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Abstract

Brain-machine interface (BMI) devices have unparalleled potential to restore functional 

movement capabilities to stroke, paralyzed and amputee patients. Although BMI systems have 

achieved success in a handful of investigative studies, translation of closed-loop neuroprosthetic 

devices from the laboratory to the market is challenged by gaps in the scientific data regarding 

long-term device reliability and safety, uncertainty in the regulatory, market and reimbursement 

pathways, lack of metrics for evaluating and quantifying performance in BMI systems, as well as 

patient-acceptance challenges that impede their fast and effective translation to the end user. This 

review focuses on the identification of engineering, clinical and user's BMI metrics for new and 

existing BMI applications.

I. Introduction

The 2013 International Workshop on Clinical Brain--Neural Machine Interface (BMI) 

Systems was held on February 25–27, 2013 at the Houston Methodist Research Institute, 

Houston, Texas [1]–[3]. The purpose of the workshop was to identify and discuss challenges 

and potential solutions leading to the development and deployment of interface systems 

based on neural activity in clinical applications. A review of the workshop written by 

participating trainees can be found in [1].

The challenges identified at the workshop fell into 6 major categories: 1) knowledge gaps in 

the scientific data regarding long-term device reliability and safety, 2) uncertainty in the 

regulatory, market and reimbursement pathways, 3) lack of engineering, clinical and 

patient's metrics for evaluating and quantifying performance in BMI systems, 4) patient-

acceptance challenges that impede fast and effective translation to the end user, 5) Lack of 

established mechanisms for curated data-sharing, and 6) lack of comprehensive clinical, 

technical and regulatory education and training for the future BMI work force.

In this invited paper, the focus is on the challenge of identifying and defining acceptable 

BMI metrics for assessing and quantifying performance of new and existing BMI systems. 

The exposition below summarizes the discussion by participants at the Houston's workshop 

[1]. Although efforts have been made to provide an impartial and comprehensive review of 
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the spectrum of opinions voiced by the participants at the workshop, the author assumes 

responsibility for any errors or omissions in this short review.

The identification and selection of suitable metrics to assess BCI performance has been 

recognized as an important challenge not only to properly evaluate the BMI device but also 

to allow comparisons between different BMI systems or between similar but non-identical 

tasks [4]. In this regard, public efforts have been recently made, including the Workshop on 

BCI metrics at the Asilomar meeting held on June 3–7, 2013 [5], which is summarized in 

[6]. A recent study have also addressed some challenges and limitations in the development 

and selection of BCI performance metrics [7], including developing efficient measurement 

techniques that adapt rapidly and reliably to capture a wide range of performance levels and 

the identification of BCI subsystems that may potentially restrict the maximum systems 

level performance, which is a critical factor for considerations of device interoperability. As 

the definition of metrics for BMI systems is a work in progress, any interested party is 

encouraged to contact the author to provide comments, suggestions or otherwise get 

involved in on-going efforts for defining standard metrics for BMI systems. Due to space 

limitations, the reader is referred to introductory articles on brain-computer interfaces [8], 

shared control [9], and information transfer rate in BCIs for communication [10].

II. Definition of BMI Metrics

A. Evaluating Patient-Centered Outcomes in BMI Systems

The ultimate goal for all BMI technology is to improve the quality of life and well being of 

the patient populations who use the technology while reducing the cost of healthcare. 

Current clinical outcome measures may not reflect the overall benefit that the BMI systems 

brings to the patient nor they accurately capture the functional gains as interpreted by the 

patient in a real-world context. Horwitz and colleagues [11] have emphasized that clinical 

research studies should be designed to more closely approximate real-world use of 

therapeutics and biomedical devices. They note that in the pursuit of a valid answer, 

randomized controlled trials "that emphasize efficacy under near-ideal conditions have 

become a preferred strategy for both regulators (who need to approve medicines and devices 

for clinical use) and investigators (who design trials). When “efficacy trials” dominate, and 

studies that reflect real-world use of the treatment are reduced in importance, a surprising 

collateral effect is that the value attributed to the patient’s experience with their disease and 

its treatment is diminished" [11].

At the Clinical BMI workshop, participants agreed that different clinical populations such as 

stroke, ALS, amputees or SCI patients might prioritize differently their needs, challenges, 

and have different benefit/risk profiles. For example, in terms of accepting a certain degree 

of invasiveness in the BMI system, or a desired operating speed of the BMI device. 

Moreover, patients may also evaluate BMI devices in regard to usability (e.g., maintenance 

requirements of the system, set-up time, cosmesis, etc.), functional gains as well as other 

psychological factors that influence patient's acceptance of the technology.

Participants at the workshop suggested that existing metrics could be adopted by the BMI 

community, including:
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1. The International Classification of Functioning, Disability and Health (ICF), which 

is a classification of health and health-related domains that also includes a list of 

environmental factors to address functioning and disability of an individual that 

occurs in an environmental context [12]. The ICF is the international standard to 

describe and measure health and disability. Importantly, metrics have both clinical 

and regulatory relevance and must address:

a. Determination of the neurological profile of individuals who are capable of 

using a specific BMI device (including the prosthetic device).

b. Determination of the incidence of adverse effects in the use of the BMI 

system.

c. Determination of the extent of mobility or function achieved by the use of 

the BMI system.

d. Determination of any measurable health benefits with the use of the BMI 

system.

e. Determination of improvement of quality of life with the use of the BMI 

system [29].

In regard to safety, it is important to note that robotic exoskeletons and other 

wearable prosthetics may impose unusual joint kinetics and kinematics that could 

potentially injure bone or skin, particularly in SCI or stroke populations that 

characteristically have accelerated osteopenia or osteoporosis, unusual spasticity 

patterns, abnormal movement synergy patterns, or contractures [15]. While 

impedance control, motion limited to the physiological range of motion and torque 

cut-offs can greatly mitigate risks and increase safety in upper and lower extremity 

robotics, cumulative experience is still very limited for mobility devices, 

warranting caution and careful consideration to appropriately apply this exciting 

new technology.

2. The System Usability Scale (SUS, [13]), which provides a “quick and dirty”, 

reliable tool for measuring the usability of a wide variety of products and services, 

including hardware, software, mobile devices, websites and applications. It consists 

of a 10-item questionnaire with five response options for respondents; from 

Strongly agree to Strongly disagree. The SUS has become an industry standard, and 

it is a very easy scale to administer to participants, and it can be used on small 

sample sizes with valid and reliable results [13].

3. The Technology Readiness Levels (TRL, [14]), which is a type of measurement 

system used to assess the maturity level of a particular technology. Each 

technology project is evaluated against the parameters for each technology level 

and is then assigned a TRL rating based on the projects progress. There are nine 

technology readiness levels. TRL 1 is the lowest and TRL 9 is the highest [14]. 

Importantly, the technology development process transitions throughout the life of 

the project, and a safety strategy input is required early in the project life cycle as 

part of the technology development process.
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B. Metrics for Evaluating Performance in BMI Systems

Ideally, BMI systems should be reliable, effective (i.e., BMI performance should be 

adequate for the target clinical population), robust, allow for multitasking, require minimal 

effort, and release attentional resources to other cognitive-motor tasks that the patient may 

want to get involved in, e.g., speech, eating, etc. Accordingly, engineering metrics for BMI 

performance should consider all these aspects:

B1. Reliability—The goal is to define metrics that can assess how reliably and robustly a 

closed-loop BMI can operate a wearable prosthetic. The reliability should be assessed on the 

complete system (including the patient in the loop), although reliability of system 

components may also be useful for modular designs. Unfortunately, with a few exceptions, 

reliability has not been a focus of prior research. Simeral et al [16] and Chadwick et al [17] 

have examined the stability and reliability of intra-cortical microelectrode array recordings/

decodes in a human with tetraplegia 1000 days post-implantation using performance 

measures in a cursor control task during 5 consecutive days [16] or the control of simulated 

2D arm reaching at days 1049, 1057 and 1080 post-implant [17]. Chao et al. examined the 

robustness of neural representations and signal -to-noise ratios (SNR) of ECoG recordings 

over a period of months using decoding of hand position and arm joint angles during 

reaching in non-human primates [18]. They found that decoding did not degrade 

significantly over this relatively short time, and reported that decoding performance and 

time between model generation and model testing were not negatively correlated. These 

studies however do not elucidate the system's reliability and robustness outside the short 

reporting periods nor inform us of any sources of failures encountered throughout the 

current lifetime of the implant.

In this regard, physics-of-failure analysis with respect to expected life cycle stresses & 

lifetime, syndromic monitoring studies, and the design sensor canaries for self-diagnostic of 

signal quality may be required for characterizing the reliability and robustness of a BMI 

prosthetic. In addition, methods for real-time anomaly detection and error correction, as well 

as methodologies for estimating model uncertainty using model performance data are 

needed. Some metrics that can be deployed are:

Reliability metric: The operational system availability of the BMI system, addresses the 

continued dependence of the patient on the neural interface for the execution of ADLs.

Availability metric: It reflects the probability that the system will operate satisfactorily at 

time t when called upon for use. It is expressed as the total system up time divided by the 

total operating hours. Of course, high reliability and availability electronics can be achieved 

on the basis of predicting the possible failure site, failure mode, and mechanism of 

bioelectronics systems. The detection of first faults during operation for fault resistance and 

fault tolerance with systems that are capable of monitoring and transmitting degradation 

related signals is important to determine possible future loss of functionality.

B2. Performance—It is generally agreed that the BMI literature and methods are difficult 

to evaluate and compare due to differing experimental protocols, evaluation metrics, 
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assumptions, source signals, use of shared control, number of electrodes or features, 

feedback modality used, length of training, type of decoding (neural classification vs. 

continuous time trajectory decoding, etc.) and even types of users tested [19]. Typically, 

engineering metrics for assessing decoding performance in BMI systems have been mostly 

limited to a few: 1) transfer of information by BMI systems [19]–[20], 2) accuracy (e.g. 

Pearson's correlation coefficients [21], or the signal to noise ratio (SNR) between the 

measured and the predicted decoder output using cross-validation techniques [22]), and less 

often, neural tuning or neural adaptation to BMI use [23].

1. Transfer of information by BMI systems (or information transfer rate, ITR). ITR 

(bits per sec) is a general evaluation metric devised for brain-computer interface 

systems (BCIs) for restoring linguistic communication such as P300 BCI spellers 

(see [19] for a review) or to evaluate performance in BMI systems for 2D cursor 

control [10], [20]. It also allows comparison of the performance of BCI systems, 

which have a different number of tasks [6], [7], [21]. Speier et al [19] summarize 

several limitations of the current use of ITR as a BMI metric: a) conditional 

probabilities for selection sequences have not been reported, b) information about 

types of errors in BCI for communication are not used to improve their selection 

(errors are either ignored or deleted; time outs in 2D BCIs limit quantification of 

performance), c) task constraints or 'shared control' are usually not factored in the 

quantification of BMI performance, and d) it is unclear how low the ITR would 

need to be in order to understand the BCI output. In addition, ITR assumes that 

there is only one information channel that can be used to extract information from 

the brain, and it is not clear how ITR could be used to quantify performance in a 

neuroprosthetic limb performing continuous decoding for robot control rather than 

neural discrete classification of targets.

2. With respect to BMI for cursor control, Tehovnik et al reviewed the literature and 

reported, "Typically, the bit rate of the [reviewed] BMI studies fell below 1 bit per 

second" (page 137, [20]). These studies included human and non-human primate 

subjects based on single cell, ECoG or EEG sources. Moreover, it was reported that 

the amount of information transfer with BMI saturates after about 50 neurons when 

using fixed electrode arrays. The limited performance however could be addressed 

by taking into account the limitations mentioned above for BCI for communication 

as they also apply to BCIs for cursor control.

3. Accuracy: While both synchronous and self-paced BMI systems based on discrete 

classification of neural signals have been evaluated using various metrics (bit rate, 

confusion matrix, sensitivity and specificity, and others; please see [21] for a 

detailed review), model-based continuous state decoders inferring continuous time 

kinematics or kinetics normally use a Kalman or Wiener filter to translate neural 

activity into motor commands [22], [24]. Performance evaluation is typically done 

off-line (e.g., during calibration or training of the decoder although some real-time 

variants have also been proposed that do not differentiate between training and 

performance) using cross-validation procedures with Pearson's correlation 

coefficient (r), the coefficient of determination (r2), or the SNR values used to 

assess the quality of the reconstructed kinematics or kinetics [22], [24]. One 
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limitation of off-line decoding is the observation that a BMI's prediction power 

does not necessarily translate into improved closed-loop BMI performance (see 

[25] for a discussion), and thus metric reporting on off-line decoding performance 

may not be a suitable metric for BMI systems. In recent closed-loop BMI-cursor 

control systems, accuracy has been evaluated using the error rate (ER), which 

measures the percentage of the runs where a target is missed (a target could be 

missed because either a time limit expired or a false target was selected, [26]). 

Existing standards could be incorporated in BMI metrics, including ISO 9241, part 

9 standard [27] for testing pointing device performance and user assessment as has 

been recently reported in a BMI system for point-and- click cursor control for 

humans with tetraplegia [26].

4. Neural tuning or adaptation: It has been noted that use of a BMI system may trigger 

or enhance neuroplasticity as the user learns to control the neuroprosthetic system 

or adapts to controlled perturbations within the BMI task environment ([23], for a 

review see [25]). As brain adaptation is a desirable property of BMI systems for 

assistive and rehabilitative applications, engineering and clinical metrics capturing 

neural tuning or adaptation, and relating those to clinically and user meaningful 

benefits may be useful in comparing closed-loop BMI systems. Metrics that 

examine how each neuronal unit (or electrode, or region of interest) modulates its 

firing rate (or neural activity) with respect to discrete and/or continuous states 

across sessions in BMI longitudinal studies are likely to provide the most useful 

information [26], [28].

II. Conclusions

The goal of a BMI system is to extract the intent or goals from the user's neural activity and 

to provide reliable control outputs to external devices leading to quantifiable functional 

gains. Evaluation of diverse BMI systems will require careful selection of user, clinical and 

engineering metrics, which could ultimately assist in the BMI development, comparison of 

BMI systems, and prediction of user acceptance of a given BMI system. In this short review, 

several metrics have been discussed, however, these metrics should be seen as 

complementary, and proper analysis of the closed-loop BMI system performance should 

consider them as a whole. Moreover, it should be stressed that it is not clear how these 

different metrics should be weighted in order to compare different alternative solutions, as 

this is clearly highly dependent on the application. Thus, the evaluation of these systems is 

inherently multidisciplinary and all relevant stakeholders, including end-users should be 

involved in it.
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