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Stochastic Routing in Ad-Hoc Networks
Christopher Lott and Demosthenis Teneketzis, Fellow, IEEE

Abstract—We investigate a network routing problem where
a probabilistic local broadcast transmission model is used to
determine routing. We discuss this model’s key features, and note
that the local broadcast transmission model can be viewed as soft
handoff for an ad-hoc network. We present results showing that
an index policy is optimal for the routing problem. We extend the
network model to allow for control of transmission type, and prove
that the index nature of the optimal routing policy remains un-
changed. We present three distributed algorithms which compute
an optimal routing policy, discuss their convergence properties,
and demonstrate their performance through simulation.

I. INTRODUCTION

THE term ad-hoc is applied to networks in which there is
no central network controller, each node can itself act as a

store-and-forward router, and in which the connection topology
is time-varying (e.g., see [8]). Such a network is in contrast to,
for example, a cellular network where each cell has a central
base station through which all cell data is transmitted. An ad-hoc
network contains a number of packets, each of which is destined
for some set of destination nodes. The general routing problem
is to define a policy which, given the trajectory histories of all
the packets, chooses which nodes should next transmit which
packet. It is usually desirable that this policy be implemented
in a distributed form, so transmission decisions can be decided
locally without knowledge of other parts of the network.

Many approaches are possible for network routing op-
timization. A typical one is maximizing the overall network
throughput. However, in many cases, other considerations are at
least as important. In the case of a wireless network the energy
source is locally stored in a battery at each node, and a major
design goal is often to achieve satisfactory communication
while using up as little energy as possible. This low-energy
requirement takes an extreme form in sensor networks, where
large arrays of mobile information-gathering devices must
communicate under severe energy limitations [2].

This paper explores some design issues in network routing
algorithms for ad-hoc networks, and provides a novel system
model which allows for optimal design in a number of real-
istic situations. It is organized as follows. In the remainder of

Manuscript received October 7, 2004; revised March 25, 2005 and June 8,
2005. Recommended by Associate Editor R. Srikant. This work was supported
in part by the Army Research Office under Grant DAAH04-96-1-0377, by
the Air Force Office of Scientific Research under Grants F49620-96-1-0028
and F49620-98-1-0370, by the National Science Foundation under Grants
ECS-9 979 347 and CCR-0082784, and by the Office of Naval Research under
Grant N00014-03-1-0232.

C. Lott is with Qualcomm, Inc., San Diego, CA 92121 USA (e-mail:
clott@qualcomm.com).

D. Teneketzis is with the Department of Electrical Engineering and Com-
puter Science, the University of Michigan, Ann Arbor, MI 48109 USA (e-mail:
teneketzis@eecs.umich.edu).

Digital Object Identifier 10.1109/TAC.2005.860280

Section I we present briefly a discussion of the literature avail-
able on routing in ad-hoc wireless networks, and a summary
of the contributions of this paper. In Section II, we define and
solve a stochastic routing problem. In Section III, we extend
this routing problem to include choice of transmission type. In
Sections IV–VIII, we present three distributed algorithms which
compute an optimal routing policy, and discuss their conver-
gence properties and performance.

A. Ad-Hoc Network Routing Literature

There has been much recent research activity on routing for
ad-hoc networks. This work can perhaps most conveniently be
categorized as either on-demand or route maintenance (also
sometimes referred to as reactive and proactive [19]).

1) On-Demand Protocols: On-demand protocols are the al-
gorithms which only update routing tables when new packets
arrive. On-demand protocols usually store old routing informa-
tion and use it as long as packets still get to their destination.
When a given path fails, there is some mechanism for probing
the network to find a new path, which often involves flooding
the network. Link detection used to decide path failure gener-
ally uses information from the medium access control (MAC)
at the link layer. Usually the path found is not optimal in any
sense. The value of an on-demand protocol is that the commu-
nication requirement to set up a route is minimized. The idea
is that in general it would cost more to find a better path than
the improved route would reduce cost. Hence, these protocols
can be valuable when network dynamics are rapid compared to
packet transmission frequency.

A number of on-demand routing protocols have been pro-
posed for ad-hoc networks. The temporally ordered routing al-
gorithm (TORA) [18] is based on work in [7]. TORA tries to
quickly establish routes on demand using a path reversal method
which is guaranteed to find some route, with no criteria for
the quality of the route. Dynamic source routing (DSR) [15]
uses source routing, where each packet header contains the en-
tire route for the packet. Existing routes are used without up-
date until one fails. When one fails, a Route Discovery is exe-
cuted, during which Route Request packets flood the network
until any route is found. The ad-hoc on-demand distance vector
(AODV) protocol [20] is a kind of hybrid of on-demand and
route maintenance protocols. The link status between a node
and its neighbors is maintained through periodic beacon sig-
nals between nodes. However, routes are only updated when
a packet routing fails, and then this link status information is
used. The route chosen by AODV is the one with the minimum
number of hops. The zone routing protocol (ZRP) [19] is an-
other hybrid which allows trading off of route update and route
maintenance overheads. The network nodes are partitioned into
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zones. As in route maintenance, each node maintains a contin-
uous knowledge of the topology of all the nodes within its own
zone. However, routes to nodes outside a node’s zone are de-
termined on-demand in a route discovery process. Independent
zone routing (IZR) is an update to ZRP which allows zone size
to vary per node [23].

2) Route Maintenance Protocols: As the name implies,
route maintenance protocols periodically expend the energy
and bandwidth necessary to maintain updated routing tables
under all traffic conditions. Given their wide acceptance, the
benchmarks for route maintenance protocols are often the
TCP/IP standards routing information protocol (RIP) [14] and
open shortest path first (OSPF) [17]. However, the standard In-
ternet implementations of these algorithms are not well-suited
to the ad-hoc network environment. In highly mobile environ-
ments, communication overhead to implement a full link-state
algorithm is prohibitively costly. Alternatively, much research
has been performed to adapt distance vector type algorithms
to the mobile environment. In these approaches, it is common
to use a distributed Bellman–Ford (DBF) type algorithm [4]
to update the routes and cost estimates. A common theme in
the research, then, is to address the weaknesses of this type of
algorithm in a highly mobile and uncertain environment.

An early effort along these lines is [16], which endeavors to
provide loop-free routing in a quasistatic environment. In least
resistance routing (LRR) [21], the link quality between nodes
and the current buffer length of the receiving node are used to
define a link resistance value. A DBF type algorithm is then used
to find a least resistance path for such a network. An interesting
approach to the multicast problem is developed in [25]. A de-
terministic local broadcast model for the link is used to set up
a problem to find the minimum energy to span a given set of
destination nodes, and heuristic routing algorithms are studied
using simulation. This circuit-switched multicast problem with
deterministic local broadcast model is quite different from the
problems we define in this paper.

A detailed comparison via simulation of a few different
routing protocols for ad-hoc networks is described in [5]. To
truly understand the tradeoffs involved among the wide variety
of available algorithms, more such work is necessary. Even
better would be progress in our conceptual understanding,
leading to better methods for critiquing the different ap-
proaches. For a useful guide to the large and growing literature
on ad-hoc networks, see [8] and the references therein.

B. Contribution

In this work, we present what is, to the best of our knowl-
edge, the first network routing protocol which uses a proba-
bilistic local broadcast model for transmission. This model: i)
provides an intimate coupling between lower network layers
through careful modeling of the key channel characteristics, and
ii) allows for routing decisions to be made based on immediate
feedback from each transmission. In most network models in
the literature, nodes are connected by links, and the routing al-
gorithm dictates which set of links each packet is to traverse.
This is true even when through local broadcast a packet can tra-
verse multiple links in parallel. Typically at each point in time,

through an estimate of its SINR, a link is designated as determin-
istically up or down, with SINR sometimes used to determine
the sustainable link rate. The stochastic transmission nature is
subsumed in a link cost or delay, or in a success probability for
the entire link layer transmission protocol. In contrast, our pro-
tocol detects and reacts to the stochastic result of each node’s
local broadcast transmission, and constructs an optimal route
based on this immediate feedback. In consequence, the actual
route taken by a packet depends on random system events, may
vary among packets heading to a common destination, and is
fully determined only via actual transmission. This reacting to
individual transmission results can be interpreted as the ad-hoc
network analog of soft handoff in a cellular system, as discussed
further in the following. We show that such a protocol is optimal
for the stochastic local broadcast model. We also show the pro-
tocol is well suited to a distributed implementation, as it is based
only on information local to a node.

We extend the model to allow for control of transmission type
at each node, and show how the fundamental nature of this op-
timal protocol doesn’t change. Varying transmission type to op-
timize routing decisions couples physical layer considerations
with the network layer routing function. For example, in the
particular case of power control, an optimal protocol effectively
resolves the tradeoffs between fewer long hops vs. more short
hops.

We present three distinct algorithms which compute an op-
timal index policy for our stochastic routing problem in an asyn-
chronous distributed fashion, so that at each computation only
information local to each node is used. The algorithms are all
similar in the asynchronous nature of their value updates and
transmissions, with the fundamental difference being how the
update value is computed. The algorithm presented in Section V
uses an update motivated by the stochastic Dijkstra algorithm
we introduce in Section II. The algorithm presented in Sec-
tion VI implements DDP, as defined in [3], and this leads to an
alternate update computation. Finally, the algorithm presented
in Section VII, which we call the rank algorithm, is a third way
to implement the update. For each algorithm we prove the same
fundamental convergence result: 1) Asymptotic convergence of
the value function; 2) finite time convergence to an optimal
policy; and 3) finite time convergence to an optimal index policy
under the condition that all nodes have distinct value functions.
We end by comparing the performance of these three algorithms
with other approaches in a realistic simulation environment.

There is an interesting precedent for the stochastic local
broadcast model used in this paper. In CDMA cellular systems
[24], soft handoff is used to improve network efficiency. On the
reverse link, even though the mobile is under transmit power
control, random channel variation makes it uncertain which
base station will successfully decode each mobile packet. Effi-
cient operation is achieved by having each base station attempt
to decode each packet, and the packet is successful if any of
them succeed. In effect, each base station is a destination node
and the random result of each mobile local broadcast is used to
decide on packet success. Our stochastic routing problem can
be viewed as a generalization of soft handoff to the case of an
ad-hoc network, where intermediate store-and-forward nodes
may also receive each packet.
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In CDMA cellular system reverse links [6], [11], a mobile’s
transmit power is controlled to achieve a fixed packet error rate
(PER). Implicitly this relies on the fact that the recent interfer-
ence level seen by mobile transmissions is a good estimator of
future interference. No further attempt is made to coordinate
mobile transmissions across the network (interference cancel-
lation is a separate issue). In our approach here, rather than con-
trolling mobile transmit power to achieve a fixed PER, we as-
sume a given set of transmit power levels, and estimate the re-
sulting packet success probabilities to neighbors. By taking this
approach, we also implicitly rely on some persistence in inter-
ference (and hence transmission success) statistics. In deference
to the inherently distributed nature of an ad-hoc network, we
also do not attempt any further coordination of mobile trans-
missions, so that each mobile views other mobile transmissions
solely as random sources of interference.

Stochastic routing also can be viewed as a means to achieve
dynamic network load balancing. In effect, each mobile trans-
mission is a parallel attempt across neighbor channels, and
packet success depends on the concurrent loading. Packets thus
are naturally routed toward less loaded portions of the network,
with minimal retransmissions. For longer term loading imbal-
ances, the transmission probability estimates themselves reflect
interference-limited regions of the network. These aspects of
stochastic routing are important for the network simulation
results presented in Section VIII.

II. STOCHASTIC ROUTING PROBLEM

A. Notation and Preliminaries

We begin by briefly summarizing notation and definitions
for the system model under consideration, which we refer to
as Model . In Model control is centralized, meaning
the controller has access to all information in the network.
Also, Model is probabilistic, with transitions described by

.

• is the number of nodes in the network.
• the set of all nodes. So .
• refers to a state of the system, defined as the set of

nodes which have received the packet.
• refers to the state at time .
• is the reward function, and .

Also .
• is a Markov policy. We write to indicate policy

transmits at node when in state .
We write to indicate policy retires and receives

reward when in state . For convenience we write
as shorthand that policy retires and receives . In

this case, we say that policy retires and receives the reward of
node .

By , we mean both and .
By , we mean either , or

, for some .
is the expected reward when starting in state under

policy . We often write for . When is optimal,
we use to indicate the optimal value function.

We write to indicate the probability of reaching
state from state when choosing for transmission, .
We write as shorthand for .

We define . is called a neighbor
of if . is the set of all neighbors of , together
with itself. Note that is permitted.

By , we mean the set of values of from the
finite set which maximizes .

Definition 2.1 (Increasing Property): Model is said to
be increasing if for any system realization under any policy we
have .

Definition 2.2 (Decoupling Property): Model is said to
be decoupled if we have

The meaning of this definition is that transmission success to
a set of neighbors from a node at a given time is unaffected by
which other nodes already have the packet.

Definition 2.3: A function is an index function
on if satisfies

(1)

We next formulate the centralized version of the stochastic
routing problem.

B. Statement of Problem

Problem
We consider the transmission of a single packet, from a given

initial state (i.e., a given set of nodes) to a set of destina-
tion states, in a wireless ad-hoc network of nodes described
by Model . Transmission instances occur at discrete time
points. Each transmission from a given node incurs a fixed
cost . According to Model : i) at each transmission
instance the transmitting node is chosen by a central controller
that always knows the current state of the system (i.e., the set
of nodes that have the packet); ii) node transmissions are local
broadcasts, that is, multiple neighbor nodes may all simultane-
ously receive the packet; iii) given the node chosen to transmit,
the probability that a given set of nodes receives the packet is
known and fixed; iv) The central controller is informed, without
any cost, as to which nodes receive the packet. In general, con-
trol information flow between the nodes and the controller is
considered free in energy and instantaneous in time; and v) each
transmission event is assumed independent of those before and
after. We assume Model is increasing and decoupled. A
reward function is specified, where is an index function.
At each instance, the central controller chooses either to termi-
nate the transmission process or to continue transmitting. The
objective is to choose: i) the node to transmit at each transmis-
sion instance, and ii) the instance to terminate the transmission
process, to maximize

(2)
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where is the time when the transmission process is terminated,
is the state at , and is the node chosen by the transmis-

sion policy at time .

C. Analysis of Problem

We analyze Problem and discuss the character of an op-
timal policy . The system of Problem is a time-homoge-
neous Markov chain, hence we are faced with a finite-state Mar-
kovian decision problem with perfect information. We can thus
restrict attention to Markov policies on , and we are guaran-
teed that such an optimal Markov policy exists (cf. [22, Ch. 3, p.
51]). We seek an optimal Markov policy
which minimizes (2).

To solve Problem , we could directly apply stochastic
dynamic programming. However, since the number of states is

, the complexity of such an approach is at least , and
generally higher. Instead, we use the special structure of this
problem to find a better algorithm.

1) Structure of an Optimal Policy for Problem : We
begin with some definitions.

Definition 2.4: A Markov policy is a priority policy if there
is a strict priority ordering of the nodes s.t. we have

or , where is the set
of nodes of priority lower than .

Definition 2.5: For priority policy , we write when
has higher priority than under .
Definition 2.6: A priority policy is called an index policy

if is an index function on .
Note that a priority policy need not be an index policy.
Our main goal in this section is to prove that there exists an

index policy which is an optimal Markov policy for Problem
. We state this result in the following theorem.

Theorem 2.1 (Index Policy): There is an optimal Markov
policy for Problem which is an index policy.

We develop a series of lemmas which are used to prove The-
orem 2.1. In the first lemma we show that the definition of an
index function is equivalent to requiring two properties on .

Lemma 2.1: Function is an index function on if and only
if the following two properties (3) and (4) both hold:

(3)

(4)

Proof: Assume is an index function on . Then can
be written in the form (1). We have

(5)

and (5) establishes (3). To establish (4), assume we have an
where . Then

(6)

Together (5) and (6) establish that if is an index function, then
(3) and (4) both must hold.

Conversely, assume (3) and (4) hold. We proceed by induction
on the number of elements in . When , for any it is

clear that , so the induction base step
is established. Now assume can be written in the form of
(1) . Let be s.t. . We
consider two cases.

• Case 1):
Assume there is an s.t. . Then

by (4) and using the fact that with
the inductive hypothesis, we have

, which is a
contradiction. So we must have

, and (1) holds for this case.
• Case 2): s.t.

By (3), . Then by (4), and
using the fact that with the inductive
hypothesis, we have

(7)

and (1) holds for this case.
In both cases, has the form of (1) for , and this completes

the induction step. So by induction must be an index function
on .

Next, we use the decoupling and increasing properties of
Problem to show that the optimal value function for
Problem possesses a monotonicity property.

Lemma 2.2 (Monotonicity): In Problem , let be an
optimal Markov policy, and let and . Then,

.
Proof: Given and , we define a new policy

acting on state as follows. Let , and suppose is
the state resulting if at first were to choose . At the first step,
chooses from , which is possible since . learns the
result of the transmission, and hence knows the new actual state
of the system, which we call . Furthermore, since knows
which nodes receive the packet even if they already have it, it
also knows what the new state would be if the previous state
were instead of . By the decoupling property, this new
state is . This fact together with the increasing property also
imply that , since .

At the next step acts on by choosing the same node as
would use on ; this is possible because knows , and

. The process continues in this way until retires at the same
time at which would retire. Policy knows ’s retirement
time because it knows the state “sees” at each time. Let
and be the states at retirement for and , respectively. By
the above argument, we know . At retirement, has
incurred the same cost as , since and use the same nodes
to transmit. Because is an index function, by Lemma 2.1 (3)
we have

(8)

Because is optimal and is suboptimal, we conclude from
(8) that

(9)

This completes the proof.
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In the next lemma, we use the increasing property of Problem
to show that a Markov policy which is optimal for all states

that are a superset of some , and that takes an optimal
action when in , is also optimal when in state .

Lemma 2.3: Let be an optimal Markov policy for Problem
. Suppose we are given , and let be a Markov policy

which has the following two properties:

(10)

(11)

Then

(12)

Proof: If , for some , then (12)
holds.

Suppose . We compare and when
both transmit in state . Let and be the state after trans-
mitting when in for and , respectively. Due to (11), we
have

(13)

Due to the increasing property, we have

(14)

By (10), we have

(15)

Equations (13)–(15) mean that and choose the same node
from for transmission, and either reach the same state

, which has the same value function for both policies, or both
stay in , at which point they again both play the same
node for transmission. Hence, (12) follows.

Next, we construct a Markov policy for Problem which
has many characteristics necessary for an index policy, and then
use the lemmas presented above to show that this policy is op-
timal. The result of this lemma is instrumental in proving The-
orem 2.1.

Lemma 2.4: Let be an optimal Markov policy for Problem
. Then there exists a Markov policy which has the fol-

lowing three properties.

1) For all where

(16)

(17)

2) For all where , and

(18)

3) is an optimal Markov policy.

Proof: We define using the following rules:

(19)

(20)

(21)

If , by (19) the lemma is true. Assume
.

It follows directly from (19)–(21) that satisfies (16) and
(17).

We prove (18) by backward induction on the cardinality of
. By the optimality of , we know that for some

. By (19) and (20) we have
. That is, acting on both and

immediately retires and receives reward . We also
have , because is optimal and
is available for retirement in . Hence, when ,
we have

(22)
Equality (22) proves (18) for when , and the basis for
induction is established.

If , the argument of (22) completes the proof of (18).
We now assume and prove the induction step. Assume
(18) is true for any state where .
Consider any state where .

We first prove that

(23)

If there exists such that ,
then by (20) we have . By the induction
hypothesis, (18) is true for , because

. We thus have

(24)

Equation (23) follows from (24).
If no such exists, then by (21) we have .

Because , and
(because of the induction hypothesis), conditions (10) and (11)
of Lemma 2.3 are satisfied by and for . Hence

(25)

We have shown that (23) holds for any where .
We use (23) to show that (18) holds for all where .
For the remainder of the proof, assume that either or

, and let .
Consider first the case where . By (20),

, so that

(26)
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By Lemma 2.2 and the optimality of , we have

(27)

By (23)

(28)

However, , and is an optimal policy, so

(29)

Relations (27)–(29) together imply that

(30)

Equations (23), (26), and (30) imply that

(31)

and the induction step for (18) is proved when .
Now, consider the case where

(32)

We claim that

(33)

We prove (33) as follows. Let be any state where
. If , then , and (33) follows. Assume

. Then and . If , then
and . Assume . If , then
by successively removing nodes and using (20) we
obtain , which contradicts (32). If , then
by successively removing nodes and using (20), we
obtain , which contradicts (32). Hence, (33) is true
in all cases.

By the decoupling property and (33), we have
. Using with (23),

Lemma 2.2, and noting the optimality of , we have

(34)

Relation (34) proves the induction step for (18) for .
This completes the induction step for (18). By induction, we

have proved that (18) is true for for all where .
Finally, we prove that is an optimal policy. First, note that

by (18),

(35)

Relation (18) also implies that for some

(36)

We are left to consider when no such as in (36) exists.
By (21) we have when

. Under this condition and (18), and identifying ,
and satisfy the requirements of Lemma 2.3 (10) and (11).
Lemma 2.3 (12) then implies that

(37)

Equations (35), (36), and (37) prove the optimality of . The
proof of the lemma is complete.

Besides Lemma 2.4, we need one more result to prove The-
orem 2.1, which is that the value function for Problem is
always an index function. We present this lemma next.

Lemma 2.5: For any optimal Markov policy is an
index function on .

Proof: First note that Lemma 2.4 implies Lemma 2.1 (3)
is satisfied for on .

Next, let be the Markov policy satisfying (16) and (17) as
constructed in Lemma 2.4. Consider any state and
s.t. . If , then by removing all
nodes except from via repeated application of Lemma 2.4 we
would get , a contradiction. Hence,
. So by Lemma 2.4 (18), we have . Thus

the requirement (4) of Lemma 2.1 is satisfied for on .
Since both requirements of Lemma 2.1 are satisfied, we have

shown that is an index function on .
We now use Lemmas 2.1–2.5 to prove Theorem 2.1.

Proof: [of Theorem 2.1]
Let be the Markov policy satisfying (16) and (17) as con-
structed in Lemma 2.4. By Lemma 2.4 , is an optimal
Markov policy. Hence, Lemma 2.5 indicates that is an
index function.

We next show that is a priority policy. By (16) and (17), we
have

(38)

(39)

Properties (38) and (39) show that is a is a priority policy (cf.
Definition 2.4), with node priority as follows. For any where

or has priority higher than all other nodes
of .

We have shown that is a priority policy with index func-
tion . Hence, satisfies Definition 2.6, and is an index
policy.

Note that (38) and (39) imply that and
cannot both occur for a given for any with and

. That is, for a given system for Problem and an op-
timal index policy , if there is a state where transmits from
node , then there is no state where retires and receives the
reward from . Similarly, if there is a state where retires and
receives the reward from node , then there is no state where
transmits at . We henceforth use this fact when we write the
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node priority list for an index policy , where exactly one of
and is listed for each . When occurs in the list, this
means that for states which include and no nodes of higher
priority than , the optimal action is is to retire. The reward re-
ceived at retirement will be .

It is interesting to note that the total number of stationary
Markov policies for Problem with nodes is ,
whereas the total number of priority policies is . Based on
the result of Theorem 2.1, we develop an algorithm which is
able to compute an optimal index policy for Problem with
computational complexity of only .

2) Description of Centralized Algorithm: As stated in Sec-
tion II.A, we use the notation .

Algorithm 1: (A Dijkstra-Type Algorithm for an Index
Policy)

Define the sets and as follows.
Initially: contains the nodes of highest retirement reward

in arbitrary order (there must be at least one such node).
The action taken by the optimal index policy on any node

is and the reward received is . is the unordered
complement (w.r.t. ) of .

During the Construction of Optimal Policy : contains
a priority list of a set of nodes, , together with the
action specified by on each node in . is the unordered
complement (w.r.t. ) of .

The algorithm proceeds as follows.

1) For each , let be an index policy with the same
priority list as for the nodes of , with as the next
highest priority node after , and with the priority of
the nodes arbitrary, but lower than . Compute

from

(40)

2) Choose with the highest value of , with ties
broken arbitrarily. Append this node to the list as the
next priority node, together with the action specified by
(40). Remove from .

3) If is empty, stop. If not, go to step 1).

Remark: In Step 1 the right-hand side of (40) computes the
best expected reward for node , assuming is the node of next
highest index in . This computation is feasible because is a
priority policy.

We now establish a relation between (40) and the optimality
equation for Problem . Such a relation allows us to prove
that Algorithm 1 indeed computes an optimal index policy.

Theorem 2.1 states that there is an optimal index policy for
Problem . Hence, the DP equation for Problem can
be written

(41)

where the inner maximum is taken over all index policies .
In the following lemma, we use the existence of optimal index
policy to put the computation of into a more convenient
form.

Lemma 2.6: Assume is an optimal index policy for
Problem . Then, , (42), as shown at the bottom of
the page, holds, where the inner maximum is taken over all
index policies .

Proof: The proof of Lemma 2.6 is in [13].
In the following corollary, we show an important property of

the update (40) and its relation to (41).
Corollary 2.1: Assume is an optimal index policy for

Problem . Let be as defined in Algorithm 1, that is,
is the same as for the set of highest priority nodes of ,
and node is the node of highest priority in according to .
Assume is also the node of highest priority in according to

. If is computed as in (40), then

(43)

Proof: Corollary 2.1 follows from the fact that (40) com-
putes (42) with the policy , which is optimal for all nodes
of priority or higher.

Algorithm 1 also resembles Klimov’s algorithm [9] and has
the following feature.

Theorem 2.2: For Problem , Algorithm 1 produces an
optimal index policy.

Proof: We prove the theorem by induction on the number
of nodes in the set defined in the description of Algorithm 1.
Recall that for a Markov decision problem, the optimal policy
maximizes the value function for each state.

Let be an optimal index policy. Suppose Algorithm 1 has
run to the point that . Let be the node with the
actual th highest priority according to , whether retiring
or not. Let . Let denote the priority policy
that has the same priority as in the first nodes, gives the

th node priority, retiring or not as optimal, and arbitrarily
gives priority lower than to the remaining nodes.

Then, we claim that

(44)

(42)
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Equality (44) follows from Corollary 2.1, because is assumed
to be the actual th priority node of . The first inequality
of (44) follows because by assumption is higher priority than

in . The second inequality follows because is an optimal
policy.

Relation (44) implies that any node maximizing
may optimally be made the th priority node. Note that
this is not necessarily unique. This is the procedure used to
find the node of next highest priority in step 2) of Algorithm 1.

This completes the proof of the induction step. Hence, by
induction Algorithm 1 produces an optimal index policy.

3) Remarks:

1) In typical network models the network layer requests
point-to-point communication from the link layer.
However, the stochastic local broadcast nature of our
link model requires a control which describes alter-
native courses of action depending on feedback from
random transmission events. In light of Theorem 2.1,
we can state precisely what this means for Problem

. The instructions for transmission at a node
consist of a priority list of neighbors and the transmit-
ting node itself. The node transmits until a node of
higher priority successfully receives the packet. Note
that there is no one route, as the actual route a packet
takes between source and destination is sample path
dependent.

2) The index policy result of Theorem 2.1 is very gen-
eral. It says that no matter what the actual values of

are at each node, an index policy is always
one possible optimal policy structure. There might be
errors in knowledge of , and this affects the
indexes of the computed optimal index policy. How-
ever, the fact that some index policy is optimal is al-
ways true.

3) We have shown that Algorithm 1 computes an optimal
index policy for Problem . It is important to note
that Algorithm 1 uses all of the network parameters,
meaning the values at each node. To run this
algorithm, all of this information must be available at
the same location. In this sense, Algorithm 1 is a cen-
tralized algorithm, like the Dijkstra algorithm used in
OSPF [10, Ch. 4]. The number of updates of (40) in
Algorithm 1 is in the worst case .

4) Distributed Implementation of an Optimal Index
Policy: We note an interesting feature of an index policy
used for Problem . The indexes of the network nodes are
fixed, and at each transmission a node of highest index which
has the packet is chosen to transmit. This leads to the following
property.

Property 2.1: In an index policy for Problem , the only
nodes of index higher than the transmitting node which can re-
ceive the packet are neighbors of the transmitting node.

Property 2.1 allows for a natural disributed implementation
of the index policy, as follows. Imagine there is a token associ-
ated with the packet that begins with the packet at the node of
origin. The token indicates which node is to transmit next. After
a node transmits, it passes the token to a neighbor (that depends

on the outcome of the transmission), or keeps the token for re-
transmission. By Property 2.1, an optimal index policy can be
implemented in this way, as the optimal next node is always
a neighbor. Note that there is no central control of this token
passing mechanism. All decisions are made locally, and involve
only neighboring nodes.

It is important to distinguish distributed optimal routing
policy implementation from distributed computation of an
optimal index policy itself. For policy implementation, it is
assumed that the index policy has already been determined. We
consider the problem of distributed index policy computation
starting in Section IV.

III. STOCHASTIC ROUTING PROBLEM WITH TRANSMISSION

CONTROL

In this section, we extend the model of Problem to allow
for control of transmission type at each node. That is, at each
time step the controller may choose a node for transmission, and
also a type of transmission at that node. Transmission type may
be used to model various physical layer features, such as mul-
tiple transmission power levels, modulation/coding scheme, an-
tenna directionality, and destination addressing. We begin with
some notation and definitions.

A. Notation and Definitions

Definition 3.1: refers to the number of transmission types
available at node .

Definition 3.2: We write to mean that when
in state , policy chooses node and transmission type

. The expression means
policy chooses at some unspecified transmission type. The
notation for retirement is retained unchanged.

Definition 3.3: When in state for which , a
cost is incurred, and the transition probabilities are written

.

B. Statement of Problem

We consider Problem , with the following addition. At
each time step the central controller chooses a node for transmis-
sion, from among the nodes with the packet, and a transmission
type from among the allowable types for that node. To each node
and transmission type is associated a transmission cost and a
probability that a given set of nodes receives the packet. We seek
a policy which maximizes (2) under the conditions of Problem

and the above addition.

C. Analysis of Problem

The time-homogenous Markov nature of Problem is
not altered by adding in a choice of transmission type. We find
that with an appropriate mapping to a new larger space (each
transmission type becomes a node), we can apply the result of
Problem directly. To demonstrate this, we define a new
problem, Problem , show its relation to Problem , and
then show that it is equivalent to Problem .

1) Notation and Definitions for Problem : We define
a new space of nodes as follows. As in Definition 3.2, we
list possible control choices for Problem as , where
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and . Every node of corresponds to
exactly one such control choice of Problem . Defining
to be the cardinality of , we then have

(45)

where as before . We write j to refer to a node
from . We can also refer to the pair of a node j ,
which is the associated and transmission type
in the original space . We say that the group of nodes in
which corresponds to is the family of , so that the family
of has members. The family of is the set of all nodes
in which are in the family of any one of the nodes of .

The cost to transmit from a node j with pair is defined to
be , the cost for transmission type at in Problem .

Transmissions in the space are based on the corre-
sponding events in the space, as follows. Say a node j with

pair is chosen for transmission. This incurs a cost .
On , transmission from with transmission type leads to a set
of nodes, say , receiving the packet. Correspondingly,
on by definition a node j with pair receives the
packet if and only if receives the packet on . That
is, nodes in in the family of receive the packet precisely
when does. Note that this means that packet reception for
nodes of in the same family are deterministically coupled,
in that they all receive or all do not receive it. This strongly
restricts the kinds of transitions that can occur in .

Each member of the family of gets the same reward as .
That is, let be the reward function on , an index function
on . If j is in the family of , then j .
Because is an index function, this fully defines on .

2) Formulation of Problem : Problem is a for-
mulation of Problem for the space , with the transi-
tion probabilities, cost, and reward described above. The starting
state is the family of , the initial state for Problem .

At each time point the controller either chooses a node from
for transmission, or retires. We seek a policy which maxi-

mizes (2) under the conditions of Problem defined on .
3) Relation of Problem to Problem : We show

the relation of Problem to Problem . There is a
one-to-one mapping from the states of -space to the states of

-space, as follows. Let be a state of Problem .
The state of Problem corresponding to is the set of all
nodes j such that j is in the family of some node .
There are states of Problem which do not correspond
to any state in Problem . To see this, let j k both
be in the family of . Consider a state where
j k ; this state is not the mapping from any state

. The one-to-one mapping from to is not in
general an onto mapping, because . Those states

that are not the image of any state under the
above-mentioned mapping are not reachable under the state
transition mechanism of Problem , and play no role in the
analysis.

A control action for Problem has a a corresponding ac-
tion in Problem , as follows. A node j , with asso-
ciated , chosen for transmission in Problem corre-

sponds to transmission at node of type in Problem .
The cost incurred for this transmission is the same in both
problems, and the state reached by the transmission in maps to
the state reached in . When retirement is chosen for Problem

, this corresponds to retirement for Problem , and the
same reward is received, because corresponding states have the
same reward.

Hence, Problem and Problem are entirely equiva-
lent, in that to each decision policy for Problem there is a
corresponding decision policy for Problem which results
in exactly the same behavior, and hence expected reward, for
both systems. We can thus solve Problem by finding an
optimal policy for Problem . We proceed to solve Problem

.
4) Analysis of Problem : We show that the system of

Problem satisfies the requirements of Problem , and
hence is a special case of that system. Specifically, we show
that the increasing and decoupling properties (cf. Definitions 2.1
and 2.2) are satisfied, and that the reward function is an index
function.

The increasing property on follows directly from the fact
that the increasing property holds on the underlying space ,
together with the way states of map to . That is, trans-
missions only lead to an increasing state in , leading to an in-
creasing state in .

The decoupling property holds for Problem because it
holds for Problem . The nodes that receive transmissions
in Problem are unaffected by what other nodes have the
packet.

Note that transmission events in can be highly correlated,
in that nodes of in the same family either all have the packet,
or none have it. However, such event correlations are allowed by
Model .

Finally, satisfies the definition of an index function on
, because is an index function on and gives the same

reward for the associated states of .

Hence, an index policy is optimal for Problem , and Al-
gorithm 1 can be used to determine such a policy. This policy is
also optimal for Problem . Thus, Algorithm 1 is effectively
used to solve Problem .

Note that in the resulting priority list of an optimal index
policy , nodes from the same family in will appear in
some relative order. Since nodes in a given family either all have
the packet or none have it, it is clear that only one node from
each family will ever be used for transmission by the algorithm.
Hence, all the nodes that are not of the highest priority within
their family can be removed from the priority list for simplicity.
In the terms of Problem , this means that only one trans-
mission type at each node is ever used for transmission.

Algorithm 1 when applied to Problem in this manner is
in complexity, that is, of complexity .

Comment: The results in this section can be used to show
that when a choice exists among deterministic transmissions
to single neighbor nodes, then Algorithm 1 reverts to the
well-known Dikstra’s Algorithm [10, Ch. 4]. In this sense,
Algorithm 1 is a generalization of Dikstra’s algorithm to the
case of stochastic local broadcast transmissions.
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IV. NOTATION USED IN DISTRIBUTED ALGORITHMS FOR

Problem

A. New Notation and Definitions

We summarize the notation and definitions we need for the
distributed algorithms in this paper.

A general Markov policy can be written

(46)

where the subscript of indexes time. Since Problem is
a time-homogeneous Markov decision problem, we know there
exists an optimal stationary policy of the form

(47)

Further, from Theorem 2.1 we know that there exists a stationary
optimal policy of the form (47) where is an index policy.

When describing distributed algorithms to compute an op-
timal policy for Problem , we need to consider a more gen-
eral type of policy.

Definition 4.1: A local index policy for node at is written
, and defines a node ordering of , with retirement

for node indicated by if desired. A distributed index policy
at is written , where is a local index
policy for node . A distributed index policy is written

.
A distributed index policy functions by transmitting at the

current node, say , at , then using the node ordering to
choose the next node for transmission.

For local index policy , we write when has higher
priority than under .

Definition 4.2: Consider nodes and , local index policies
and , and let . If either 1) and

or 2) and , then we say and match
on and .

Definition 4.3: If and match on and
, we say distributed index policy

is uniform at . When is uniform at , a global order of the
nodes is induced. We call the index policy which has this global
node ordering the associated index policy of .

We write to indicate the transmission probability as
known at node .

V. DISTRIBUTED ALGORITHM FOR PROBLEM

We present our first distributed algorithm (Algorithm 2
described below) which computes the optimal solution for
Problem , and has the characteristic that computations at
each node use only information directly from neighbor nodes.
This property is critical to the distributed implementation of
an optimal policy in an ad-hoc wireless network. We claim
convergence of the algorithm to the global node ordering and

value function consistent with the optimal index policy under
the following constraints.

1) Each node keeps a current estimate, denoted by ,
of its own optimal expected reward value, with initial
value . Each node also stores the
most recently received estimate of each of its neigh-
bors’ optimal expected reward values, denoted ,
where , with initial value .

2) Information transfer among neighboring nodes con-
sists only of the current value of the transmitting
node.

3) Each node’s information is transmitted asynchro-
nously.

4) A node’s update, defined below, is also asyn-
chronous.

5) It is assumed that each node has knowledge of its own
update structure. For example, node may es-

timate based on all its communications, both
control signals and packets.

6) The energy required to run the algorithm is not in-
cluded in finding the optimal solution for Problem

.
The algorithm is as follows.
Algorithm 2: An event time is when one or more of the

following two events occurs. Any number of events may occur
at an event time.

• Event 1): A node receives from a neighbor
and stores it as .
• Event 2): A node recomputes using the current

values, as shown in (48) at the bottom of the page.
The maximization in (48) is over all local priority policies of
. It is assumed that events 1 and 2 occur infinitely often at each

node i. Note that and imply that ,
and for conciseness in (48) we write simply .

We require no a priori time ordering on the above events,
nor on the nodes where they are occurring. At times when
neither of the above events is taking place, the system is in a
frozen state, with all system parameters remaining unchanged.
An event which occurs at some event time can have no effect
on other events at the same time. Hence, we can choose an
arbitrary order for all events occurring at a given time without
affecting the outcome. In this way, we can talk sensibly about
the th event in the system since the start, and we use this
convention hereafter.

The local policy which optimizes (48) for node at event is
a local index policy at . For convenience we notate this as

, where the context prevents ambiguity. The distributed index
policy after event will be denoted by .

Let be the expected reward for node just after event
in the previous system, so that is this value at the start of the

(48)
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algorithm, where the allowed range is . Let
be the value after event of the last transmitted received at
, where is the event index of this transmission. At the

start, the values do not need to match the neighbor’s
values, we only require that .

The computation of (48) is based on update (40) of Algorithm
1. Given the nature of this update equation, finding the max-
imum in (48) is easier than it might first appear, and a simple
efficient procedure based on Algorithm 1 and of worst case com-
plexity is given in [13].

We proceed with the analysis of Algorithm 2. The following
theorem is our main result concerning Algorithm 2, summa-
rizing its convergence properties.

Theorem 5.1: For Algorithm 2 with any initial state s.t.
and for all , we have the

following.

1)

(49)

2) There exists an event s.t.
is an optimal distributed

policy.
3) If

(50)

a) .
b) has an associated index

policy that is optimal.
We outline the proof of Theorem 5.1 by stating without proof

a series of lemmas. Full details are available in [13]. Our method
of proof of Theorem 5.1 is influenced by the proof of the asyn-
chronous distributed Bellman–Ford algorithm in [4]. We begin
with a statement of an important property of the node update
procedure which is fundamental for the analysis.

Lemma 5.1 (Update Monotonicity): Consider two cases of a
node recomputation for at event using (48). In case 1, the
neighbor values are and the updated node value is . In
case 2 the neighbor values are and the updated node value
is . Assume . Then

(51)

We say that the monotonicity property holds for a node update
due to the result of Lemma 5.1.

We now define two random sequences, and , which
we use to provide bounds on node updates. Noting that at the
start of Algorithm 2 each node has a value between 0 and

, and aiming at a kind of worst case initial state in light of
the monotonicity property just demonstrated, we define and

as follows.
Definition 5.1: We define such that

Computed value for after event

when

Computed value for after event

when

Fig. 1. System which takes infinite time to converge.

For such that , define

This last definition results from the fact that a node which can
retire and receive should always do so.

In the following, we assume is an optimal policy, and that
is the optimal value function for .

The next lemma indicates that is a monotonically non-
decreasing sequence which lower bounds , and in turn is
upper bounded by . Similarly, is a monotonically nonin-
creasing sequence which upper bounds , and in turn is lower
bounded by . Given these facts, it remains to show that
converges to from below, and that converges to from
above, to obtain covergence of to .

Lemma 5.2: We have

1) ;
2) .
Comment: In Lemma 5.2, the first part follows directly from

the monotonicity property, and in fact is true for any function
that is computed at each node that has this property. The second
part further requires the property that when all neighbors are
correct, the correct value function gets computed.

Corollary 5.1: We have

1) ;
2) .
The following lemma demonstrates convergence of to the

optimal value in a finite number of steps (we remind the
reader that denotes an optimal policy).

Lemma 5.3: There exists s.t.
.

Unfortunately, finite time convergence does not hold in gen-
eral for , as the following example demonstrates.

Example: Consider the system of Fig. 1 with parameters
, and

( is the destination node). Assume that , so the
system has a nontrivial optimal policy. Transmission success
from either or to the other two nodes is independent, with
probabilities and respectively. Assume Algorithm 2 begins
with .
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As Algorithm 2 runs, the node value computations of and
ping-pong back and forth, as the update of one is transmitted

to be used in the other’s update. Letting denote the update
value at at the th such update, it can be shown that for

(52)

where and . A similar
equation holds for . Hence , which
is the correct value function. But because , this value is
never reached in finite time.

In what follows, we discuss the sense in which an optimal
distributed policy is reached in finite time in the above example.

Comment: The key fact in the preceding example is that
nodes 1 and 2 have identical value functions. As a result, the

values of these two nodes converge to the same value, and
hence interact in each computation at each event , preventing
convergence in finite time. When limit values are different at
each node, a result similar to Lemma 5.3 for the sequence
follows easily, as shown in the following lemma.

Lemma 5.4: For Algorithm 2

1) , there exists s.t. ;
2) Assume with . Then

s.t. .
We are in fact able to prove asymptotic convergence for the

sequence in general, and we outline our approach here (de-
tails are in [13]). We define a new system, which we refer to as
the round-robin (r-r) system, where node update and transmis-
sion events follow a fixed predefined order. Using the mono-
tonicity property (Lemma 5.1), we are able to prove that
is bounded above by a corresponding value in the r-r system
and then show that they both must converge to . The proof
strategy is to define a mapping for the r-r system

in the form and demonstrate that the
mapping is component-wise continuous for each output, that

and there are no other fixed points of , and
hence that the r-r system converges to the optimal fixed point.
Asymptotic convergence of follows.

We give an example where Algorithm 2 does not converge to
an optimal index policy, but still converges to an optimal dis-
tributed policy.

Example: Consider the system of Fig. 2 with parameters
, and

. Assume node recomputations and successful value
transmissions occur in the order . Then
node 1 and 2 updates are still represented by (52). The policy at
node 1 is fixed at , and the policy at node 2 is
fixed at . However, at each update of node 4,
the policy changes, as the ranking of the values of nodes 1 and
2 alternate. That is, the policy computed at node 4 is

(53)

Of course, . The overall policy is ,
which is not a stationary policy, due to . It is, however, an
optimal distributed policy.

Fig. 2. System with optimal distributed policy.

VI. DISTRIBUTED DYNAMIC PROGRAMMING FORMULATION

We develop a distributed algorithm, different from but related
to Algorithm 2, using the methodology of DDP [3]. DDP is
a technique for solving dynamic programming problems using
distributed computation. The technique may only be used for
problems formulated so that a standard dynamic programming
equation applies, and for which a suitable partitioning of the
state space among processors (“computation centers”) can be
made. See [3] for a description of DDP, and [12] for further
details on applying DDP to Problem .

A. Solution of Problem Using DDP

The model of Problem is a standard controlled Markov
chain with finite state space and action space . Dynamic
programming can be directly applied to Problem on state
space , but this approach is inefficient and does not lead to
a direct application of DDP. This is because it is not possible
to define useful computation centers as in [3] through partition
of (on this state space, to define computation centers
in a way that leads to the application of DDP, we would need
to know a priori the optimal priority list of nodes as dictated
by Theorem 2.1). Our approach is to use the index structure of
an optimal policy demonstrated in Theorem 2.1 to define a new
state space on which DDP can be applied.

To solve Problem using DDP, we proceed in three steps.

1) Formulate a new problem, Problem .
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2) Show that an optimal policy for Problem can be
mapped to an optimal distributed policy for Problem

.
3) Apply DDP to Problem .
Here, we present the details of each of the aforementioned

steps.
1) Formulation of Problem : Problem The state

space is , the set of nodes. The policy space is the set of all
local index policies for all . When transmitting in state
, a cost is incurred and transition to a new state occurs.

Define to be the probability of transition from state to state
, under policy . Then

(54)

When we retire in state , the process terminates and a reward
is received. The objective is to choose for each state the

local index policy to maximize

(55)

where is the time when the transmission process is terminated,
and is the state at time .

2) Mapping of Optimal Policy From Problem to
Problem : We define a mapping of policies for Problem

to policies for Problem .
Mapping 1: A general (possibly time-varying) policy for

Problem consists of a sequence of local index policies for
each . For each , we define

(56)

A policy for Problem is then specified as

(57)

We map a policy for Problem represented as (57) into a
distributed index policy for Problem (cf. Definition 4.1)
in the obvious way. That is, at each time the local index policy

at each node is the same for Problem as for
Problem .

We show that mapping an optimal policy of Problem by
Mapping 1 leads to an optimal policy for Problem .

Lemma 6.1: If is an optimal policy for Problem , then
mapped to a policy for Problem using Mapping 1 is an

optimal distributed policy for Problem .
Proof: The assertion of Lemma 6.1 follows from Mapping

1 and the fact that an optimal policy for Problem is of the
index type.

3) A Distributed Dynamic Programming Implementation for
Problem : We formulate a DDP solution of Problem
by translating the notation of [3] into our notation. Each node

in our model is a computation center for itself alone, so that
. We associate

Set of all priority orderings of

Set of all priority orderings of

We also note the notational correspondences , and
, which are equivalent assuming event occurs at

time .
A neighbor of a node in the sense of [3] corresponds to our

notion of neighbor. However, the notation for the neighbors of
used in [3], , does not include , whereas for our notation

.
For Problem we define the function of [3]

as

(58)

The negative sign on the right-hand side of (58) is used to con-
form to the convention of [3] that the goal is to minimize cost.
Thus, the dynamic programming equation for Problem is

(59)

Note that is monotone in in the sense of [3].
The update for state by DDP at event is

(60)

We suppose that Assumption 1 of [3] is true for node updates
and transmissions. The functions

(61)

(62)

satisfy part i) of Assumption 2 of [3] due to (58) and (60), and
part ii) of Assumption 2 due to (59) and the standard result on
value iteration for a dynamic program. We require that, when
running DDP for Problem , we start with a value between

and at each node.
This completes the DDP formulation of Problem . We

now briefly state the results from [3] which apply to Problem
. Assumptions 1 and 2, and the requirements of [3, Prop.

1] are satisfied. Reference [3, Prop. 1], translating into our no-
tation, then implies that

(63)

Because for fixed update (58) is continuous in the com-
ponents of , the requirements of Proposition 3 of [3] are also
satisfied. Translating to our notation, we obtain from Proposi-
tion 3 that there exists a such that for all , if a
local index policy satisfies

(64)

then

(65)

Equation (65) states that takes an optimal action for state
at event .

Thus, we have shown how Problem can be solved with
the DDP methodology of [3] using update (60).
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B. Relation Between DDP Solution to Problem and
Algorithm 2

Event 1 of Algorithm 2 corresponds precisely to the transmit
state, which is update 1) of [3]. Event 2 of Algorithm 2 is related
to update 2) of [3]. However, the update (48) for Algorithm 2 and
(60) for DDP are not the same. For an update at node at
event , the key difference is that in (60) the value affects
the updated value , whereas in (48) it does not. Another
difference, relatively minor, between the DDP formulation and
Algorithm 2 is that where Algorithm 2 assumes Events 1 and
2 occur infinitely often, the DDP formulation of Problem
requires the somewhat more restrictive Assumption 1.

Though Algorithm 2 and the DDP formulation differ in the
ways just mentioned, the results proved for each algorithm are
quite similar. As remarked in (63), [3, Prop. 1] implies that

(66)

Equation (66) shows asymptotic convergence to the value func-
tion for Problem and, hence, for Problem , and is sim-
ilar to result Theorem 5.1, (1.). The result of Proposition 3 (65) is
similar to our Theorem 5.1, (2.). No results similar to Theorem
5.1, (3.) for Problem under the DDP formulation follow
directly from a result of [3].

As these results show, once Theorem 2.1 is proved for
Problem , application of Distributed Dynamic Program-
ming on an appropriate state space provides a new distributed
algorithm for Problem with certain properties nearly
equivalent to those of Algorithm 2.

VII. DISTRIBUTED RANK METHOD

We define a third distributed algorithm for Problem ,
which is similar in spirit to Algorithm 2, except that a different
method is used to update the node value function. We define the
following.

Algorithm 3: At each event time, any number of the fol-
lowing two events can occur.

• Event 1): A node receives from a neighbor
.

• Event 2): A node recomputes using the cur-
rent values, as follows.

1) The set of and values are ranked, high-to-low.
A local index policy for is created which uses this
ranking (ties are broken arbitrarily). If

, then uses any ranking of the neighbors, so long
as is given a ranking below at least one neighbor.

2) The following is computed.

(67)

We assume events 1 and 2 occur infinitely often at each node
i. We state our main results for Algorithm 3 in the following
theorem.

Theorem 7.1: For Algorithm 3 with any initial state s.t.
and for all , we have

1) ;
2) there exists an event s.t.

is an optimal
distributed policy;

3) if

(68)

then there exists an event s.t.
a) ;
b) has an associated index

policy that is optimal.
We state without proof the following Lemma 7.1 which we

use to prove Theorem 7.1 (detailed proofs are in [13]). First
we note that the monotonicity property in the sense of Lemma
5.1 does not hold in general for the update of Algorithm 3 (a
concrete counterexample is given in [13]), and hence we must
take a different approach to proving convergence than what we
used for Algorithm 2. Nevertheless, we are able to prove the
following lemma.

Lemma 7.1: For Algorithm 3 we have

We are now ready to present the Proof of Theorem 7.1.
Proof: [of Theorem 7.1]
Proof of 1: Relation 1 follows directly from Lemma 7.1.
Proof of 2: Because of 1. there exists after which the

node values at each node and its are in the order of some
local index policy with an optimal associated index policy. At
each event this local ordering can change, but it always
corresponds to some optimal associated index policy. Hence, at
each node an optimal action is taken at each event .
Hence, the distributed policy is optimal.

Proof of 3: Because of 1. and Lemma 7.1, there exists
after which node values for each node and its are in
the order of the unique optimal local index policy and there are
no subsequent changes in this order. Subsequent to , once a
full round of node updates occurs, each node has its correct
and its correct local index policy, which subsequently do not
change.

Discussion: It is interesting to note the relation of Algorithm
3 to the results in [7]. Major differences include the on-going
nature of the node updates in Algorithm 3, and that node values
are interpreted as the expected reward at a given node, whose
estimates are constantly being updated by (67). The direction
flipping action of [7] corresponds to resetting in Algorithm 3.
The Proof of Theorem 7.1 is more difficult than the analogous
result in [7], due to the fact that in Algorithm 3 node values
can change not just when being reset but also when normally
computing updated estimates.

VIII. ALGORITHM COMPARISON AND SIMULATION RESULTS

For ease of reference, we summarize the update functions of
this paper’s three algorithms in Table I. All three algorithms run
in a similar fashion, with the main difference being this update
function. In terms of computational complexity of the update,
Alg. 2 and the DDP algorithm are roughly comparable, while
the Rank algorithm is somewhat less complex. In Theorem 5.1,
the DDP results, and Theorem 7.1 we have shown finite-time
convergence of each algorithm to an optimal policy in a static
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network. There remain important questions about dynamic per-
formance of each algorithm, such as convergence rate, which
have not been addressed in this paper.

An ad-hoc network simulation has been conducted to com-
pare performance of the three distributed algorithms of Table I,
along with the performance of other algorithms in the literature.
The simulation is setup so that the frequency of packet arrival
justifies a route-maintenance approach. The density of mobiles
in the simulated network is chosen so that the local broadcast
nature of transmission is beneficial. The results presented here
are not conclusive in comparing the different approaches, but
they do represent an important class of networks for which our
approach performs very well.

The network consists of 12 mobiles on a field 2 km 2 km.
Each mobile moves at the same constant speed, which can be
varied over different simulation runs. Each mobile chooses a
waypoint which is a random point in the field of operation,
moves toward this waypoint at a fixed speed, and then chooses
a new random waypoint once the previous one is reached. Mes-
sages arrive at a fixed rate at each mobile, and they all have the
same destination node, which is also moving. Mobiles transmit
each packet at fixed power, and take statistics on which other
mobiles receive the packet. Mobiles are assumed to be trans-
mitting pilot signals from which the active set of neighbors can
be determined for both control signaling and decoding attempts.
Transmission instances are assumed synchronous across all mo-
biles. Each mobile has a single omnidirectional antenna for both
transmitting and receiving.

Transmission channels and interference are modeled using
the method from the 3GPP2 1xEV-DO Evaluation Methodology
[1] for CDMA transmission. In the present simulation, only
Channel A (a 3 kmph single-path Rayleigh fading channel) is
used, and short-term curves (PER versus Eb/No) generated for
this channel are used to determine packet success. When vari-
ation in velocity is indicated in the simulation results, this in-
dicates the rate of network topology change, not of the fading
process. Signal propagation loss is determined using a power
of 3.5 dropoff in distance. Path loss to each neighboring mo-
bile consists of a propagation loss, time-varying shadowing, and
short-term fading. The propagation loss is based on distance, the
time-varying shadowing is assumed 0.5 correlated across neigh-
bors, and the short-term fading is assumed independent across
neighbors. Each time instant, the power received at each node
is determined and an interference term is used in the Eb/No
computation for each mobile packet transmission. We model a
carrier frequency of 1.9 GHz, a chip rate of 1.25 Mcps, and a
spreading gain of 20, which implies an approximate 60 kbps
transmission rate. We assume each packet is 50 ms in duration.

Each transmission is assumed to cost a fixed energy of 1
unit and occur at a fixed power. After each transmission from
a mobile, the routing protocol uses the set of neighbor mobiles
successfully receiving the packet to determine whether to re-
transmit the packet or to pass control of the packet to a neighbor
mobile. The energy cost of the packet reception and control sig-
naling is assumed negligible in these simulations.

As the mobiles move toward their waypoints, and as
shadowing and fading vary with time, transmission success

TABLE I
UPDATE FUNCTION FOR THREE DISTRIBUTED ALGORITHMS

probability to each neighbor dynamically changes. Trans-
mission probabilities are estimated for all algorithms using a
moving window average of recent success frequency. These
successes are kept individually for each neighbor and assumed
independent. Though this is not exactly true physically (nor
in the simulation transmission model itself), the effect of
fading over packet transmission times often means this model
is a reasonable approximation and useful for making routing
decisions. Optimality of these algorithms does not depend on
such independence, we assume it solely for computational
simplicity.

We simulate the performance of six algorithms. The first
three are those presented in this paper and summarized in
Table I. The remaining three are versions of well-known algo-
rithms: Distributed Bellman–Ford (DBF) [4] with a hop-count
metric (DBF-HC), DBF with an expected energy cost metric
(DBF-EN), and the method of Gafni–Bertsekas (GB) [7], which
has also been adapted for use in the TORA algorithm [18]. In
DBF-HC, the path with fewest links to the destination is used.
In DBF-EN, a metric for each link is determined based on
the expected energy to transmit across the link, which in our
model is the inverse of the success probability, and the path of
smallest cumulative expected energy is used. In GB, the same
path is used until a link in the path is broken, at which time a
distributed algorithm runs which is guaranteed to determine a
new path to the destination. In the DBF-HC and GB algorithms,
a strict binary decision is made as to whether or not each link
is connected. In our simulation, we use a fixed probability
threshold to make this determination.

We simulate two cases, that of a loaded network, and that
of a partially loaded network. In the case of a loaded network,
it is assumed that each mobile is transmitting and generating
interference nearly all of the time, even when the mobile does
not currently have any packet destined for the destination being
simulated. This accounts for the fact that though we simulate
packets for just one destination, in the actual network there
may be many such destinations and their packets are constantly
flowing in the network. The loaded network is the case where
transmission opportunities are close to saturation. In the par-
tially loaded network, we assume that each mobile transmits
only a fraction of the time, with these times chosen randomly
when generating neighbor interference.
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Fig. 3. Convergence of average energy per packet for six distributed routing algorithms, 3 kmph, loaded network.

We first show the nature of convergence of the average en-
ergy expended per packet (EPP) to reach its destination. Be-
cause each packet transmission requires one unit of energy, av-
erage EPP also indicates the number of times on average a trans-
mission attempt was made per packet before it finally reaches
the destination. A running total of this average is recorded in
the simulation each time step. The average EPP versus time
value is plotted in Fig. 3 for the 3 kmph case for all six algo-
rithms for a loaded network. The overhead signaling for each of
these algorithms was not accounted for (e.g., for GB upon occa-
sion the entire path must be updated with extensive control sig-
naling, but we ignore the cost of that here). Because the energy
cost of a packet is only recorded once it reaches the destination,
early measurements of EPP are biased toward good packets, and
hence are optimistic. As the simulation progresses, the average
settles to a steady-state value indicating the correct overall EPP.

The three algorithms using stochastic routing outperform
the three algorithms that do not by nearly 3 dB. We note in
passing that this is also the order of improvement claimed for
soft handoff in cellular systems [24]. Interestingly, the Alg2,
DDP, and Rank algorithms all converge to the same value. It is
important to recognize that, though we have proved that these
three algorithms converge to the optimal routing algorithm in
the steady-state, their dynamic performance is potentially dif-
ferent in this more realistic nonstationary context with accurate
channel models. As expected, DBF-EN moderately outper-
forms DBF-HC, while GB converges to a value slightly better
than DBF-HC. It is difficult to predict in general how DBF-HC

and GB will compare to each other. There is no guarantee that
the hop-count metric is actually better than the path in use by
GB, because, though the GB path is chosen in a somewhat
arbitrary manner, the actual cost of the hop-count path may also
vary widely based on the link channel quality. The DBF-EN
algorithm takes the link quality into account, and so should be
the best of the algorithms which update a fixed path.

Fig. 4 shows average EPP for the six algorithms as a function
of mobile velocity, which is used to update network topology.
Note that in general the performance of each algorithm suffers
as the velocity increases. The basic effect is that the estimate of
transmission probability from past events becomes less relevant
to future transmission success as the topology changes more and
more rapidly. For the three stochastic routing algorithms and
for DBF-EN, the inaccuracy in probability estimation translates
directly into routing inefficiency. For DBF-HC and GB, which
use a channel quality threshold, the effect is to postpone when
link state change detection occurs, and the quality of the path
in use suffers accordingly. Note also that Alg 2 very slightly
outperforms DDP and Rank for thise case at higher velocity.

Fig. 5 also shows average EPP for the six algorithms as a func-
tion of mobile velocity, but for the case of a partially loaded net-
work. Note that the average EPP is about half that of Fig. 4, but
the ratio of each algorithms performance is roughly comparable.
This indicates that the advantages of stochastic routing extend
to the case of multiple loading levels of a network. One question
to pursue about this plot is why the DBF-HC, DBF-EN, and GB
algorithms actually improve at the highest velocity.
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Fig. 4. Average energy per packet versus velocity for six distributed routing algorithms, loaded network.

Fig. 5. Average energy per packet for six distributed routing algorithms, partially loaded network.
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Fig. 6. Convergence of delivery delay per packet for six distributed routing algorithms, 3 kmph, loaded network.

Along these lines note that though higher velocity has the effect
of impeding probability estimation, it can also be beneficial in
keeping the network sufficiently mixing to keep fixed paths from
clogging up.

Finally, we consider delivery delay per packet. Delivery delay
is different from EPP because packets can also incur queuing
delay at each mobile. This queuing delay is generally worse for
the fixed-path algorithms, because packets locally tend to take
the same path. Note that if load-balancing were implemented to
improve delay, then EPP would generally increase, at least for
DBF-EN. In contrast, the stochastic routing approach naturally
leads to more spreading out of packet transmissions among mo-
biles, greatly reducing the need for an explicit load balancing
algorithm.

Fig. 6 shows the time trace of average delivery delay per
packet for each algorithm in the loaded network for the case of
3 kmph. The stochastic routing delay performance is substan-
tially better than that of the other algorithms. Also, DBF-EN
outperforms DBF-HC and GB more significantly in delay. This
is because the expected energy metric leads to more variation in
the path used, which leads to less congestion. Though none of
these algorithms has been optimized for delay, the delay statistic
is still of interest in understanding algorithm performance. It is
useful when an algorithm achieves both better energy and delay
performance, as stochastic routing does in these examples.

REFERENCES

[1] 1xEV-DO Evaluation Methodology (v1.4), 2003.

[2] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey
on sensor networks,” IEEE Commun. Mag., vol. 40, no. 8, pp. 102–114,
Aug. 2002.

[3] D. Bertsekas, “Distributed dynamic programming,” IEEE Trans. Autom.
Control, vol. AC-27, no. 3, pp. 610–616, Jun. 1982.

[4] D. Bertsekas and R. Gallager, Data Networks. Upper Saddle River, NJ:
Prentice-Hall, 1992.

[5] J. Broch, D. Maltz, D. B. Johnson, Y. C. Hu, and J. Jetcheva, “A perfor-
mance comparison of multi-hop wireless ad hoc network routing proto-
cols,” in Proc. 4th Annu. ACM/IEEE Int. Conf. Mobile Computing and
Networking, Oct. 25–30, 1998.

[6] M. Fan et al., “On the reverse link performance of cdma2000 1xEV-DO
revision a system,” in Proc. ICC 2005, Seoul, South Korea.

[7] E. Gafni and D. Bertsekas, “Distributed algorithms for generating loop-
free routes in networks with frequently changing topology,” IEEE Trans.
Commun., vol. COM-29, no. 1, pp. 11–18, Jan. 1981.

[8] Z. Haas, “Guest editorial, wireless ad hoc networks,” IEEE J. Select.
Areas Commun., vol. 17, no. 8, pp. 1329–1330, Aug. 1999.

[9] G. Klimov, “Time sharing service systems I,” Theory Probab. Appl., vol.
19, pp. 532–551, 1974.

[10] J. Kurose and K. Ross, Computer Networking. Reading, MA: Ad-
dison-Wesley, 2000.

[11] C. Lott et al., Reverse Traffic Channel Design of cdma2000 1xEV-DO
Revision A System. Stockholm, Sweden: VTC, Jun. 2005.

[12] C. Lott and D. Teneketzis, “Stochastic routing in ad hoc wireless net-
works,” Univ. Michigan Control Group, Rep. CGR 01-01, Feb. 2001.

[13] , (2005, May) Stochastic routing in ad hoc networks. Communi-
cations and Signal Processing Lab., Dept. EECS, Univ. Michigan, Ann
Arbor, MI. [Online]. Available: www.eecs.umich.edu/systems/TechRe-
portsList.html, Rep. TR-362

[14] G. S. Malkin, “RIP version 2: Carrying additional information,” in RFC
1388, Jan. 1993.

[15] D. Maltz, J. Broch, J. Jetcheva, and D. Johnson, “The effects of on-de-
mand behavior in routing protocols for multihop wireless ad hoc net-
works,” IEEE J. Select. Areas Commun., vol. 17, no. 8, pp. 1439–1453,
Aug. 1999.

[16] P. Merlin and A. Segall, “A failsafe distributed routing protocol,” IEEE
Trans. Commun., vol. 27, no. 9, pp. 1280–1287, Sep. 1979.



70 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 51, NO. 1, JANUARY 2006

[17] J. Moy, “OSPF Version 2,” RFC 1247, July 1991.
[18] V. Park and M. Corson, “A highly adaptive distributed routing algorithm

for mobile wireless networks,” in Proc. INFOCOM’97, Apr. 1997, pp.
1405–1413.

[19] M. Pearlman and Z. Haas, “Determining the optimal configuration for
the zone routing protocol,” IEEE J. Select. Areas Commun., vol. 17, no.
8, pp. 1395–1414, Aug. 1999.

[20] C. Perkins, E. Royer, and S. Das, Ad Hoc On-Demand Distance Vector
(AODV) Routing: IETF MANET Working Group, Mar. 2000.

[21] M. Pursley, H. Russell, and P. Staples, “Routing for multimedia traffic
in wireless frequency-hop communication networks,” IEEE J. Select.
Areas Comm., vol. 17, no. 5, pp. 784–792, May 1999.

[22] S. Ross, Introduction to Stochastic Dynamic Programming. Orlando,
FL: Academic, 1983.

[23] P. Samar, M. Pearlman, and Z. Haas, “Independent zone routing: An
adaptive hybrid routing framework for ad hoc wireless networks,” in
IEEE/ACM Trans. Networking, vol. 12, Aug. 2004, pp. 595–608.

[24] A. Viterbi, CDMA: Principles of Spread Spectrum Communica-
tions. Reading, MA: Addison-Wesley, 1995.

[25] J. Wieselthier, G. Nguyen, and A. Ephremides, “Algorithms for band-
width-limited energy-efficient wireless broadcasting and multicasting,”
in Proc. 2000 IEEE Military Communications Conf., Los Angeles, CA,
Oct. 2000.

Christopher Lott received the Ph.D. degree in electrical engineering and com-
puter science from the University of Michigan, Ann Arbor, in 2001.

He is currently with the Corporate R&D Department at Qualcomm, Inc., San
Diego, CA. His interests include stochastic systems, resource allocation, dis-
tributed algorithms, communication theory, dynamical systems, and wireless
networks. At Qualcomm, he is a System Designer for 1xEV-DO, with a focus
on MAC design.

Demosthenis Teneketzis (M’87–SM’97–F’00) received the diploma in elec-
trical engineering from the University of Patras, Patras, Greece, and the M.S.,
E.E., and Ph.D. degrees, all in electrical engineering, from the Massachusetts In-
stitute of Technology, Cambridge, in 1974, 1976, 1977, and 1979, respectively.

He is currently Professor of Electrical Engineering and Computer Science at
the University of Michigan, Ann Arbor. In winter and spring 1992, he was a
Visiting Professor at the Swiss Federal Institute of Technology (ETH), Zurich,
Switzerland. Prior to joining the University of Michigan, he worked for Sys-
tems Control, Inc., Palo Alto, CA, and Alphatech, Inc., Burlington, MA. His
research interests are in stochastic control, decentralized systems, queueing and
communication networks, stochastic scheduling and resource allocation prob-
lems, mathematical economics, and discrete-event systems.


	toc
	Stochastic Routing in Ad-Hoc Networks
	Christopher Lott and Demosthenis Teneketzis, Fellow, IEEE
	I. I NTRODUCTION
	A. Ad-Hoc Network Routing Literature
	1) On-Demand Protocols: On-demand protocols are the algorithms w
	2) Route Maintenance Protocols: As the name implies, route maint

	B. Contribution

	II. S TOCHASTIC R OUTING P ROBLEM
	A. Notation and Preliminaries
	Definition 2.1 (Increasing Property): Model ${\bf (M)}$ is said 
	Definition 2.2 (Decoupling Property): Model ${\bf (M)}$ is said 
	Definition 2.3: A function $f : 2^\Omega \rightarrow \BBR$ is an

	B. Statement of Problem
	C. Analysis of Problem $({\bf P}_{\bf 1})$
	1) Structure of an Optimal Policy for Problem $({\bf P}_{\bf 1})
	Definition 2.4: A Markov policy $\pi$ is a priority policy if th
	Definition 2.5: For priority policy $\pi$, we write $i >_{\pi} j
	Definition 2.6: A priority policy $\pi$ is called an index polic
	Theorem 2.1 (Index Policy): There is an optimal Markov policy $\
	Lemma 2.1: Function $f$ is an index function on $\Omega$ if and 
	Proof: Assume $f$ is an index function on $2^\Omega$ . Then $f$ 

	Lemma 2.2 (Monotonicity): In Problem $({\bf P}_{\bf 1})$, let $\
	Proof: Given $\pi$ and $S_2 \subseteq S_1$, we define a new poli

	Lemma 2.3: Let $\mathtilde{\pi}$ be an optimal Markov policy for
	Proof: If $\pi(S_1) = \mathtilde{\pi}(S_1) = r_{i}$, for some $i

	Lemma 2.4: Let $\mathtilde{\pi}$ be an optimal Markov policy for
	Proof: We define $\pi$ using the following rules: $$\eqalignno{ 

	Lemma 2.5: For any optimal Markov policy $\mathtilde{\pi}, V^{\m
	Proof: First note that Lemma 2.4 implies Lemma 2.1 (3) is satisf
	Proof: [of Theorem 2.1] Let $\pi$ be the Markov policy satisfyin

	2) Description of Centralized Algorithm: As stated in Section€II
	Algorithm 1: (A Dijkstra-Type Algorithm for an Index Policy)
	Initially: ${\cal A}$ contains the nodes of highest retirement r
	During the Construction of Optimal Policy $\pi$: ${\cal A}$ cont
	Remark: In Step 1 the right-hand side of (40) computes the best 
	Lemma 2.6: Assume $\pi$ is an optimal index policy for Problem $
	Proof: The proof of Lemma 2.6 is in [ 13 ] . $\blackboxfill$

	Corollary 2.1: Assume $\pi$ is an optimal index policy for Probl
	Proof: Corollary 2.1 follows from the fact that (40) computes (4

	Theorem 2.2: For Problem $({\bf P}_{\bf 1})$, Algorithm 1 produc
	Proof: We prove the theorem by induction on the number of nodes 

	3) Remarks:
	4) Distributed Implementation of an Optimal Index Policy: We not
	Property 2.1: In an index policy for Problem $({\bf P}_{\bf 1})$


	III. S TOCHASTIC R OUTING P ROBLEM W ITH T RANSMISSION C ONTROL
	A. Notation and Definitions
	Definition 3.1: $W_i$ refers to the number of transmission types
	Definition 3.2: We write $\pi(S) = (i,k)$ to mean that when in s
	Definition 3.3: When in state $S$ for which $\pi(S) = (i,k)$, a 

	B. Statement of Problem
	C. Analysis of Problem $({\bf P}_{\bf 2})$
	1) Notation and Definitions for Problem $({\bf P}_{\bf 3})$: We 
	2) Formulation of Problem $({\bf P}_{\bf 3})$: Problem $({\bf P}
	3) Relation of Problem $({\bf P}_{\bf 3})$ to Problem $({\bf P}_
	4) Analysis of Problem $({\bf P}_{\bf 3})$: We show that the sys
	Comment: The results in this section can be used to show that wh


	IV. N OTATION U SED IN D ISTRIBUTED A LGORITHMS FOR Problem $({\
	A. New Notation and Definitions
	Definition 4.1: A local index policy for node $i$ at $t$ is writ
	Definition 4.2: Consider nodes $i$ and $j$, local index policies
	Definition 4.3: If $\pi_t^i$ and $\pi_t^j$ match on $k$ and $l$ 


	V. D ISTRIBUTED A LGORITHM FOR P roblem $({\bf P}_{\bf 1})$
	Algorithm 2: An event time $n$ is when one or more of the follow
	Theorem 5.1: For Algorithm 2 with any initial state s.t. $0 \leq
	Lemma 5.1 (Update Monotonicity): Consider two cases of a node re
	Definition 5.1: We define $\forall i\in \Omega$ such that $R_i \


	Fig.€1. System which takes infinite time to converge.
	Lemma 5.2: We have 
	Comment: In Lemma 5.2, the first part follows directly from the 
	Corollary 5.1: We have 
	Lemma 5.3: There exists $n_p<\infty$ s.t. $\forall n \geq {n_p},
	Example: Consider the system of Fig.€1 with parameters $0 < p < 
	Comment: The key fact in the preceding example is that nodes 1 a
	Lemma 5.4: For Algorithm 2
	Example: Consider the system of Fig.€2 with parameters $0 < p < 

	Fig.€2. System with optimal distributed policy.
	VI. D ISTRIBUTED D YNAMIC P ROGRAMMING F ORMULATION
	A. Solution of Problem $({\bf P}_{\bf 1})$ Using DDP
	1) Formulation of Problem $({\bf F}_{\bf 1})$: Problem $({\bf F}
	2) Mapping of Optimal Policy From Problem $({\bf F}_{\bf 1})$ to
	Mapping 1: A general (possibly time-varying) policy for Problem 
	Lemma 6.1: If ${\bf \Pi}$ is an optimal policy for Problem $({\b
	Proof: The assertion of Lemma 6.1 follows from Mapping 1 and the

	3) A Distributed Dynamic Programming Implementation for Problem 

	B. Relation Between DDP Solution to Problem $({\bf F}_{\bf 1})$ 

	VII. D ISTRIBUTED R ANK M ETHOD
	Algorithm 3: At each event time, any number of the following two
	Theorem 7.1: For Algorithm 3 with any initial state s.t. $0 \leq
	Lemma 7.1: For Algorithm 3 we have $\lim_{n \rightarrow \infty} 
	Proof: [of Theorem 7.1]
	Proof of 1: Relation 1 follows directly from Lemma 7.1.
	Proof of 2: Because of 1. there exists $n_p$ after which the nod
	Proof of 3: Because of 1. and Lemma 7.1, there exists $n_p$ afte

	Discussion: It is interesting to note the relation of Algorithm 

	VIII. A LGORITHM C OMPARISON AND S IMULATION R ESULTS

	TABLE I U PDATE F UNCTION FOR T HREE D ISTRIBUTED A LGORITHMS
	Fig.€3. Convergence of average energy per packet for six distrib
	Fig.€4. Average energy per packet versus velocity for six distri
	Fig.€5. Average energy per packet for six distributed routing al
	Fig.€6. Convergence of delivery delay per packet for six distrib

	1xEV-DO Evaluation Methodology (v1.4), 2003.
	I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, A sur
	D. Bertsekas, Distributed dynamic programming, IEEE Trans. Autom
	D. Bertsekas and R. Gallager, Data Networks . Upper Saddle River
	J. Broch, D. Maltz, D. B. Johnson, Y. C. Hu, and J. Jetcheva, A 
	M. Fan et al., On the reverse link performance of cdma2000 1xEV-
	E. Gafni and D. Bertsekas, Distributed algorithms for generating
	Z. Haas, Guest editorial, wireless ad hoc networks, IEEE J. Sele
	G. Klimov, Time sharing service systems I, Theory Probab. Appl.,
	J. Kurose and K. Ross, Computer Networking . Reading, MA: Addiso
	C. Lott et al., Reverse Traffic Channel Design of cdma2000 1xEV-
	C. Lott and D. Teneketzis, Stochastic routing in ad hoc wireless
	G. S. Malkin, RIP version 2: Carrying additional information, in
	D. Maltz, J. Broch, J. Jetcheva, and D. Johnson, The effects of 
	P. Merlin and A. Segall, A failsafe distributed routing protocol
	J. Moy, OSPF Version 2, RFC 1247, July 1991.
	V. Park and M. Corson, A highly adaptive distributed routing alg
	M. Pearlman and Z. Haas, Determining the optimal configuration f
	C. Perkins, E. Royer, and S. Das, Ad Hoc On-Demand Distance Vect
	M. Pursley, H. Russell, and P. Staples, Routing for multimedia t
	S. Ross, Introduction to Stochastic Dynamic Programming . Orland
	P. Samar, M. Pearlman, and Z. Haas, Independent zone routing: An
	A. Viterbi, CDMA: Principles of Spread Spectrum Communications .
	J. Wieselthier, G. Nguyen, and A. Ephremides, Algorithms for ban



