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Abstract— This paper introduces the inverse modeling con-
strained multi-objective evolutionary algorithm based on de-
composition (IM-C-MOEA/D) for addressing constrained real-
world optimization problems. Our research builds upon the
advancements made in evolutionary computing-based inverse
modeling, and it strategically bridges the gaps in applying in-
verse models based on decomposition to problem domains with
constraints. The proposed approach is experimentally evaluated
on diverse real-world problems (RWMOP1-35), showing supe-
rior performance to state-of-the-art constrained multi-objective
evolutionary algorithms (CMOEAs). The experimental results
highlight the robustness of the algorithm and its applicability
in real-world constrained optimization scenarios.

I. Introduction
A multi-objective optimization problem (MOP) is charac-

terized by a set of Pareto optimal solutions, representing a
compromise between the different objectives. Such solutions
form the Pareto set (PS) in the decision space with the
correspondent Pareto front (PF) in the objective space. Var-
ious optimization problems in real-world applications hold
a number of conflicting objectives and multiple complex
constraints, such as the robot gripper optimization problem,
water resources management, gearbox design, and process
synthesis problem [1]. This kind of problem is denoted as
constrained MOP (CMOP).

CMOPs bring more challenges than their unconstrained
counterparts due to the coexistence of multiple objectives
and constraints. The CMOP is defined as [2]:

min f(x) = ( f1(x) f2(x) . . . fm(x))T

s.t.


g j(x) ≤ 0, j = 1, . . . , l
h j(x) = 0, j = l + 1, . . . , k
x = (x1 x2 . . . xd)T ∈ Ω

(1)

where x is a d-dimensional real-valued decision vector in the
decision space �d, and f(x) is an m-dimensional objective
vector in the objective space �m; Ω ⊂ �n defines the feasible
region of the decision space; g j(x) ≤ 0 is the j-th inequality
constraint; h j(x) = 0 is the ( j− l)-th equality constraint; and
l and (k − l) denote the number of inequality and equality
constraints.

In recent decades, multi-objective evolutionary algorithms
(MOEAs) have emerged as a popular approach for generating
a set of non-dominated solutions in a single run to solve
MOPs [2]. Existing MOEAs can be classified according to
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their selection methods: Pareto-based, decomposition-based,
and indicator-based approaches [2]–[4]. These MOEAs are
effective solvers for unconstrained multi-objective optimiza-
tion problems. However, when applied to CMOPs, they need
a constraint handling technique (CHT), a selection mecha-
nism that can handle constraints. CMOPs are more prevalent
in practical application scenarios than unconstrained MOPs.
Thus, considerable effort has been devoted to designing
CHTs and specific mechanisms to promote the emergence
and development of various CMOEAs [5].

While MOEAs often require population diversity to store
non-dominated solutions within the population or in an
external archive, studies with model-based MOEAs aim to
loosen such a diversity requirement. Model-based approaches
focus on constructing a probabilistic model in the deci-
sion space throughout the evolutionary process [3]. Despite
their effectiveness, the model-based MOEAs still rely on
maintaining a candidate solution set, such as an external
archive, to preserve non-dominated solutions obtained during
the search. Another strategy to relax the diversity necessity
involves constructing a regression model to identify solutions
enhancing the diversity in the final generation [3], [6].

The just mentioned alternatives inspired Cheng et al. [3]
to introduce an MOEA using Gaussian process-based inverse
modeling (IM-MOEA). It stands out as a Pareto-based evo-
lutionary algorithm based on an inverse model that maps
the objective space into the decision space. This approach is
promising when the decision-making process is essential for
solving MOPs. The inverse mapping is an optimization pro-
cess that becomes an optimal allocation of solutions within
the Pareto front, simplifying the identification of suitable
solutions. The optimal allocation refers to an approximation
set of the PF that provides maximum information about
the underlying PF, and it releases adherence to a uniform
distribution of Pareto-optimal solutions [6].

Subsequent research has expanded upon the foundation
laid by IM-MOEA [4], [6]–[11]. These works propose im-
provements such as adaptive weight vectors in population
clustering [7], [9], E-IM-MOEA utilizes an external popula-
tion and a biased reproduction operator [7], IM-MOEA-RF
replaces the Gaussian process with Random Forest [8], and
recently some works have extended inverse models based on
Pareto dominance to deal with CMOP [4], [10], [11]. IM-
MOEA/D proposes a decomposition-based approach tested
as competitive on large-scale many-objective problems [6].
Decomposition-based inverse modeling to deal with CMOPs
has yet to be proposed to the best of our knowledge.

Bearing in mind the potential of inverse modeling for
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solving MOPs, we think it can do well for CMOPs since
it acts directly in the objective space, allowing a better dis-
tribution mapping of the constraint behavior than in decision
space. In this context, we propose the inverse modeling con-
strained multi-objective evolutionary algorithm based on de-
composition (IM-C-MOEA/D) that incorporates a constraint
handling technique that adjusts its search strategy based on
the presence and severity of constraints, actively guiding the
optimization process to enable the solutions’ feasibility and
improving convergence toward the Pareto front [4], [12]. To
validate our approach, we conducted experiments using a set
of real-world CMOPS, namely RWMOP1-RWMOP35 [1],
in which the number of objectives ranges from 2 to 5, the
number of variables varies between 2 and 30, and has up to
29 constraints. Our experimental results suggest the superior
performance of the proposed method compared to six state-
of-the-art MOEAs: paired offspring generation-based con-
strained evolutionary algorithm (POCEA) [13], large-scale
multi-objective competitive swarm optimization algorithm
(LMOCSO) [14], reference vector guided evolutionary algo-
rithm (RVEA) [15], many-objective evolutionary algorithm
based on dominance and decomposition (MOEA/DD) [16],
IM-MOEA [3], and IM-C-MOEA, an extended version of
IM-MOEA to deal with constraints that we also proposed.

The fundamental concept is elaborated in Section 2, fol-
lowed by a detailed description of the primary components
of the IM-C-MOEA/D. Section 3 presents the experimental
results of the proposed algorithm in comparison to six other
CMOEAs on 35 real-world instances. Finally, Section 4
provides the conclusion of the study and outlines future work.

II. IM-C-MOEA/D

This section discusses the details of the inverse modeling
constrained multi-objective evolutionary algorithm based on
decomposition (IM-C-MOEA/D). A high-level scheme is
initially shown in Figure 1. The main items that compose
it are the following:

• Initialization: As most decomposition-based MOEAs
do, we initialize the individuals of the population, P,
weight vectors, λ, and the reference point, z. In partic-
ular, the weight vectors are initially generated using the
Das and Dennis sampling (Subsection II.A).

• Population partition: The subpopulations are created
by the k-means algorithm, followed by a tournament
selection of solutions in the subpopulation (Subsection
II.B).

• Inverse model: Each subpopulation has an inverse
model, a mapping from the objective space into the
decision space (Subsection II.C).

• Constraint handling: The constraint handling procedure
to compare viable and unviable solutions for replace-
ment purposes is described in Subsection II.D.

• Decomposition-based global replacement: The survivor
selection is based on decomposition using a global
replacement, which associates each new solution with
the most suitable weight vector (Subsection II.E).

Fig. 1. Flowchart of execution of the IM-C-MOEA/D.

• Stopping Criteria: The maximum number of generations
or fitness evaluations.

The details of the IM-C-MOEA/D components and their
computational complexity (Subsection II.F) are below.

A. Generating Weights
The weight vectors are generated uniformly distributed

over a unit simplex using the method proposed by Das
and Dennis. This approach is present in most variants of
decomposition-based MOEAs [17]. The number of weight
vectors to be generated, N, is calculated as N =

(
H+m−1

m−1

)
,

where H is the number of divisions of each axis and m is the
number of objectives. The value of H cannot be lower than m
to avoid creating intermediate points. Moreover, generating
weight vectors may become computationally costly for more
than three objectives [18].

B. Population Partition
IM-MOEA/D builds the inverse models (IMs) in the

reproduction stage; firstly, the k-means algorithm creates
clusters according to the position in the objective space [6].
Then, IM-C-MOEA/D applies a binary tournament to select
solutions, with priority to feasible ones, in all clusters [12].
There is an IM for each group.



C. Inverse Modeling

Conventional model-based algorithms aim to estimate
the distribution of the candidate solutions in the decision
space. In contrast, inverse model-based algorithms are built
to represent the inverse mapping from the objective space
to the decision space. After constructing the IMs, evenly
distributed candidate solutions can be directly sampled from
the objective space and mapped into the decision space
[3]. However, estimating the inverse mapping from the m-
dimensional objective space to the d-dimensional decision
space can be challenging. Therefore, a multivariate IM is
decomposed into several univariate regression models:

P(X|Y) ≈
d∏

i=1

(P(xi| f j) + ϵ j,i), (2)

where j = 1, 2, ...,m, i = 1, 2, ..., d, P(xi| f j) is an univariate
model that represents the inverse mapping from objective
function f j to decision variable xi, and ϵ j,i is an error term.
We consider that ϵ j,i ∼ N(0, (σn)2) is an additive Gaussian
noise. Consequently, each univariate model, together with the
error term achieved using the Gaussian process, is a way for
modeling both the global regularity and the local randomness
in the distribution of the candidate solutions during the search
[3].

D. Constraint Handling Approach

IM-C-MOEA/D extends IM-MOEA/D [6] incorporating a
constrained handling approach suggested by Jain and Deb
[4], [12]. This modification enables the proposed IM-C-
MOEA/D to handle CMOPs effectively. Therefore, in IM-C-
MOEA/D, when a new candidate solution y (an offspring) is
compared with a randomly selected neighbor x, the constraint
violations (CV) of both solutions are verified before apply-
ing solution substitution based on the Tchebycheff metric.
Depending on the feasibility of solutions, the following four
scenarios can occur:

1) If y is infeasible and x is feasible, then x remains
unchanged;

2) If y is feasible and x is infeasible, then x is replaced
by y;

3) If both y and x are infeasible, then x is replaced by
y if the constraint violation of the latter is lower than
that of the former;

4) If both solutions are feasible, x is replaced by y when
y has a better Tchebycheff metric value than x.

Such modifications prioritize feasible and small-CV solu-
tions in the population without inserting any new parameter
to the algorithm [12].

E. Decomposition-Based Replacement

The Tchebycheff (TCH) decomposition is defined as:

minimize gTCH(x|λ, z) = max
1≤ j≤m

(λ j| f j(x) − z j|),

subject to x ∈ Ω
(3)

where m is the number of objectives and z is the utopian
reference point, i.e. z j = min { f j(x)|x ∈ Ω}, for every

Algorithm 1: IM-C-MOEA/D

1 Initialize the population P and a weight vectors set λ;
2 Define T = 0.1N;
3 Determine the T neighbors in B(i) for each λi ∈ λ;
4 Calculate the reference point z based on the

population P;
5 for each Gen = 1 ... Genmax do
6 Partition the population P(Gen) using k-means to

create subparent populations P1(Gen), ...,
PK(Gen);

7 O← ∅;
8 for each k ∈ {1, ...,K} do
9 Apply the tournament selection operator to

Pk(Gen)
10 Build the inverse model through the Gaussian

process using subpopulation Pk(Gen);
11 Sample candidate solutions Ok(Gen) in the

objective space and map them back to the
decision space using the inverse models;

12 Perform mutation on Ok(Gen);
13 O← O ∪ Ok(Gen);

14 z← min(z, f(O(Gen)));
15 for each o ∈ O(Gen) do
16 Find the most appropriate weight vector λi

for o using Equation (4);
17 Calculate the constraint violation (CV) of o

and each solution in B(i);
18 for each j ∈ B(i) do
19 if gTCH(o|λ j, z) ≤ gTCH(P j|λ j, z) and

CV(o) ≤ CV(P j) then
20 P j ← o;

21 return P;

j = 1, ...,m. The m-dimensional weight vector is defined
as λ = (λ1 ... λm)T ,

∑m
1 λ j = 1 and λ j ≥ 0, for all j ∈

1, ...,m. Different Pareto-optimal solutions can be obtained
by altering weight vectors using the TCH approach [17].

After generating a new solution o, the global replacement
scheme determines the most suitable weight vector i using
the TCH decomposition:

i = arg min
1≤k≤N

{
gTCH (o | λk, z)

}
. (4)

The algorithm then verifies the neighborhood of the λi,
searching for solutions that can be improved by the offspring
o. If gTCH(o | λ j, z) is better than gTCH(x j | λ j, z), the current
solution x j in the T -neighborhood of the weight vector λ j is
replaced by o [17].

F. Algorithm Framework

The pseudo-code for IM-C-MOEA/D is illustrated in
Algorithm 1. IM-C-MOEA/D initializes the population and
weight vectors, determines the neighborhood structure for
each weight vector, and calculates the ideal reference point



(lines 1-4). The population is partitioned into K groups using
k-means (line 6), and new individuals are generated for each
partition (lines 7-13). The global replacement is applied to
identify the most suitable weight vector, and the individuals
in the neighborhood of the most suitable weight vector
are examined using the constraint handling approach and
decomposition function (lines 14-20). The algorithm stops
when the maximum number of generations is reached. The
maximum computational complexity of IM-C-MOEA/D is
determined by the time cost of population partitioning using
k-means (O(N2)), reproduction by inverse modeling (O(N3)),
and global replacement (O(mN2)). The overall computational
complexity is O(N3).

III. Validation of the Algorithm
We introduce the benchmark problems used for the val-

idation experiments and the parameter settings used in all
CMOEAs. Then, we present the performance metric for
assessing the quality of the approximate Pareto-optimal so-
lutions generated by each competing algorithm. At last, the
experimental results are described and analyzed.

A. Experimental Setup
The validation process was designed to evaluate the per-

formance of the IM-C-MOEA/D on a range of real-world
problems, RWMOP1 to RWMOP35 [1]. The features are de-
tailed in columns 2 to 7 of Table I. In particular, the definition
of the population size and number of function evaluations in
each problem was extracted from the original RWMOP paper
[1]. The problems are categorized into Mechanical Design,
Chemical Engineering, Process, Design and Synthesis, and
Power Electronics.

IM-C-MOEA/D and IM-C-MOEA were implemented in
the PlatEMO, a MATLAB-based platform in which the other
CMOEAs codes are available. The experiments run in a
computer with 32 gigabytes of RAM and a 3.60GHz 8-core
Intel Core i9-9900KF processor.

We used the parameters informed by the literature for the
CMOEAs. The variation operators for MOEA/DD [16] and
RVEA [15] are SBX and polynomial mutation [12], with
both distribution indices set to 20 and the probabilities of
crossover and mutation set to 1.0 and 1/d (d is the number
of decision variables). The penalty parameter α of APD in
LMOCSO [14] is set to 2. In POCEA [13], the parameter
K is set to 5. For the inverse models, IM-MOEA [3], IM-
MOEA/D [6], IM-C-MOEA, and IM-C-MOEA/D, the two
main parameters are the number of groups K set to 10, and
the model group size L, set to 3 or 2 when the problem has
only two decision variables.

The performance of each algorithm is evaluated through
the widely-used metric, namely the hypervolume (HV) [19].

HV: Given a reference point z = (z1 ... zn)T dominated by
all Pareto-optimal solutions, the HV of a set of solutions P
is defined as the volume of the objective space dominated
by all solutions in P, bounded by z:

HV(P, z) = Vol

⋃
x∈P

[f(x), z]

 , (5)

where Vol(·) denotes the Lebesgue measure, and [f(x), z]
represents the hyperrectangle formed by the fitness of the
solution x and the reference point z. The larger the HV, the
better the approximation quality of P. We use a reference
point 10% higher than the upper bound of the PF for our
experiments. To reduce the computational complexity of
determining HV if m > 4, we use the Monte Carlo method
with 1,000,000 sampling points to approximate its value.

The tests were run 30 times independently, and each
performance mean and standard deviation were recorded.
The Wilcoxon rank-sum test was conducted to analyze the
results with a significance level 0.05. The findings were
interpreted with symbols +, -, and ≈, meaning that the
result by another MOEA is significantly better, worse, or
statistically equivalent to the results obtained by IM-C-
MOEA/D.

B. Experiments

Tables I and II present the experimental results of IM-C-
MOEA/D compared with the chosen CMOEAs for solving
the RWMOP1-35 [1]. For each test problem, the number of
objectives (m) and decision variables (d) vary from 2 to 5
and 2 to 30. The maximum number of constraints is 29.

Table I presents the HV values achieved by the original
models (IM-MOEA and IM-MOEA/D) and their versions
for handling constraints: IM-C-MOEA/D and IM-C-MOEA
share features regarding the constraint violation criterion as
Jain and Deb [4], [12] have proposed. The experimental
results show that MOEAs with constraint treatments per-
formed better in 26 out of 35 problems. The performance
was statistically equivalent for the remaining nine instances.

Table II presents experimental results achieved by the
IM-C-MOEA/D and five state-of-the-art CMOEAs used for
solving real-world multi-objective problems, RWMOP1-35.
Out of the six algorithms, IM-C-MOEA/D achieved the
best performance in 11 problems, followed by IM-C-MOEA
in 6 problems, RVEA and POCEA in 4 problems each,
MOEA/DD in 3 problems, and LMOCSO in 2 problems.

IM-C-MOEA/D was found to be better in the uncon-
strained problem (RWMOP 9), with many objectives (RW-
MOP 11), and in the context of low inequality constraints
in general (RWMOP 1-21, 25-29). IM-C-MOEA performed
closest to its version with decomposition in terms of per-
formance, excelling in finding feasible solutions to prob-
lems with equality constraints (RWMOP 23) and many
constraints (RWMOP 35). POCEA performed better on prob-
lems with equality restrictions (RWMOP 1, 22-24). RVEA
and MOEA/DD performed better on problems with more
inequality restrictions and decision variables (RWMOP 30-
35).

The performance of RWMOPs 28, 33, and 34 can be
attributed to the inherent features of these problem sets. RW-
MOP 28 involves the simultaneous management of inequality
and equality constraints. Furthermore, RWMOP 33 and 34
involve 30 decision variables and 29 inequality constraints.
Such scenarios present challenges in identifying feasible



TABLE I
Mean and standard deviation of the Hypervolume on RWMOP1-35. Best performances are Highlighted. Settings for the population size (N), the number

of objectives (m), decision variables (d), the maximum of fitness evaluation (FE), and quantity of inequality (ng) and equality (nh) constraints.

Problem N m d ng nh FE IM-C-MOEA IM-MOEA IM-C-MOEA/D IM-MOEA/D
Mechanical Design Problems

Pressure Vessel Design 80 2 4 2 2 20000 4.6051e-1 3.13e-2 + 0.0000e+0 (0.00e+0) 5.8560e-1 7.39e-3 + 0.0000e+0 (0.00e+0)
Vibrating Platform Design 80 2 5 5 0 20000 3.6766e-1 7.79e-3 + 0.0000e+0 (0.00e+0) 3.3757e-1 3.56e-2 + 0.0000e+0 (0.00e+0)
Two Bar Truss Design 80 2 3 3 0 20000 8.6356e-1 6.18e-3 + 1.9427e-1 (2.74e-1) 7.1513e-1 4.62e-2 + 0.0000e+0 (0.00e+0)
Welded Beam Design 80 2 4 4 0 20000 7.8057e-1 2.14e-2 + 2.9166e-1 (2.62e-1) 5.0765e-1 9.09e-2 + 0.0000e+0 (0.00e+0)
Disc Brake Design 80 2 4 4 0 20000 4.2608e-1 7.55e-4 + 2.6687e-1 (1.78e-2) 4.2795e-1 8.56e-4 + 2.3416e-1 (6.83e-3)
Speed Reducer Design 80 2 7 11 0 20000 2.7533e-1 2.31e-4 + 0.0000e+0 (0.00e+0) 2.7468e-1 3.49e-4 + 0.0000e+0 (0.00e+0)
Gear Train Design 80 2 4 1 0 20000 4.7110e-1 1.89e-3 + 4.6305e-1 (2.97e-3) 4.7906e-1 2.08e-3 + 4.7157e-1 (5.36e-3)
Car Side Impact Design 105 3 7 9 0 26250 2.3507e-2 3.31e-4 + 2.0817e-2 (8.62e-4) 2.3871e-2 4.29e-4 + 1.6289e-2 (1.46e-3)
Four Bar Plane Truss 80 2 4 0 0 20000 3.6739e-1 8.50e-3 ≈ 3.6587e-1 (7.52e-3) 4.0321e-1 2.05e-3 + 3.3149e-1 (1.72e-2)
Two Bar Plane Truss 80 2 2 2 0 20000 8.3546e-1 (4.69e-3) ≈ 8.3677e-1 3.71e-3 8.4480e-1 5.81e-4 + 8.3696e-1 (2.18e-3)
Water Resources Management 212 5 3 7 0 53000 8.4717e-2 2.04e-3 + 7.1942e-2 (3.29e-3) 9.0599e-2 1.47e-3 + 7.5898e-2 (2.86e-3)
Simply Supported I-beam Design 80 2 4 1 0 20000 4.9200e-1 1.73e-2 + 2.0577e-1 (1.20e-1) 4.0147e-1 5.92e-2 + 2.1557e-4 (1.18e-3)
Gear Box Design 105 3 7 11 0 26250 8.6440e-2 2.76e-4 + 1.1527e-3 (6.31e-3) 8.7439e-2 1.99e-4 + 0.0000e+0 (0.00e+0)
Multiple Disk Clutch Brake Design 80 2 5 8 0 20000 5.3033e-1 1.75e-2 + 1.3503e-1 (1.15e-1) 4.9617e-1 3.39e-2 + 4.4961e-2 (3.41e-2)
Spring Design 80 2 3 8 0 20000 4.9915e-1 6.04e-3 + 0.0000e+0 (0.00e+0) 2.8940e-1 7.85e-2 + 0.0000e+0 (0.00e+0)
Cantilever Beam Design 80 2 2 2 0 20000 7.1653e-1 1.01e-2 + 6.1425e-1 (7.77e-2) 5.6697e-1 7.51e-2 + 1.1608e-1 (3.79e-3)
Bulk Carrier Design 105 3 6 9 0 26250 1.9777e-1 2.98e-2 + 1.6645e-2 (6.33e-2) 1.9138e-1 4.20e-2 + 1.9777e-2 (5.91e-2)
Front Rail Design 80 2 3 3 0 20000 3.8177e-2 3.28e-4 + 3.6332e-2 (8.30e-4) 4.0302e-2 8.05e-5 + 3.9935e-2 (2.12e-4)
Multi-product Batch Plant 105 3 10 10 0 26250 3.2244e-1 6.73e-3 + 0.0000e+0 (0.00e+0) 3.2377e-1 4.52e-3 + 0.0000e+0 (0.00e+0)
Hydro-static Thrust Bearing Design 80 2 4 7 0 20000 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0) 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0)
Crash Energy Management for High-speed Train 80 2 6 4 0 20000 3.1130e-2 2.39e-4 + 3.1048e-2 (1.61e-4) 3.1405e-2 6.63e-5 + 3.0760e-2 (7.36e-6)

Chemical Engineering Problems
Haverly’s Pooling Problem 80 2 9 2 4 20000 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0) 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0)
Reactor Network Design 80 2 6 1 4 20000 1.1034e-1 1.59e-1 + 0.0000e+0 (0.00e+0) 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0)
Heat Exchanger Network Design 105 3 9 0 6 26250 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0) 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0)

Process, Design, and Synthesis Problems
Process Synthesis Problem 80 2 2 2 0 20000 2.1984e-1 2.41e-3 + 1.7608e-1 (1.07e-1) 2.3916e-1 1.36e-3 + 2.3282e-1 (1.85e-5)
Process Synthesis and Design Problem 80 2 3 1 1 20000 1.6593e-1 2.45e-2 + 0.0000e+0 (0.00e+0) 1.7561e-1 1.94e-2 + 0.0000e+0 (0.00e+0)
Process Flow Sheeting Problem 80 2 3 3 0 20000 1.9524e+2 2.44e+2 + 1.0780e-1 (3.31e-1) 1.4589e+5 4.60e+5 + 5.2170e+2 (2.30e+3)
Two Reactor Problem 80 2 7 4 4 20000 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0) 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0)
Process Synthesis Problem 80 2 7 9 0 20000 6.9427e-1 1.18e-1 + 0.0000e+0 (0.00e+0) 7.5814e-1 3.19e-2 + 0.0000e+0 (0.00e+0)

Power Electronics Problems
Synch. Optimal PWM of 3-level Inverters 80 2 25 24 0 80000 3.4240e-2 1.07e-1 + 0.0000e+0 (0.00e+0) 1.0268e-1 2.36e-1 + 0.0000e+0 (0.00e+0)
Synch. Optimal PWM of 5-level Inverters 80 2 25 24 0 80000 1.5029e-2 5.78e-2 ≈ 0.0000e+0 (0.00e+0) 2.0911e-2 1.15e-1 ≈ 0.0000e+0 (0.00e+0)
Synch. Optimal PWM of 7-level Inverters 80 2 25 24 0 80000 5.5420e-2 1.53e-1 + 0.0000e+0 (0.00e+0) 9.9896e-2 2.59e-1 + 0.0000e+0 (0.00e+0)
Synch. Optimal PWM of 9-level Inverters 80 2 30 29 0 80000 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0) 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0)
Synch. Optimal PWM of 11-level Inverters 80 2 30 29 0 80000 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0) 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0)
Synch. Optimal PWM of 13-level Inverters 80 2 30 29 0 80000 2.7882e-2 7.35e-2 + 0.0000e+0 (0.00e+0) 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0)

26/0/9 26/0/9

solutions, highlighting the need for effective constraint-
handling techniques and optimization strategies to address
such constrained optimization situations.

IM-MOEA/D was designed to deal with large-scale (up to
600 decision variables) and many objectives (up to 6) opti-
mization problems. Adding a constraint handling technique,
IM-C-MOEA/D can extend to real-world CMOPs.

IV. Conclusion

This paper proposed an inverse modeling CMOEA based
on decomposition (IM-C-MOEA/D) for dealing with CMOPs
with multiple or many objectives. This model uses a k-
means scheme for clustering within the objective space, the
selection criterion based on a global replacement to choose
the most appropriate weight vector from the population, and
a constraint handling approach to deal with CMOPs. IM-
C-MOEA/D reached competitive performance compared to
6 state-of-the-art CMOEAs in most of the 35 real-world
CMOPs [1] with different inequality and equality constraints.

IM-C-MOEA/D is an improved version of IM-MOEA/D,
inheriting favorable features such as mapping the objective
space to the decision space. Despite the achievements, we
can observe limitations in the IM-C-MOEA/D, which raise
possibilities for future lines of research:

1) Adapting the weight vectors might improve the di-
versity of the solutions over the evolutionary process
since the shape of the Pareto front directly affects the
performance of MOEAs based on decomposition;

2) IM-C-MOEA/D has various parameters. Thus, it may
be worth investigating the influence of parameter set-
ting on the model performance;

3) Exploring constraint-handling techniques to reach fea-
sible solutions in problems that involve combinations
of inequality and equality constraints and numerous
decision variables.
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TABLE II
Mean and standard deviation of the Hypervolume metric on RWMOP1-35. Best performances are Highlighted.

Problem MOEADD RVEA LMOCSO POCEA IM-C-MOEA IM-C-MOEA/D
Mechanical Design Problems

RWMOP1 9.5415e-2 (1.36e-2) − 5.8494e-1 (6.41e-3) ≈ 1.6634e-1 (3.78e-1) − 5.9008e-1 (5.44e-3) + 4.6051e-1 (3.13e-2) − 5.8560e-1 (7.39e-3)
RWMOP2 1.6658e-1 (1.38e-1) − 1.2969e-1 (1.07e-1) − 0.0000e+0 (0.00e+0) − 1.0722e-1 (1.07e-1) − 3.6766e-1 (7.79e-3) + 3.3757e-1 (3.56e-2)
RWMOP3 1.8434e-1 (1.68e-1) − 1.3640e-1 (1.32e-1) − 1.2892e-1 (1.63e-1) − 2.7468e-1 (2.55e-1) − 8.6356e-1 (6.18e-3) + 7.1513e-1 (4.62e-2)
RWMOP4 1.6516e-1 (1.68e-1) − 1.2465e-1 (2.52e-1) − 2.0180e-1 (2.77e-1) − 7.8000e-2 (1.90e-1) − 7.8057e-1 (2.14e-2) + 5.0765e-1 (9.09e-2)
RWMOP5 4.2741e-1 (1.37e-3) ≈ 4.1089e-1 (7.09e-3) − 2.3936e-1 (6.63e-4) − 4.1987e-1 (4.97e-3) − 4.2608e-1 (7.55e-4) − 4.2795e-1 (8.56e-4)
RWMOP6 2.7637e-1 (4.00e-4) + 2.7520e-1 (1.97e-4) + 3.7843e-3 (2.07e-2) − 2.7163e-1 (2.53e-3) − 2.7533e-1 (2.31e-4) + 2.7468e-1 (3.49e-4)
RWMOP7 4.7792e-1 (1.89e-3) − 4.7329e-1 (2.52e-3) − 4.8097e-1 (1.87e-4) + 4.7703e-1 (2.58e-3) − 4.7110e-1 (1.89e-3) − 4.7906e-1 (2.08e-3)
RWMOP8 1.8588e-2 (1.98e-3) − 2.4442e-2 (6.91e-4) + 2.1393e-2 (8.22e-4) − 1.0487e-3 (4.00e-3) − 2.3507e-2 (3.31e-4) − 2.3871e-2 (4.29e-4)
RWMOP9 5.2956e-2 (4.20e-16) − 4.0183e-1 (1.72e-3) − 5.4659e-2 (1.11e-3) − 3.6764e-1 (8.82e-3) − 3.6739e-1 (8.50e-3) − 4.0321e-1 (2.05e-3)

RWMOP10 7.8343e-2 (1.61e-14) − 8.3741e-1 (3.01e-3) − 1.3234e-1 (1.24e-2) − 8.3582e-1 (3.81e-3) − 8.3546e-1 (4.69e-3) − 8.4480e-1 (5.81e-4)
RWMOP11 3.5929e-2 (9.13e-3) − 6.3899e-2 (5.51e-3) − 1.7825e-2 (3.39e-3) − 6.5821e-2 (4.27e-3) − 8.4717e-2 (2.04e-3) − 9.0599e-2 (1.47e-3)
RWMOP12 8.6529e-2 (5.03e-2) − 3.7746e-1 (1.61e-2) − 1.9747e-1 (1.21e-1) − 1.0165e-1 (1.32e-1) − 4.9200e-1 (1.73e-2) + 4.0147e-1 (5.92e-2)
RWMOP13 7.1196e-2 (5.16e-3) − 8.7233e-2 (1.94e-4) − 3.6925e-2 (3.16e-2) − 2.5287e-2 (3.66e-2) − 8.6440e-2 (2.76e-4) − 8.7439e-2 (1.99e-4)
RWMOP14 5.3019e-1 (2.89e-2) + 5.9811e-2 (2.95e-2) − 2.8898e-1 (1.54e-1) − 6.4845e-2 (2.82e-2) − 5.3033e-1 (1.75e-2) + 4.9617e-1 (3.39e-2)
RWMOP15 1.5010e-1 (1.02e-1) − 4.9408e-1 (8.41e-2) + 0.0000e+0 (0.00e+0) − 4.8424e-1 (1.34e-1) + 4.9915e-1 (6.04e-3) + 2.8940e-1 (7.85e-2)
RWMOP16 7.9114e-2 (6.47e-5) − 7.3781e-1 (5.49e-3) + 2.3627e-1 (2.04e-2) − 6.9917e-1 (1.51e-2) + 7.1653e-1 (1.01e-2) + 5.6697e-1 (7.51e-2)
RWMOP17 2.5019e-1 (1.27e-2) + 1.8445e-1 (4.02e-2) ≈ 1.5358e-1 (1.08e-1) ≈ 0.0000e+0 (0.00e+0) − 1.9777e-1 (2.98e-2) ≈ 1.9138e-1 (4.20e-2)
RWMOP18 3.7327e-2 (2.82e-4) − 4.0146e-2 (9.09e-5) ≈ 4.0171e-2 (7.79e-5) ≈ 4.0252e-2 (8.40e-5) ≈ 3.8177e-2 (3.28e-4) − 4.0302e-2 (8.05e-5)
RWMOP19 2.7191e-1 (2.07e-2) − 2.5669e-1 (2.26e-2) − 0.0000e+0 (0.00e+0) − 1.1002e-3 (6.03e-3) − 3.2244e-1 (6.73e-3) ≈ 3.2377e-1 (4.52e-3)
RWMOP20 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0)
RWMOP21 2.9893e-2 (1.27e-3) − 3.1280e-2 (3.05e-4) ≈ 2.9334e-2 (4.27e-5) − 3.1311e-2 (7.05e-5) ≈ 3.1130e-2 (2.39e-4) − 3.1405e-2 (6.63e-5)

Chemical Engineering Problems
RWMOP22 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0) ≈ 2.8788e-1 (4.32e-1) + 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0)
RWMOP23 1.6921e-1 (1.60e-1) + 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0) ≈ 1.0249e+0 (2.08e-1) + 1.1034e-1 (1.59e-1) + 0.0000e+0 (0.00e+0)
RWMOP24 3.3333e-2 (1.83e-1) ≈ 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0) ≈ 2.0518e+5 (7.65e+5) + 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0)

Process, Design, and Synthesis Problems
RWMOP25 9.0909e-2 (6.38e-16) − 2.3564e-1 (9.68e-4) − 2.3450e-1 (1.05e-3) − 2.3502e-1 (1.90e-3) − 2.1984e-1 (2.41e-3) − 2.3916e-1 (1.36e-3)
RWMOP26 1.4428e-1 (3.49e-2) − 1.2908e-1 (7.21e-3) − 3.0328e-3 (1.66e-2) − 1.1034e-1 (6.18e-2) − 1.6593e-1 (2.45e-2) ≈ 1.7561e-1 (1.94e-2)
RWMOP27 5.8817e+0 (1.30e+1) − 4.3310e+4 (1.57e+4) − 1.9076e+6 (6.94e+6) + 1.9727e+4 (1.19e+4) ≈ 1.9524e+2 (2.44e+2) − 1.4589e+5 (4.60e+5)
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RWMOP29 7.3212e-1 (8.56e-2) ≈ 5.9826e-1 (1.40e-1) − 0.0000e+0 (0.00e+0) − 2.4476e-1 (2.21e-1) − 6.9427e-1 (1.18e-1) − 7.5814e-1 (3.19e-2)

Power Electronics Problems
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RWMOP33 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0)
RWMOP34 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0)
RWMOP35 3.2693e-2 (1.26e-1) ≈ 4.8730e-2 (1.29e-1) + 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0) ≈ 2.7882e-2 (7.35e-2) + 0.0000e+0 (0.00e+0)
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