt+1

g − ptg ≤ Rup
g , ∀g ∈ G (7i)

utg, z
t
g, y

t
g ∈ {0, 1}, ∀g ∈ G, t ∈ T (7j)
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Fig. 2: Visualization of 300 hours forecasts based on original and adversarial temperature data for the aggregated load of Switzerland.
The load forecasting model is a recurrent neural networks, while attack perturbations on test dataset are generated by using the gradient
estimation method. The attack tries to minimize the load in the first 150 hours and to maximize the load in the latter 150 hours. (a).
Load forecasting results; (b). false data injections on temperature.

where δ(d) is the set of lines connected to node d; utg is the
binary decision variable of the commitment status of generator
g at time t, with 1 indicating g is online; ptg is the real
power output of generator g at time t; all the utg’s and ptg’s
are collected together into vectors u and p; C(p) and S(u)
represent the dispatch costs and startup and shutdown costs,
respectively, of all the generators in all periods; the constraints
are system-wide power balance constraint (7b), generation
limits constraints (7c), line flow limits (7d), power balance
at each node (7e), generator logical constraint (7f), minimum
up time constraint (7g), minimum down time constraint (7h)
and ramping constraints (7i). We also keep a fixed reserve
margin throughout the simulation. Once solved, the operator
gets the schedule for the set of online generators Gt at each
time t.

The attacker injects X̃ to a group of compromised load
forecasts, such that the nodal load forecasts maliciously change
from L̂td to L̃td. The attacker is not only constrained by the
average deviations upon X̃ (Equation (2)), but also constrained
on number of compromised loads Nadv that are allowed to
inject perturbations throughout the day. From the attacker’s
perspective, it is then most harmful to find a constrained
adversarial day-ahead commitment schedule G̃t via L̃td, which
maximizes the solution for the following real-time ED:

min
pt,LSt

C(pt) + C(LSt) (8a)

s.t.
∑
g∈Gt

ptg +
∑
d∈D LS

t
d =

∑
d∈D L

t
d, (8b)

pmin
g ≤ ptg ≤ pmax

g , ∀g ∈ G̃t (8c)

fmin
l ≤ f tl ≤ fmax

l ,∀l ∈ F,∀t ∈ T (8d)∑
g∈g(d) p

t
g +

∑
k∈δ(d) f

t
k = Ltd,∀d ∈ D, t ∈ T (8e)

where from the system operator’s perspective, ED aims to find
the real power dispatch at time t, pt, that minimize the dis-
patch costs at time t, C(pt), considering system-wide power
balance constraint (8b), generation limits constraints (8c), line
flow limits (8d) and power balance at each node (8e).

B. Attack Strategies
Under normal operating conditions, the load forecasting

algorithms provide accurate forecasts on day-ahead load for
system operators to solve (7). When the system is under
attack, the attacker chooses a group of load buses to inject
adversarial temperature forecasts, such that generation sched-
ule coming from day-ahead planning stage is deviating from
the normal schedule. Such adversarial generation schedules
are likely to cause malicious operation patterns, e.g., increased
system costs, load shedding, no feasible generation dispatch
or violation of ramping constraints. Essentially, the attacker
wants to answer the following questions to find the attacks:
• Which group of load buses should be compromised to

inject X̃?
• How to generate L̃tj , t = 1, ..., T for compromised load

bus j, such that (8) is maximized?
Under the case all system parameters are known, the at-

tacker’s optimization problem is tri-level with integer con-
straints, which is a very challenging problem to solve. Rather
than the standard approach through KKT conditions, we design
a modified greedy search algorithm for the attacker to find
the most vulnerable loads that cause system-level misoper-
ations. As described in Algorithm 1, the attacker follows
a modified best-first search algorithm to implement attacks
on compromised nodal forecasts iteratively [24]. For each
iteration, the attacker checks the lines and generators which
are approaching operating limits (e.g., line flow capacity,
generation capacity), and finds the most vulnerable load j
based on neighboring lines and generators. Then the attacker
raises X̃j and ˜̄Xj which maximizes and minimizes the load
forecasts respectively. By solving (7) using the resulting L̃j
and ˜̄Lj , the attacker checks which candidate attack is more
prone to make day-ahead commitment schedule G̃t different
from Gt and keeps it as L̃j in this iteration, while j is added
to the set of compromised loads L̃.

When the attacker does not know the parameters of under-
lying system such as network topology, line flow limits, each
generator’s capacity and ramp constraints, it is not possible
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for the attacker to find the optimal attacks, and the attacker
just randomly chooses a set of loads to attack using either X̃j

or ˜̄Xj for j ∈ L̃. In the next section, we will show attacks on
real-world load data upon IEEE standard systems that reveal
the vulnerabilities brought by either strategic or random load
forecasting attacks.

Algorithm 1 Best-First Search

Input: Forecasted loads L1, L2, ...L|D| ∈ R|D|×T
Initialize: Sets of Compromised Loads L̃← ∅
Initialize: Maximum Temperature perturbations ε
Initialize: Number of compromised loads k = 0

Solve UC under normal forecasts
while Gt == G̃t, t = 1, ..., T and k ≤ Nadv do

Find the most vulnerable node j and attack direction
Gradient Estimation attacks to find L̃j
L̃← j
Solve (7) to get G̃t, k+ = 1

end while
Solve (8) in real-time with G̃t

V. CASE STUDIES

In this section, we show a detailed simulation on real-world
Swiss load data, and show the threats posed by our black-box
data injection attacks on both the load forecasting algorithm
itself and the power system operations. Thorough evaluations
on 14-bus system indicate that proposed attacks cause load
shedding with very high probability, while tests on 118-bus
system indicate by compromising a small portion of nodal
load forecasts, the attacker can cause security threats over the
whole networks.

A. Experimental Setup

Dataset Description: We collected and queried hourly
Swiss actual load data from European Network of Trans-
mission System Operators for Electricity(ENTSO-E)’s API3

ranging from Jan 1st, 2015 to May 16th, 2017. The nominal
load values are in the range of [6, 500MW, 9, 500MW ]. We
followed [25] to collect day-ahead historical weather forecasts
coming from major cities in Switzerland such as Zurich, Basel,
Lucerne and etc. All the weather data were queried from Dark
Sky API 4. We also collected other indicator features Xindex,
such as one-hot vectors of hour of day, weekdays and seasons.
We evaluated the attack threats on split-out test data, and the
forecast model parameters are kept away from the attacker
throughout the black-box simulations.

Power Systems Setup: We set up the IEEE 14-bus and
IEEE 118-bus to study the system vulnerabilities brought by
load forecasting attacks [26]. The grid has a total capacity
of 15, 500MW and 14, 949.3MW respectively, which are
both over 1.5 times of yearly peak load. We set the spinning
reserve requirement as 3% of the total forecasted demand
based on [27]. The models of UC and ED are implemented in

3https://transparency.entsoe.eu/
4https://darksky.net/forecast/47.3769,8.5414/us12/en

Python using PyPSA [28], and these two modules are directly
interfaced with the load forecasting and attack algorithms
using Tensorflow [29]. No load shedding occurs when clean
load forecasts are used.

Model Training and Attack Implementation: We set up
an RNN with 3 layers for day-ahead load forecasting, and
use standard stochastic gradient descent methods for model
training [30]. Once the validation error converged, our RNN
model reports an 1.58% test error in mean absolute percentage
error (MAPE), which are comparable to the errors reported
in several recent studies on load forecasting [7], [8]. We use
L∞ constraints on the attacker’s capability (2b), such that the
attacker is constrained by the maximum deviation of perturbed
temperature values.

Fig. 3: The forecast MAPE under attacks to increase the load and
attacks to decrease the load using white box attacks and gradient
estimation attacks. Simulation are run for three times with
different random seeds, and shaded area denotes the variance.

B. Load Forecasting Performance

We calibrate and compare the load forecasting model per-
formance with and without adversarial attacks on test datasets.
Though the forecasting model exhibits good performances
on clean test data, we inject different level of perturba-
tions generated by gradient estimation method, and
found the forecasting performance decrease drastically as
the adversarial perturbations become larger. In Figure 2 we
visualize the RNN’s load forecasting results for 300 hours
using gradient estimation algorithm with maximum
perturbation on temperature of 1F and 5F respectively. The
attacker tries to increase the load in the first 150 hours, and
to decrease the load in the latter hours. We observe that the
algorithm finds the correct attack direction to either increase
or decrease the load. What’s more, with only 1F deviation
on temperatures, the load forecasts changes over 500MW at
some time steps. When the attacker increases the perturbation
to 5F , large forecasts error over 1, 200MW are observed
for the Swiss load. The temperature profile before and after
attack still looks similar, which could avoid system operators’
security inspection (Figure 2(b)). In Figure 3 we show by
either attacking to increase the forecasted loads or attacking to
decrease the forecasted loads, the gradient estimation
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attacks could achieve similar results compared to its white-
box counterparts. More essentially, few degrees of malicious
perturbations have caused large deviations on forecasted loads.

Line Capacity

Fig. 4: IEEE 14-bus threats visualization. (a). An example showing
that forecasts under attack would cause generation limits violations
when real loads exceed total generation capacity; bars indicate
generators’ available capacity. (b). An example showing that forecasts
under attack would cause violation on ramp constraints during
economic dispatch; bars indicate generators’ available total up-ramp
capabilities. Maximum allowed perturbations are 4F . (c). An example
showing that line flow exceeds limits.

C. Impacts of Attacks on System Operations

We find small adversarial perturbations over load forecast-
ing input features even cause severe consequences on the
power system operations. We are particularly interested in
the case when G̃t is different from Gt that causes infeasible
solution for ED without load shedding. In Figure 4, we
visualize different constraint violations when ED is solved.

We ran a thorough evaluation for 122 test days on the 14-
bus system, and evaluate if the attackers could cause load
shedding under different level of knowledge and capabilities.
In Figure 5, we compare the number of days attacker cause
load shedding with or without system topology information. In

Total 122 Simulated Days
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Fig. 5: Load shedding caused by load forecasting attacks on IEEE
14-bus test case. For the 122 test days using Swiss load data,
we compare the attack results when attacker either knows or does
not know network topology. Larger perturbations on temperatures
and extra information on topology helps the attacker to cause load
shedding with fewer compromised loads.

both cases, with larger perturbations added to the temperature
forecasts, it is more likely to get an infeasible commitment
schedule that causes load shedding. At one extreme, when
the attacker knows network topology and is able to inject a
5F perturbation strategically on compromised load based on
Algorithm 1, load shedding occurs on more than 100 of the test
days. At the other extreme, the attacker causes over 40 days
having shedded loads by only compromising one nodal load
forecasts (Figure 5(b)). More surprisingly, when the attacker
does not know network topology and just selects compromised
load randomly using either X̃j or ˜̄Xj , the system operation is
still very vulnerable to the proposed load forecasting attacks
(Figure 5(a)).

To furthur evaluate the attack’s threats brought upon power
system operation, one-day attack example on 118-bus test case
is illustrated in Figure 6. We assume the attacker is able to
design greedy attacks based on known topology information
in this case, and show that by only compromising a small
subset of nodal load forecasts, the resulting day-ahead commit-
ment schedule under attacks is shutting off several generators
compared to that under normal forecasts. The network already
observes a series of operation threats such as overflown lines,
on-capacity generators and load shedding.

VI. DISCUSSION AND CONCLUSION

In this paper, we studied the potential vulnerabilities gen-
erally existing in many load forecasting algorithms. Such
vulnerabilities have been overlooked by the development of
most if not all forecasting techniques. We designed a data
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5 Compromised Loads5 Compromised Loads 10 Compromised Loads

Over�own Lines

Generators on Capacity

Shedded Loads

Turned o� Generators
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Fig. 6: Threats posed by black-box attack on load forecasting algorithm in the IEEE 118-bus test case. By greedily attacking the nodal
day-ahead load forecasts that leads to malicious commitment schedule, the attacker can incur a series of system operations threats such as
load shedding, a number of overflown lines and on-capacity generators. For the bottom star-marked load shedded bus, the generator is off
in both sub figures.

injection attack which does not require parameters of the
forecast algorithms, but leads to large increase in forecast
errors. The proposed attack could adversarially impact the
decision making process for system operators. Experiments on
real-world load datasets demonstrate such threats over power
system operations. Such threats model along with damage
analysis indicate that there needs more security evaluations in
the design and implementation of load forecasting algorithms.
In order to mitigate the damages brought by such false data
injection attacks, countermeasures such as anomaly detection
as well as other robust statistics are strongly recommended.

REFERENCES

[1] G. Gross and F. D. Galiana, “Short-term load forecasting,” Proceedings
of the IEEE, vol. 75, no. 12, pp. 1558–1573, 1987.

[2] B. F. Hobbs, S. Jitprapaikulsarn, S. Konda, V. Chankong, K. A. Loparo,
and D. J. Maratukulam, “Analysis of the value for unit commitment of
improved load forecasts,” IEEE Transactions on Power Systems, vol. 14,
no. 4, pp. 1342–1348, 1999.

[3] J. G. De Gooijer and R. J. Hyndman, “25 years of time series forecast-
ing,” International journal of forecasting, vol. 22, no. 3, pp. 443–473,
2006.

[4] E. Ceperic, V. Ceperic, A. Baric et al., “A strategy for short-term load
forecasting by support vector regression machines,” IEEE Transactions
on Power Systems, vol. 28, no. 4, pp. 4356–4364, 2013.

[5] J. Contreras, R. Espinola, F. J. Nogales, and A. J. Conejo, “Arima
models to predict next-day electricity prices,” IEEE transactions on
power systems, vol. 18, no. 3, pp. 1014–1020, 2003.

[6] H. S. Hippert, C. E. Pedreira, and R. C. Souza, “Neural networks for
short-term load forecasting: A review and evaluation,” IEEE Transac-
tions on power systems, vol. 16, no. 1, pp. 44–55, 2001.

[7] W. Kong, Z. Y. Dong, Y. Jia, D. J. Hill, Y. Xu, and Y. Zhang, “Short-term
residential load forecasting based on lstm recurrent neural network,”
IEEE Transactions on Smart Grid, 2017.

[8] F. L. Quilumba, W.-J. Lee, H. Huang, D. Y. Wang, and R. L. Szabados,
“Using smart meter data to improve the accuracy of intraday load
forecasting considering customer behavior similarities.” IEEE Trans.
Smart Grid, vol. 6, no. 2, pp. 911–918, 2015.

[9] P. Wang, B. Liu, and T. Hong, “Electric load forecasting with recency
effect: A big data approach,” International Journal of Forecasting,
vol. 32, no. 3, pp. 585–597, 2016.

[10] P. McDaniel and S. McLaughlin, “Security and privacy challenges in
the smart grid,” IEEE Security & Privacy, no. 3, pp. 75–77, 2009.

[11] Y. Mo and B. Sinopoli, “Secure control against replay attacks,” in
Communication, Control, and Computing, 2009. Allerton 2009. 47th
Annual Allerton Conference on. IEEE, 2009, pp. 911–918.

[12] O. Kosut, L. Jia, R. J. Thomas, and L. Tong, “Malicious data attacks
on smart grid state estimation: Attack strategies and countermeasures,”
in Smart Grid Communications (SmartGridComm), 2010 First IEEE
International Conference on. IEEE, 2010, pp. 220–225.

[13] Y. Liu, P. Ning, and M. K. Reiter, “False data injection attacks against
state estimation in electric power grids,” ACM Transactions on Informa-
tion and System Security (TISSEC), vol. 14, no. 1, p. 13, 2011.

[14] G. N. Ericsson, “Cyber security and power system communicationessen-
tial parts of a smart grid infrastructure,” IEEE Transactions on Power
Delivery, vol. 25, no. 3, pp. 1501–1507, 2010.

[15] L. Xie, Y. Mo, and B. Sinopoli, “False data injection attacks in electricity
markets,” in Smart Grid Communications (SmartGridComm), 2010 First
IEEE International Conference on. IEEE, 2010, pp. 226–231.

[16] S. Tan, W.-Z. Song, M. Stewart, J. Yang, and L. Tong, “Online data
integrity attacks against real-time electrical market in smart grid,” IEEE
Transactions on Smart Grid, vol. 9, no. 1, pp. 313–322, 2018.

[17] J. Luo, T. Hong, and S.-C. Fang, “Benchmarking robustness of load
forecasting models under data integrity attacks,” International Journal
of Forecasting, vol. 34, no. 1, pp. 89–104, 2018.

[18] Y. Chen, Y. Tan, and B. Zhang, “Exploiting vulnerabilities of load fore-
casting through adversarial attacks,” in 2019 ACM E-Energy Conference.
ACM, 2019.

[19] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,” arXiv preprint
arXiv:1312.6199, 2013.

[20] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami, “The limitations of deep learning in adversarial settings,”
in Security and Privacy (EuroS&P), 2016 IEEE European Symposium
on. IEEE, 2016, pp. 372–387.

[21] Y. Chen, Y. Tan, L. Zhang, and B. Zhang, “Vulnerabilities of power
system operations to load forecasting data injection attacks,” arXiv
preprint arXiv:1906.04926, 2019.

[22] D. S. Kirschen and G. Strbac, Fundamentals of power system economics.
John Wiley & Sons, 2018.

[23] A. N. Bhagoji, W. He, B. Li, and D. Song, “Practical black-box attacks
on deep neural networks using efficient query mechanisms,” in European
Conference on Computer Vision. Springer, Cham, 2018, pp. 158–174.

[24] R. Dechter and J. Pearl, “Generalized best-first search strategies and
the optimality of a,” Journal of the ACM (JACM), vol. 32, no. 3, pp.
505–536, 1985.

[25] D. L. Marino, K. Amarasinghe, and M. Manic, “Building energy
load forecasting using deep neural networks,” in Industrial Electronics
Society, IECON 2016-42nd Annual Conference of the IEEE. IEEE,
2016, pp. 7046–7051.

[26] R. Christie, “Power systems test case archive,” Electrical Engineering
dept., University of Washington, 2000.



9

[27] Y. Rebours and D. Kirschen, “What is spinning reserve,” The University
of Manchester, vol. 174, p. 175, 2005.

[28] T. Brown, J. Hörsch, and D. Schlachtberger, “PyPSA: Python for
Power System Analysis,” Journal of Open Research Software, vol. 6,
no. 4, 2018. [Online]. Available: https://doi.org/10.5334/jors.188

[29] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: a system for large-
scale machine learning.” in OSDI, vol. 16, 2016, pp. 265–283.

[30] L. Bottou, “Large-scale machine learning with stochastic gradient de-
scent,” in Proceedings of COMPSTAT’2010. Springer, 2010, pp. 177–
186.

[31] N. Papernot, P. McDaniel, and I. Goodfellow, “Transferability in ma-
chine learning: from phenomena to black-box attacks using adversarial
samples,” arXiv preprint arXiv:1605.07277, 2016.

[32] H. Hosseini, Y. Chen, S. Kannan, B. Zhang, and R. Poovendran,
“Blocking transferability of adversarial examples in black-box learning
systems,” arXiv preprint arXiv:1703.04318, 2017.

[33] Y. Chen, Y. Tan, and D. Deka, “Is machine learning in power systems
vulnerable?” in 2018 IEEE International Conference on Communica-
tions, Control, and Computing Technologies for Smart Grids (Smart-
GridComm). IEEE, 2018, pp. 1–6.

[34] K. Chen, K. Chen, Q. Wang, Z. He, J. Hu, and J. He, “Short-term load
forecasting with deep residual networks,” IEEE Transactions on Smart
Grid, 2018.

[35] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltz-
mann machines,” in Proceedings of the 27th international conference on
machine learning (ICML-10), 2010, pp. 807–814.

APPENDIX

A. Details on Learn and Attack Algorithm

In addition to the gradient estimation attack intro-
duced in the main text, we also consider the learn and
attack setting, where we assume the attacker does not
have access to the model parameters, and there is no query
access to the model. The only knowledge the attacker has is
a historical dataset D̃tr, which includes same features under
same distributions as data set Dtr used to train the load
forecasting model5. The proposed attack algorithm consists
of a training phase and an attack phase as shown in Figure 7.
In the training phase, the attacker trains substitute model fθ̃
based on D̃tr to minimize the training loss. In the attack phase,
the attacker pretends that the substitute model is the true load
forecast model and performs white-box attacks on it to find
the attack vectors. This strategy is based on the assumption
that the substitute model behaves similarly to the true model
not only for the training data X, but also for the attack vector
X̃. Then by injecting X̃ into the true load forecasting model,
the forecast values go to attacker’s desired directions.

It is useful to evaluate the transferability of proposed attacks
across different set of models fθ and fθ̃. The phenomenon
of transferability in adversarial attacks for machine learning
models have been discussed in [31], [32], where adversarial
instance generated using fθ̃ can be also treated as an adver-
sarial instance by fθ with high probability. The theoretical
understanding of why attacks transfer remains an open ques-
tion and is out of scope for this paper. In Figure 8 we show
such transferability also exists in the load forecasting model
using same test case on Switzerland load forecasting. The
temperature inputs are generated by implementing the iterative
gradient update based on a substitute model under L∞-norm

5In Learn and Attack setting, we make assumption that the attacker know
the family of targeted load forecasting model, e.g., a feedforward neural
networks or a Recurrent Neural Networks.

of attack perturbations, yet such adversarial temperature values
also mislead the (unknown) true load forecasting model to be
wildly inaccurate.
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Fig. 7: The attack schematic for learn and attack ap-
proach. During the training stage, the attacker uses historical
data to learn a substitute forecast model; during attack stage,
the attacker finds attack vector using substitute model and
transfers it to unknown targeted system.

B. Details on Best First Search Attack Selection

As described in Algorithm 1 in Section IV-B, since it is
computationally inefficient and challenging for the attacker to
solve a tri-level attack problem (attacker solves an adversarial
UC (7) using L̃tq , operator minimizes ED costs (8) using
G̃t, attacker maximizes ED costs (8) using G̃t), we propose
a modified best-first search algorithm [24] for attackers to
compromise a limited number of nodal forecasts. Essentially,
in order to solve the tri-level problem expressively to find
attack vectors, our proposed attack on networks iteratively
finds the most vulnerable node to inject attacks.

Suppose for |Q| loads in the network, the attacker can at
most Nadv nodal load forecasts to avoid detection by system
operators. Meanwhile, the constraints on attacker’s capabilities
described in Section III shall hold throughout data perturbation
attacks. If an attacker could cause the day-ahead UC schedule
G̃t, t = 1, ..., T using L̃tq, q = 1, ..., |Q|, t = 1, ..., T shift from
Gt, t = 1, ..., T , then it is expected the solution of ED will
change. There are several possible circumstances by using L̃tq:
• Increasing the load maliciously will possibly incur extra

system costs, such as starting to operate redundant gener-
ators, using more expensive generation combinations and
etc;

• Decreasing the load maliciously will possibly incur in-
feasble generation schedules during real-time dispatch,
since there may be fewer generators scheduled than
normal conditions, which will cause generators reach
capacity or line flow exceed limits;

• Decreasing the peak value of load maliciously will possi-
bly cause UC solver ignore peak values, which may cause
generators reach ramping limits.

In our proposed algorithm for attackers to find most vul-
nerable nodal forecasts and inject attack forecasts, we design
an iterative search scheme. At each iteration, the attacker
solves day-ahead UC (7) based on current L̃, and check
which generator’s schedule is most prone to change. Then the
attacker decides the next compromised load node j. Since it
is more possible to change UC schedule by chaning the load

https://doi.org/10.5334/jors.188
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Fig. 8: We show 300 hours forecasts based on original and adversarial temperature data for the aggregated load of Switzerland.
The load forecasting algorithm is an recurrent neural networks with inputs composed of past load, regional temperature
forecast values and weather indicators. The attack perturbations are generated by using the learn and attack method,
and it implements load maximization strategy in the first 150 hours and load minimization strategy in the latter 150 hours. (a).
Load forecasting results with temperature attack constraint of (maximum perturbations) 1F ; (b). load forecasting results with
temperature attack constraint of 5F .

profile to greater extents, the attacker then proposes two attack
samples X̃j and ˜̄Xj which minimizes and maximizes the nodal
forecasts respectively. Such adversarial nodal load forecast is
inserted into next iteration’s UC problem.

In our implementation, we simply find the prone-to-change
generation schedule based on following criteria:
• The generator’s dispatch during day-ahead UC is either

approaching to generation limit or reaching zero output;
• The line flow during day-ahead UC is approaching line

flow limits;
And simulation results indicate such search algorithm is

quite efficient to find the attack injections. Other criteria such
as ramping constraints and generation on-off limits could be
also utilized to find the most vulnerable nodal forecasts.

For the case when system topology and parameters are
unknown, the attacker just selects a random set of compro-
mised load and inject attacks perturbations using either X̃j

or ˜̄Xj for the compromised nodal loads. The result shown in
Fig. 5 validates that in the case without topology knowledge,
compromising the same number of loads are causing fewer
load shedding days than in the case when topology is known.

C. Details on Attacks Implementation

In addition to the results we have shown in the main texts
using RNN as load forecasting algorithm, we added ablation
study on different load forecasting algorithms, as well as attack
performance and computation time analysis.

1) Forecasting Method: Feed-Forward Neural Networks
A multi-layered, feed-forward neural networks (NN) has been
widely used to represent the nonlinearities between input
features and output forecasts [6]. For the input layer of neural
networks, each neuron represents one feature of training input,
and all features of past H steps (Xt−H , ...,Xt) are stacked
as the inputs. For each intermediate layer, NN could have
a tunable number of hidden units, which represent the input
feature combinations.

Recurrent Neural Networks As described in main texts,
RNN feeds each step’s input Xt sequentially, and outputs a
hidden unit to represent the feature combination of current
input and historical features. The last neuron outputs the
forecasted load values in the load forecasting attack [33].

Fig. 9: All three forecasting models, show convergence of
forecast error on validation data as training evolves. Shaded
areas show the variance of MAPE.

Long Short-Term Memory Long Short-Term Memory net-
work (LSTM) is designed to deal with the vanishing gradient
problem existing in the RNN with long-time dependencies [7],
[34]. The major improvements over RNN are the design of
“forget” gates to model the temporal dependencies and capture
long time dependencies in load patterns more accurately.

2) Training and Attack Details: We set up all load forecast-
ing models using Tensorflow [29] package in Python. Standard
model architectures such as Dropout layers and nonlinear acti-
vation functions (e.g., ReLU or Sigmoid functions) are adopted
in the deep learning models [35]. Since all three networks are
set up to solve the load forecasting regression problem, we set
the first layer having most neurons, and decrease the number of
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Fig. 10: The forecast MAPE under (a). attacks to increase the load; and (b). attacks to decrease the load. Simulations are run
for three times with different random seeds for all three attacks, and shaded area denotes the variance.

Forecasts Models NN RNN LSTM

Number of Layers 4 3 3
Training Epochs 20 30 30

Hidden Units in First Layer 512 64 64

TABLE I: Model architectures and training configurations for
load forecasting algorithms used in the simulations.

Forecasts Error
(MAPE)

Clean Data Learn and
Attack

Gradient
Estimation

NN 1.68% 12.72% 13.09%
RNN 1.58% 9.82% 11.68%

LSTM 1.51% 9.04% 11.87%

TABLE II: Forecasts errors evaluated on clean test data and
adversarial data for 3 different forecast models. Allowed
maximum perturbations are 4F .

units in subsequent layers. Table I records our load forecasting
model setup. We split 80% of data as our training sets, and
use the remaining 20% of data on validating and evaluating
the load forecasting prediction accuracy, attack performance
and case studies on market operations. Such data collection
procedures could also be applied in an online fashion so that
attacker could inject real-time adversarial attacks into certain
load forecasting models.

As shown in Figure 9, all three load forecasting algorithms’
validation loss are converged during training, and we use
the trained model in the subsequent planning and operation
problem as well as the testbed for attack algorithms. Plots are
showing the mean and variance during 3 runs.

For the substitute model training of learn and attack
method, we keep the training set D̃ same as the load forecast-
ing model training set D . Decreasing the size of D̃ or using
different substitute dataset could decrease the performance
of learn and attack. Table II compares all three load
forecasting models’ performance using clean and adversar-
ial data. For both learn and attack and gradient
estimation algorithms, they distort all three load fore-
casting models’ output and increase model’s forecast error.
Gradient estimation attack works generally better for
all three models, and this is due to estimating the gradients
via querying fθ directly is more accurate than calculating it

from the substitute model and transferring to fθ.
In Figure 10, we evaluate RNN’s load forecasting per-

formance under two attack strategies: load maximization or
load minimization. We observe gradient estimation
attack causes similar MAPE compared to white box attack.
The load decreasing attack is normally more successful than
load increasing attack in terms of MAPE. Load minimization
attack is more harmful results than load increasing ones, since
increased forecasts only let system operators start up more
generations, while adversarially decreasing the forecasted load
leads to wrong generation decisions that fails to meet the larger
real load.

Forecasts Models NN RNN LSTM

Training Time 12.988 47.998 143.830
Learn and Attack 0.133 0.157 0.579

Gradient Estimation Attack 0.082 0.119 0.253

TABLE III: Computation time (in seconds) for load forecasting
model training and implementation time for attacks.

3) Computation Time: We recorded the computation time
for neural network training and the implementation time for
two proposed attack algorithms. All time are recorded on a
laptop with Intel 2.3GHz Core i5-8259U 4 Cores CPU and
8 GB RAM. The training time for NN, RNN and LSTM
are calculated for 20, 30 and 30 epochs respectively. The
implementation time for the attacks are averaged over all test
instances. We observed that learn and attack approach
takes longer time than gradient estimation due to the
longer time taken to calculate gradient signs over the whole
neural networks; and as LSTM includes more complicated
model architectures, it takes longer time to find the adversarial
instance. Yet compared to the long model training time and
application scenarios of day-ahead forecasts, the attacker is
still efficient enough to find the adversarial perturbations.
Such efficient computation enables attacker to find the most
vulnerable loads or to attack the system operations in very
short time.

4) Code Availability: The implementation code for fore-
casts, attacks, and power system operations are all available
at https://github.com/chennnnnyize/load forecasts attack.

https://github.com/chennnnnyize/load_forecasts_attack
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