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Inner-Approximating Reachable Sets for Polynomial
Systems with Time-Varying Uncertainties
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Abstract

In this paper we propose a convex programming based method to address a long-standing problem of inner-approximating
backward reachable sets of state-constrained polynomial systems subject to time-varying uncertainties. The backward reachable set
is a set of states, from which all trajectories starting will surely enter a target region at the end of a given time horizon without
violating a set of state constraints in spite of the actions of uncertainties. It is equal to the zero sub-level set of the unique Lipschitz
viscosity solution to a Hamilton-Jacobi partial differential equation (HJE). We show that inner-approximations of the backward
reachable set can be formed by zero sub-level sets of its viscosity super-solutions. Consequently, we reduce the inner-approximation
problem to a problem of synthesizing polynomial viscosity super-solutions to this HJE. Such a polynomial solution in our method
is synthesized by solving a single semi-definite program. We also prove that polynomial solutions to the formulated semi-definite
program exist and can produce a convergent sequence of inner-approximations to the interior of the backward reachable set in
measure under appropriate assumptions. This is the main contribution of this work. Several illustrative examples demonstrate the
merits of our approach.
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I. INTRODUCTION

Reachability analysis, which derives verdicts about the states reachable in a dynamical system, has received growing interest in
recent years. It has many applications in engineering problems, especially concerning safety-critical systems including aeronautics,
automotive, medical devices and industrial process control [26]. Consequently, attention from scientists across multiple disciplines
has been devoted to the problem of performing reachability analysis. Performing outer- and inner-approximate reachability analysis
is an enabler for detecting whether the system of interest will always avoid unsafe states when started from a specified set of
initial states or whether it satisfies a temporal-logic formula [11], as well as for computing the set of initial configurations that
reach desired configurations while respecting a set of constraints [2]. The former is generally referred to as the safety verification
problem, which has traditionally attracted more attention. As a result, significant advances of outer-approximate reachability
analysis techniques for both linear and nonlinear systems have been reported in the literature based on various representations
of sets such as intervals [35], zonotopes [1], polyhedra and support functions for polyhedral sets [10], [15], ellipsoids [22], level
sets [30], Taylor models [6] and semi-algebraic sets [41], [19]. Computational methods for inner-approximations have received
increasing attention just recently, e.g., [41], [21], [17], [7], [44]. It nevertheless has a wide range of practical applications
including collision avoidance and surveillance. However, the development of numerical tools, which tractably inner-approximate
the reachable set for state-constrained systems with time-varying uncertainties, has been challenging and is still an open area of
research.

Besides, in real physical world physical systems often have certain level of desired performances. Unfortunately, it is demanding
to model their dynamics exactly due to physical limitations such as imperfections in sensing equipment and incomplete informa-
tion, especially in fluctuating environments. Consequently, engineering designs based on abstracted mathematical models without
taking these uncertainties into account may lead to incorrect operations of physical systems. Abstracting these uncertainties as
time-varying parameters (e.g., [36]) and incorporating them into the model is a popular means to compensate for the inability
to construct exact models.

In this paper we focus our attention on inner-approximating backward reachable sets for state-constrained polynomial systems
with time-varying uncertainties. The backward reachable set is the set of states such that trajectories originating from it surely hit
a target region after a specified time duration without violating a set of state constraints in spite of the actions of the uncertainties.
Such sets are particularly useful to identify decisions that are “robust” against noise parameters. In order to compute the backward
reachable set, in this paper we first make use of Kirszbraun’s extension theorem for Lipschitz maps to characterize the backward
reachable set as the zero sub-level set of the unique Lipschitz viscosity solution to a HJE. Such HJE could be regarded as
a special case of the HJE in [29] considering competing inputs (uncertainty and control) and time-invariant state constraints.
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Since it is nontrivial, even impossible to find the viscosity solution, we then propose a novel semi-definite programming based
method to compute its polynomial viscosity super-solutions, whose zero sub-level sets form inner approximations of the backward
reachable set. An inner-approximation of the backward reachable set in our method can be obtained by solving a single semi-
definite program consisting of linear matrix inequalities. Compared to traditionally grid-based numerical methods, the benefits
of our method are overall the convexity of the problem of finding the backward reachable set. We further prove that polynomial
solutions to the formulated semi-definite program exist and can generate a convergent sequence of inner-approximations to the
interior of the backward reachable set in measure under appropriate assumptions. This is the main contribution of this work.
Finally, several illustrative examples evaluate the performance and the merits of our approach.

Related Work
As mentioned above, inner-approximate reachability analysis of ordinary differential equations subject to time-varying uncer-

tainties and state constraints, is still in its infancy and thus provides an open area of research.
For ordinary differential equations free of time-varying uncertainties and state constraints, [17], [18] proposed a method based

on modal intervals with affine forms to inner-approximate reachable sets using intervals. By making use of the homeomorphism
property of the solution mapping, a boundary based reachability analysis method was proposed to inner-approximate reachable
sets with polytopes in [44], and it was extended to a class of delay differential equations in [43]. Since reachable sets of
nonlinear systems tend to be non-convex, the above mentioned methods based on convex set representations may result in poor
approximations. As accuracy is also an important factor in performing reachability analysis (e.g.,[37], [28]), more complex shapes
of representations such as Taylor models and semi-algebraic sets are desirable. [7] proposed a Taylor model backward flowpipe
method to compute inner-approximations. [41] proposed an iterative method, with each iteration relying on solving semi-definite
programming problems, to compute semi-algebraic inner-approximations for polynomial systems using the advection map of
the given dynamical system. [45] extended the method in [44] to compute semi-algebraic inner-approximations of reachable
sets for polynomial systems and beyond by solving semi-definite programming problems. Recently, [42] formulated the problem
of solving HJEs as a semi-definite program to compute inner-approximations for polynomial systems. For state-constrained
polynomial systems without time-varying uncertainties, [21] computed inner-approximations of the region of attraction to a
target set by solving semi-definite programs. In contrast to the aforementioned approaches, our approach in this paper targets
state-constrained systems subject to time-varying uncertainties.

The reachability analysis for state-constrained nonlinear systems with time-varying uncertainties is more challenging. An
attractive way to address this problem is by formulating reachable sets as sub-level sets of viscosity solutions of HJEs, e.g, [30],
[5], [29], [2], [14], [46]. The Hamilton-Jacobi reachability methods are capable of dealing with general nonlinear systems with
state constraints and competing inputs. However, existing numerical methods for addressing HJEs generally require gridding the
state space and hence their time and memory complexity grow exponentially with the state dimension. Our approach in this paper
tackles the finite time horizon reachability problem of state-constrained polynomial systems with time-varying uncertainties.
Rather than solving HJEs directly, our approach reformulates the problem of solving HJEs as a semi-definite programming
problem, which falls within the convex programming framework and can be efficiently solved by interior-point methods in
polynomial time. Polynomial solutions to the formulated semi-definite programs exist and can produce a convergent sequence of
inner-approximations to the interior of the backward reachable set in measure under appropriate assumptions. Recently, based on
a derived HJE, [46] proposed a semi-definite programming based method to compute inner-approximations of the maximal robust
invariant set over the infinite time horizon for state-constrained polynomial systems with time-varying uncertainties. However,
the existence of polynomial solutions to the constructed semi-definite program in [46] is not guaranteed.

Another area that is relevance to the topic of this paper is the computation of regions of attraction for systems subject to
uncertainties [8], [38], [39], [9]. These methods rely upon the generation or evaluation of pre-constructed Lyapunov functions
to compute inner-approximations of the region of attraction over the infinite time horizon. This requires checking Lyapunov’s
criteria for polynomial systems by using sum-of-squares programming, which results in a bilinear optimization problem that is
usually solved using some form of alteration, e.g., [39]. These sum-of-squares programming based methods suffer from the same
issue as that in [46]. The existence of polynomial solutions to the constructed sum-of-squares programming is not guaranteed.

This paper is structured as follows. The reachability problem of interest is formally stated in Section II, and then formulated
within the Hamilton-Jacobi reachability framework in Section III. In Section IV we show that the interior of the backward
reachable set can be approximated from inside in measure by a sequence of zero sub-level sets of solutions to a semi-definite
program under appropriate assumptions. After demonstrating our approach on several illustrative examples in Section V, we
conclude our paper in Section VI.

II. PRELIMINARIES

A. System Dynamics
In this section we mainly present an introduction to backward reachable sets. The following notation will be used throughout

this paper: For a set ∆, ∂∆ denotes its boundary. Rk[·] represents the set of real polynomials of total degree ≤ k in variables
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given by the argument. The symbol R[·] denotes the ring of polynomials in variables given by the argument. N denotes the set
of nonnegative integers. The space of continuously differentiable functions on a set X is denoted by C∞(X). The difference of
two sets of A and B is denoted by A \ B. µ(A) denotes the Lebesgue measure on A ⊂ Rn. Vectors are denoted by boldface
letters.

In this paper we consider the following system:

ẋ(s) = f(x(s),d(s)), a.e., s ∈ [0, T ], (1)

where for each s ∈ [0, T ], x(s) ∈ Xs and d(s) ∈ D, Xs and D are respectively compact subsets of Rn and Rm for some positive
integers n and m.

We assume that each entry of the vector field f is polynomial, i.e., fi ∈ R[x,d], i = 1, . . . , n. It is evident that the map f
satisfies the following two properties:

1) f is continuous;
2) f is locally Lipschitz on x uniformly on d, that is, for each compact subset X of Rn there is some constant L such that

‖f(x,d)− f(z,d)‖ ≤ L‖x− z‖,∀x, z ∈ X ,∀d ∈ D,

where ‖ · ‖ denotes the usual Euclidean norm.
For t ∈ [0, T ], the time-varying state and uncertainty constraint sets Xt and D are basic compact semi-algebraic sets, i.e.

Xt := {x ∈ Rn | gi(x, t) ≤ 0, i = 1, . . . , nX }

D := {d ∈ Rm | hi(d) ≥ 0, i = 1, . . . , nD}

with gi ∈ R[x, t] and hi ∈ R[d]. Also, ∂Xt = ∪nX
i=1{x ∈ Xt | gi(x, t) = 0}. The terminal state x(T ) is constrained to lie in the

basic semi-algebraic set TR, where
TR := {x ∈ Rn | li(x) ≤ 0, i = 1, . . . , nTR}

with li ∈ R[x] and ∂TR = ∪nTR

i=1{x ∈ TR | li(x) = 0}.
Let Mt be the set of measurable functions d : [t, T ] 7→ D, where T > t. We will call functions d ∈ Mt time-varying

uncertainties. For each d ∈Mt, we denote by yd
x,t(s) the solution at time s ∈ [t, T ] of (1) starting from the state x at time t.

The problem we attempt to address is to compute the backward reachable set R0 such that all trajectories starting from it at
time t = 0 will enter the target region TR after the time duration of T while staying inside the set Xs for s ∈ [0, T ], despite the
actions of uncertainties.

Definition 1: The backward reachable set R0 of the target region TR at time t = 0 is presented as follows:

R0 := {x0|∀d ∈M0,y
d
x0,0(0) = x0,y

d
x0,0(T ) ∈ TR,yd

x0,0(s) ∈ Xs for s ∈ [0, T ]}. (2)

The backward reachable set in Definition 1 differs from the constrained controlled region of attraction R′0 in [19], [32]. The
constrained controlled region of attraction R′0 is the set of initial states that can be driven with an admissible control to a specified
target set without leaving the state-constrained set, i.e.

R′0 = {x0|∃d ∈M0,φ
d
x0,0(0) = x0,φ

d
x0,0(T ) ∈ TR,φd

x0,0(s) ∈ Xs for s ∈ [0, T ]}. (3)

Obviously, R0 ⊂ R′0. In [19], [32], an outer approximation of the set R′0 is computed by solving a single semi-definite program,
which is constructed from occupation measure.

It is in general impossible to obtain the backward reachable set R0 since an appropriate closed-form solution to (1) may not
be available. We therefore resort to the computation of an inner approximation of the backward reachable set. We opt for inner
approximations as they preserve the desired property of the backward reachable set, namely that all possible trajectories starting
from them enter TR after the time duration of T while not leaving the set Xt for t ∈ [0, T ].

III. HAMILTON-JACOBI TYPE EQUATIONS

In this section we mainly introduce the reformulation of the backward reachable set R0 as the zero sub-level set of the
viscosity solution to a Hamilton-Jacobi type partial differential equation. Like in [46], we use Kirszbraun’s extension theorem
to characterize the backward reachable set R0 as the zero sub-level set of the unique Lipschitz viscosity solution to a HJE.

As f ∈ R[x,d] in system (1), f is locally Lipschitz continuous over the state variable x. Therefore, the global solution
φdx0

(t) over t ∈ [0,∞) to system (1) is not guaranteed to exist for any initial state x0 ∈ Rn. This hinders the construction of
Hamilton-Jacobi equations. To address this issue, we first construct an auxiliary vector field F (x,d) : Rn ×D 7→ Rn, which is
globally Lipschitz on x ∈ Rn uniformly on d ∈ D, i.e. there exists a constant LF such that

‖F (x1,d)− F (x2,d)‖ ≤ LF ‖x1 − x2‖,∀x1,x2 ∈ Rn,∀d ∈ D,
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where ‖ · ‖ denotes the usual Euclidean norm. Moreover, the trajectories governed by ẋ(s) = F (x(s),d(s)) coincide with the
trajectories generated by ẋ(s) = f(x(s),d(s)) over a local state space. Thanks to Kirszbraun’s theorem [16], which is stated in
Theorem 1, the existence of such function is ensured.

Theorem 1 (Kirszbraun’s Theorem): Let H1 and H2 be Hilbert spaces, A ⊂ H1 a set and f ′ : A 7→ H2 a function. Suppose
that γ ≥ 0 is such that ‖f ′(x) − f ′(y)‖ ≤ γ‖x − y‖ for x,y ∈ A. Then there is a function F ′ : H1 7→ H2 such that
F ′(x) = f ′(x) for x ∈ A and ‖F ′(x)− F ′(y)‖ ≤ γ‖x− y‖ for all x,y ∈ H1.

Thus, rather than considering system (1), in this subsection we take into account an auxiliary system:

ẋ(s) = F (x(s),d(s)), a.e., s ∈ [0, T ], (4)

where for each s ∈ [0, T ], x(s) ∈ Xs and d(s) ∈ D, and where Xs and D are respectively compact subsets of Rn and Rm. The
map F : Rn ×D 7→ Rn is assumed to satisfy the following three properties:

1) F : Rn ×D 7→ Rn is continuous;
2) F is globally Lipschitz continuous on x ∈ Rn uniformly on d ∈ D, that is, there is some constant LF such that

‖F (x,d)− F (y,d)‖ ≤ LF ‖x− y‖

for all x,y ∈ Rn and all d ∈ D, where ‖ · ‖ denotes the usual Euclidean norm;
3) F (x,d) = f(x,d) over x ∈ B(0, R) and d ∈ D, where

B(0, R) = {x ∈ Rn | gR(x) ≥ 0}, (5)

thereof, gR(x) = R−
∑n
i=1 x

2
i and R is a positive number such that Xt ⊆ B(0, R) for t ∈ [0, T ] with ∂Xt∩∂B(0, R) = ∅.

Note that R exists since ∪t∈[0,T ]Xt is compact due to Lemma 1 in [14].
The set B(0, R) in (5) plays three important roles in our approach.
1) The condition Xt ⊆ B(0, R) for t ∈ [0, T ] guarantees that the backward reachable set R0 for system (1) can be

characterized by trajectories to the auxiliary system (4), as formulated in Proposition 1.
2) The condition ∂Xt ∩ ∂B(0, R) = ∅ for t ∈ [0, T ] assures that the zero sub-level set of a polynomial, which is computed

by solving (22) in Subsection IV-A, is an inner-approximation of the backward reachable set R0, as stated in Corollary
2 in Subsection IV-A.

3) The condition B(0, R) = {x ∈ Rn | gR(x) ≥ 0} with gR(x) = R −
∑n
i=1 x

2
i is used to guarantee the existence of

solutions to the semi-definite program (22) in Subsection IV-A. It is useful in justifying Corollary 3 in Subsection IV-B.
Now we know that for any d ∈ D and any x ∈ Rn, there exists a unique absolutely continuous trajectory y(s) = φd

x,t(s)
satisfying (4) for almost all s ≥ t and y(t) = x.

Definition 2: For T > t with t ≥ 0, the set of states, which are visited by trajectories on [t, T ] starting from x, is denoted as
S[t,T ](x) := {y ∈ Rn | y = φd

x,t(s) is absolutely continuous, satisfies (4) for some d ∈Mt, y(t) = x and s ∈ [t, T ]}.
Again under above assumption, for T > 0 and x ∈ Rn, S[0,T ](x) is a compact set in the Soblov space W 1,1(0, T ) for the

topology of C([0, T ];Rn).
Next, consider the backward reachable set Rt of TR at time t for system (1), which is the set of states such that all trajectories

starting from it at time t will enter the target region TR after the time duration of T − t while not leaving the state constraint set
Xs for s ∈ [t, T ], i.e.,

Rt := {x ∈ Rn|∀d ∈Mt,∀s ∈ [t, T ],yd
x,t(s) ∈ Xs,yd

x,t(T ) ∈ TR}, (6)

where yd
x,t(·) : [t, T ] 7→ Rn is the solution to system (1) with d ∈Mt for the time interval [t, T ].

Let’s present a value function u(x, t) defined below,

u(x, t) := sup
d∈Mt

max
{

max
i∈{1,...,nTR}

{li(φd
x,t(T ))}, max

i∈{1,...,nX }
{ max
s∈[t,T ]

gi(φ
d
x,t(s), s)}

}
. (7)

Proposition 1 builds a relationship between the value function u(x, t) and the backward reachable set Rt.
Proposition 1: Rt = {x ∈ Rn | u(x, t) ≤ 0}.

Proof: Obviously, according to the relationship between (1) and (4), if the trajectory φd
x,t(s) to system (1) stays in the set

B(0, R) for s ∈ [t, T ], where d ∈Mt, we have φd
x,t(s) = yd

x,t(s). Also, since Xτ ⊂ B(0, R) for τ ∈ [t, T ] and TR ⊂ B(0, R),
we have

{x ∈ Rn | u(x, t) ≤ 0} = {x ∈ Rn | v(x, t) ≤ 0},

where

v(x, t) = sup
d∈Mt

max
{

max
i∈{1,...,nTR}

{li(yd
x,t(T ))}, max

i∈{1,...,nX }
{ max
s∈[t,T ]

gi(y
d
x,t(s), s)}

}
. (8)

Thus, it is enough to prove that Rt = {x | v(x, t) ≤ 0}.
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If x ∈ Rt, according to the definition of Rt, i.e. (6), we can deduce that for all d ∈Mt,

max
{

max
i∈{1,...,nTR}

{li(yd
x,t(T ))}, max

i∈{1,...,nX }
{ max
s∈[t,T ]

gi(y
d
x,t(s), s)}

}
≤ 0, (9)

implying that

sup
d∈Mt

max
{

max
i∈{1,...,nTR}

{li(yd
x,t(T ))}, max

i∈{1,...,nX }
{ max
s∈[t,T ]

gi(y
d
x,t(s), s)}

}
≤ 0. (10)

Consequently, v(x, t) ≤ 0.
On the other hand, if x ∈ {x ∈ Rn|v(x, t) ≤ 0}, according to (8), then

max
i∈{1,...,nTR}

{li(yd
x,t(T ))} ≤ 0,∀d ∈Mt and

max
i∈{1,...,nX }

{ max
s∈[t,T ]

gi(y
d
x,t(s), s)} ≤ 0,∀d ∈Mt.

Therefore,
yd
x,t(s) ∈ Xs,∀d ∈Mt,∀s ∈ [t, T ] and

yd
x,t(T ) ∈ TR,∀d ∈Mt.

Thus, x ∈ Rt.
Above all, Rt = {x ∈ Rn | v(x, t) ≤ 0} and thus Rt = {x ∈ Rn | u(x, t) ≤ 0}. �
According to Proposition 1, the backward reachable set Rt is equal to the zero sub-level set of the value function u(x, t)

in (7). In the following we show that this value function u(x, t) is the unique Lipschitz continuous viscosity solution to the
equation:

max
{
∂tu(x, t) +H(x,Oxu), max

i∈{1,...,nX }
{gi(x, t)} − u(x, t)

}
= 0 (11)

with terminal condition
u(x, T ) = max

{
max

i∈{1,...,nTR}
{li(x)}, max

i∈{1,...,nX }
{gi(x, T )}

}
,

where H(x,p) = maxd∈D p · F (x,d).
(11) could be regarded as a special case of the Hamilton-Jacobi partial differential equation (4) in [29]. [29] considered

reachability problems with competing inputs and time-invariant state constraints. In this paper we additionally consider time-
varying state constraints. For the sake of clear presentation, in the following we give a brief introduction of inferring the HJE
(11). The viscosity solution u(x, t) to (11) is formalized in Definition 3.

Definition 3: [3], [13] A lower semi-continuous function u(x, t) on Rn × [0, T ] is called to be a viscosity super-solution of
(11), if for any test function ψ ∈ C∞(Rn × [0, T ]) such that u− ψ attains a local minimum at (y0, t0) ∈ Rn × [0, T ],

max
{
∂tψ(y0, t0) +H(y0,Oxψ), max

i∈{1,...,nX }
{gi(y0, t0)} − u(y0, t0)

}
≤ 0 (12)

holds; A upper semi-continuous function u(x, t) on Rn × [0, T ] is called to be a viscosity sub-solution of (11), if for any test
function ψ ∈ C∞(Rn × [0, T ]) such that u− ψ attains a local maximum at (y0, t0) ∈ Rn × [0, T ],

max
{
∂tψ(y0, t0) +H(y0,Oxψ), max

i∈{1,...,nX }
{gi(y0, t0)} − u(y0, t0)

}
≥ 0 (13)

holds. A continuous function u(x, t) on Rn × [0, T ] is called to be a viscosity solution to (11) if it is both a viscosity super-
and sub-solution to (11).

Firstly, we show that the value function u(x, t) is Lipschitz continuous, which is formally stated in Lemma 1.
Lemma 1: Let gi, i = 1, . . . , nX , and lj , j = 1, . . . , nTR, be locally Lipschitz continuous functions respectively. Then u(x, t)

is locally Lipschitz continuous over Rn × [0, T ].
Proof: The proof is given in Appendix. �

Secondly, u(x, t) satisfies the dynamic programming principle presented in Lemma 2.
Lemma 2: For (x, t) ∈ Rn × [0, T ] and δ ≥ 0 satisfying t+ δ ≤ T ,

u(x, t) = sup
d∈M[t,t+δ]

max
{
u(φd

x,t(t+ δ), t+ δ), max
i∈{1,...,nX }

{ max
s∈[t,t+δ]

gi(φ
d
x,t(s), s)}

}
, (14)

where d ∈M[t,t+δ] is the restriction of d ∈Mt over [t, t+ δ].
Proof: The proof is given in Appendix. �

We now show that the value function u(x, t) in (7) is the unique continuous viscosity solution to (11).
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Theorem 2: The value function u(x, t) : Rn × [0, T ] 7→ R in (7) is the unique Lipschitz continuous viscosity solution to HJE
(11).

Proof: The proof is shown in Appendix. �
We have shown that the value function u(x, t) in (7), whose zero sub-level set is the backward reachable set Rt at time

t ∈ [0, T ], is the unique Lipschitz continuous viscosity solution to HJE (11). Nowadays there are many efficient numerical
methods for solving (11) with appropriate number of variables, e.g., [4], [12]. However, solving (11) generally requires gridding
the state space and thus is computationally intensive for some cases, especially for high-dimensional systems. In the section
what follows, we will approximate this value function using polynomial viscosity super-solutions to (11) by solving semi-definite
programs. The Lipschitz continuity property of the viscosity solution to (11) plays an important role in guaranteeing the existence
of solutions to the constructed semi-definite program.

IV. COMPUTING INNER APPROXIMATIONS

In this section, by resorting to polynomial viscosity super-solutions to (11) whose zero sub-level sets are inner-approximations
of the backward reachable set R0, we first formulate the problem of computing inner approximations of the backward reachable
set R0 as a semi-definite programming problem. We then prove that the interior of the backward reachable set R0 could be
approximated in measure as the degree of the polynomial viscosity super-solutions tends to infinity under appropriate assumptions.

A. Semi-definite Programming Implementation
In this subsection we show that the zero sub-level set of a smooth viscosity super-solution to (11) is an inner-approximation

of the backward reachable set R0. Such a viscosity super-solution is computed by solving a semi-definite program, which is
constructed from (11).

Firstly, we demonstrate that a smooth viscosity super-solution ψ(x, t) to (11) over Rn × [0, T ] is a solution to the following
constraint:

max
{
∂tψ(x, t) +H(x,Oxψ), max

i∈{1,...,nX }
{gi(x, t)} − ψ(x, t)

}
≤ 0. (15)

This conclusion is stated in Lemma 3 formally.
Lemma 3: Assume that ψ ∈ C∞(Rn × [0, T ]). ψ is a viscosity super-solution of (11) if and only if it satisfies the constraint

(15) over Rn × [0, T ].
Proof: First, we prove that if ψ(x, t) is a viscosity super-solution of (11), it satisfies (15).

According to the definition of the viscosity super-solution in Definition 3, i.e. for all test function v ∈ C∞(Rn × [0, T ]) such
that ψ − v attains a local minimum at (x0, t0), then

max{∂sv(x0, t0) +H(x0,Oxv), max
i∈{1,...,nX }

{gi(x0, t0)} − ψ(x0, t0)} ≤ 0. (16)

It is apparent that ψ ∈ C∞(Rn × [0, T ]) satisfies (15) since ψ − v = ψ − ψ when v = ψ attains local minimum at any
(x0, t0) ∈ Rn × [0, T ].

Next, we prove that if ψ(x, t) satisfies (15), it is a viscosity super-solution of (11). This claim can be assured by following
the proof of Theorem 2 for the viscosity super-solution part. Let v ∈ C∞(Rn × [0, T ]) such that ψ− v attains a local minimum
at (x0, t0), where t0 ∈ [0, T ]. Similarly, we assume that this minimum is 0, i.e. v(x0, t0) = ψ(x0, t0).

If (12) is false, then either
max

i∈{1,...,nX }
{gi(x0, t0)} ≥ v(x0, t0) + ε1 (17)

holds or
∂tv(x0, t0) +H(x0,∇xv) ≥ ε2 (18)

holds for some ε1, ε2 > 0.
If (17) holds, then there is a small enough δ > 0 such that for (x, t) satisfying t0 ≤ t ≤ t0 + δ and ‖x− x0‖ ≤ δ,

max
i∈{1,...,nX }

{gi(x, t)} ≥ v(x0, t0) +
ε1
2

= ψ(x0, t0) +
ε1
2
.

However, since ψ satisfies (15) over Rn × [0, T ], we have ψ(x, t) ≥ maxi∈{1,...,nX }{gi(x, t)}, implying that ψ(x0, t0) ≥
ψ(x0, t0) + ε1

2 , which is a contradiction since ε1 > 0.
However, if (18) holds, there is a small enough δ > 0 such that there exists a strategy d1 ∈Mt such that

δ
ε2
2
≤ v(φd1

x0,t0(t0 + δ), t0 + δ)− v(x0, t0). (19)
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Further, due to the fact that
δ
ε2
2
≤ ψ(φd1

x0,t0(t0 + δ), t0 + δ)− ψ(x0, t0), (20)

which contradicts ψ(φd1
x0,t0(t0 + δ), t0 + δ) ≤ ψ(x0, t0), which is obtained by the fact that ∂sψ(x0, t0) +H(x0,Oxψ) ≤ 0 and

ψ ∈ C∞(Rn × [0, T ]). Therefore, if ψ(x, t) satisfies (15), it is a viscosity super-solution of (11).
Therefore, the conclusion holds. �
Based on Lemma 3 we will show that an inner-approximation of the backward reachable set R0 can be characterized by the

zero sub-level set of a smooth viscosity super-solution to (11).
Theorem 3: If ψ(x, t) ∈ C∞(Rn × [0, T ]) is a viscosity super-solution of (11) with boundary condition

ψ(x, T ) ≥ max
{

max
i∈{1,...,nTR}

{li(x)}, max
i∈{1,...,nX }

{gi(x, T )}
}

over x ∈ Rn, {x ∈ Rn | ψ(x, 0) ≤ 0} is an inner-approximation of the backward reachable set R0.
Proof: For each d ∈ D and x0 ∈ Rn,

ψ(φd
x0,0(t), t)− ψ(x0, 0) =

∫ t

0

Ldψ(x, s)ds

for t ∈ [0, T ], where Ldψ(x, s) = ∂sψ(x, s) + ∇xψ · F (x,d). According to Lemma 3, Ldψ(x, s) ≤ 0 for s ∈ [0, t] holds.
Therefore,

ψ(φd
x0,0(t), t) ≤ ψ(x0, 0)

for t ∈ [0, T ]. Obviously, if ψ(x0, 0) ≤ 0, then ψ(φd
x0,0(T ), T ) ≤ 0 holds. Since

ψ(x, T ) ≥ max
{

max
i∈{1,...,nTR}

{li(x)}, max
i∈{1,...,nX }

{gi(x, T )}
}

over x ∈ Rn and {x ∈ Rn | max
{

maxi∈{1,...,nTR}{li(x)},maxi∈{1,...,nX }{gi(x, T )}
}
≤ 0} ⊂ TR,

φd
x0,0(T ) ∈ TR

holds. Also, according to Lemma 3, ψ(x, t) ≥ maxi∈{1,...,nX }{gi(x, t)} over (x, t) ∈ Rn × [0, T ]. Since Xt = {x ∈ Rn |
maxi∈{1,...,nX }{gi(x, t)} ≤ 0} for t ∈ [0, T ], if ψ(x0, 0) ≤ 0, then we have φd

x0,0(t) ∈ Xt for t ∈ [0, T ]. Therefore, ψ(x0, 0) ≤ 0
implies that all trajectories starting from x0 will enter the target region TR = {x ∈ Rn | maxi∈{1,...,nTR}{li(x)} ≤ 0} after
the time duration T while staying inside the constraint set Xt over t ∈ [0, T ]. Therefore, {x ∈ Rn | ψ(x, 0) ≤ 0} is an
inner-approximation of the backward reachable set R0. �

According to Theorem 3 and Lemma 3, the problem of computing a smooth viscosity super-solution ψ(x, s), whose zero
sub-level set is an inner-approximation of the backward reachable set R0, can be reformulated as the following constraint over
ψ ∈ C∞(Rn × [0, T ]),

∂tψ(x, t) + Oxψ · F (x,d) ≤ 0,∀(t,x,d) ∈ [0, T ]× Rn ×D,
ψ(x, t)− gi(x, t) ≥ 0, ∀(x, s) ∈ Rn × [0, T ],

ψ(x, T )− lj(x) ≥ 0, ∀x ∈ Rn,
i = 1, . . . , nX , j = 1, . . . , nTR.

(21)

Corollary 1: Let ψ(x, t) be a solution to (21). Then {x ∈ Rn | ψ(x, 0) ≤ 0} is an inner-approximation of the backward
reachable set R0.

Proof: The claim in this corollary can be easily assured by Lemma 3 and Theorem 3. �
The problem of obtaining a solution to (21) is challenging since a solution ψ(x, t) should satisfy (21) for x ∈ Rn. In the

following we will relax this condition to obtain a function ψ(x, t) satisfying (21) for x ∈ B(0, R), where B(0, R) is defined in
(5).

Regarding x ∈ B(0, R) and d ∈ D, we have F (x,d) = f(x,d). When the viscosity super-solution ψ(x, t) to (21) is
constrained to polynomial type in the set B(0, R) × [0, T ], (21) can be recast as the sum-of-squares program (22), which is
formalized below. The constraints in (22) that polynomials are sum-of-squares can be written explicitly as LMI constraints,
and the objective is linear in the coefficients of the polynomial ψ(x, t); therefore problem (22) is able to be formulated as
a semi-definite program, which falls within the convex programming framework and can be solved via interior-point methods
in polynomial time. Note that the objective of (22) would facilitate the gain of less conservative inner-approximations of the
backward reachable set. The reason is that if ψ1(x, 0) ≤ ψ2(x, 0) over x ∈ B(0, R), then {x ∈ B(0, R) | ψ2(x, 0) ≤ 0} ⊆
{x ∈ B(0, R) | ψ1(x, 0) ≤ 0} and

∫
B(0,R)

ψ1(x, 0)dx ≤
∫
B(0,R)

ψ2(x, 0)dx.
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d∗k = inf w′ · l
s.t.

− Lψ(x, t) = s0 + s1gR(x) + s2t(T − t) +

nD∑
i=1

s′ihi(d),

ψ(x, t)− gi(x, t) = s3,i + s4,igR(x) + s5,it(T − t),
ψ(x, T )− lj(x) = s6,j + s7,jgR(x),

i = 1, . . . , nX , j = 1, . . . , nTR,

(22)

where w′ · l =
∫
B(0,R)

ψ(x, 0)dx, l is the vector of the moments of the Lebesgue measure over B(0, R) indexed in the same
basis in which the polynomial ψ(x, 0) with coefficients w is expressed, and Lψ(x, t) = ∂tψ(x, t) +∇xψ(x, t) ·f(x,d). The
minimum is over polynomial ψ(x, t) ∈ Rk[x, t] and sum-of-squares polynomials s0(x, t,d), s1(x, t,d), s2(x, t,d), s′r(x, t,d),
r = 1, . . . , nD, s3,i(x, t), s4,i(x, t), s5,i(x, t), i = 1, . . . , nX and s6,j(x), s7,j(x), j = 1, . . . , nTR, of appropriate degrees.

Corollary 2: Let ψ(x, t) be a solution to (22), then {x ∈ B(0, R) | ψ(x, 0) ≤ 0} is an inner-approximation of the backward
reachable set R0.

Proof: According to (22), we have the following constraints: for (x, t,d) ∈ B(0, R)× [0, T ]×D,

∂tψ(x, t) + Oxψ · f(x,d) ≤ 0,

ψ(x, t)− gi(x, t) ≥ 0,

ψ(x, T )− lj(x) ≥ 0,

i = 1, . . . , nX , j = 1, . . . , nTR.

(23)

Obviously, {x ∈ B(0, R) | ψ(x, 0) ≤ 0} ⊆ X0. Assume that there exists a trajectory initialized in x0 ∈ {x ∈ B(0, R) |
ψ(x, 0) ≤ 0} at t = 0 such that it escapes from the set Xτ at some τ ∈ [0, T ], i.e. φd1

x0,0
(τ) /∈ Xτ for some d1 ∈ D.

Therefore, there exists τ1 ∈ [0, τ ] such that φd1
x0,0

(τ1) /∈ Xτ1 and φd1
x0,0

(τ1) ∈ B(0, R), implying that ψ(φd1
x0,0

(τ1), τ1) > 0. This
contradicts the fact that ψ(x0, 0) ≤ 0 and ∂tψ(x, t) +Oxψ ·f(x,d) ≤ 0. We conclude that every possible trajectory originating
in {x ∈ B(0, R) | ψ(x, 0) ≤ 0} at t = 0 will stay inside the set Xt, ∀t ∈ [0, T ]. Also, since ψ(x, T )− lj(x) ≥ 0, j = 1, . . . , nTR,
by following the proof of Theorem 3, we conclude that {x ∈ B(0, R) | ψ(x, 0) ≤ 0} ⊆ R0. �

Corollary 2 implies that an inner-approximation of the backward reachable set R0 is able to be synthesized by solving the
semi-definite program (22). In the following subsection we prove the existence of a convergent sequence of inner-approximations,
which are formed by solutions to (22), to the interior of the backward reachable set R0 in measure under appropriate assumptions.

B. Convergence Analysis
In this subsection we show that (22) exhibits a convergent sequence of inner approximations to the interior of the backward

reachable set R0 in measure under appropriate assumptions. We firstly show that on a given compact set B(0, R) there is a
smooth solution to (23), which can approximate the viscosity solution u to (11) uniformly. Then we demonstrate that there exists
a sequence of polynomial functions satisfying (22) and approximating the viscosity solution u uniformly.

Before this, we introduce an auxiliary lemma stating that over a compact set B(0, R) × [0, T ] there is a smooth function
ψ(x, t) which is an uniform approximation to a given Lipschitz function u(x, t) and provides one side approximation to the
Dini−derivative of the form supd∈D Lψ(x, t), where Lψ(x, t) = ∂tψ +∇xψ · f(x,d).

Lemma 4: [24] Let B(0, R) be a compact subset in Rn and u(x, t) : B(0, R)× [0, T ] 7→ R be a Lipschitz function. If there
exists a continuous function α : B(0, R)× [0, T ] 7→ R such that for each d ∈ D,

Lu(x, t) ≤ α(x, t), a.e.(x, t) ∈ B(0, R)× [0, T ],

(recall that ∇xu is defined a.e., since u is locally Lipschitz.) then for any given ε > 0, there exists some smooth function ψ(x, t)
defined on B(0, R)× [0, T ] such that

sup
(x,t)∈B(0,R)×[0,T ]

|ψ(x, t)− u(x, t)| < ε and

sup
d∈D
Lψ(x, t) ≤ α(x, t) + ε

over (x, t) ∈ B(0, R)× [0, T ].



9

According to Lemma 4, we have the following theorem stating that there exists a smooth viscosity super-solution ψ(x, t) with
ψ(x, t) ≥ u(x, t) approximating the viscosity solution u(x, t) to (11) uniformly on the compact set B(0, R)× [0, T ].

Theorem 4: There exists a smooth function ψ(x, t) satisfying (23), which approximates the viscosity solution u(x, t) to (11)
uniformly on the compact set B(0, R)× [0, T ].

Proof: From Theorem 2, we have that the value function u(x, t) is locally Lipschitz continuous. Also, since Lu ≤ 0 for all
(x, t,d) ∈ B(0, R)× [0, T ]×D, where Lu(x, t) = ∂tu+∇xu · f(x,d), according to Lemma 4, there exists a smooth function
ψ : B(0, R)× [0, T ] 7→ R such that

sup
(t,x)∈[0,T ]×B(0,R)

|ψ(x, t)− u(x, t)| < ε and

sup
(x,t,d)∈B(0,R)×[0,T ]×D

Lψ(x, t) ≤ ε.

Let
ψ(x, t) = ψ(x, t)− εt+ (T + 1)ε.

Since
u(x, t)− ε ≤ ψ(x, t) ≤ u(x, t) + ε

for (x, t) ∈ B(0, R)× [0, T ],
u+ ε(T − t) ≤ ψ ≤ u+ (T − t+ 2)ε

holds for (x, t) ∈ B(0, R) × [0, T ]. Thus u ≤ ψ for (x, t) ∈ B(0, R) × [0, T ]. Also, ψ : B(0, R) × [0, T ] 7→ R approximates
u(x, t) uniformly on the compact set B(0, R)× [0, T ].

We also need to prove that ψ(x, t) ≥ maxi∈{1,...,nX }{gi(x, t)} and Lψ ≤ 0 over (x, t,d) ∈ B(0, R)× [0, T ]×D. The former,
i.e. maxi∈{1,...,nX }{g(x, t)} ≤ ψ(x, t) over (x, t) ∈ B(0, R)× [0, T ], holds obviously since maxi∈{1,...,nX }{gi(x, t)} ≤ u. The
latter, i.e.

Lψ ≤ 0

also holds since
Lψ ≤ Lψ − ε

for (x, t,d) ∈ B(0, R)× [0, T ]×D.
Thus, the conclusion in Theorem 4 holds. �
In our implementation we restrcit smooth viscosity super-solutions to polynomial functions and attempt to inner-approximate

the backward reachable set R0 by solving the semi-definite programming problem (22). In the following we prove that under
Assumption 1 there exists a sequence of polynomials {ψk+N (x, t)}k∈N, where N is some positive integer and ψk+N (x, t) ∈
Rk+N [x, t] satisfies (22), such that limk→+∞ ψk+N (x, t) = u(x, t) uniformly over B(0, R)× [0, T ], where u(x, t) is the unique
viscosity solution to (11).

Assumption 1: One of the polynomials defining the set D is equal to RD − ‖d‖2 for some constant RD ≥ 0.
Assumption 1 is without loss of generality because of compactness of D. Thus RD −‖d‖2 ≥ 0 can be a redundant constraint

defining D for sufficiently large RD.
The proof also requires Putinar’s Positivstellensatz.
Theorem 5: [Putinar’s Positivstellensatz [34]] Let K = {y ∈ Rm|g1(y) ≥ 0, . . . , gl(y) ≥ 0} be a compact set. Suppose there

exists N > 0 such that

N −
m∑
i=1

y2i ∈M(g1, . . . , gl).

If p(y) is positive on K, then p(y) ∈ M(g1, . . . , gl), where M(g1, . . . , gl) is the quadratic module of polynomials g1, . . . , gl,
i.e.

M(g1, . . . , gl) = {σ0(y) +

l∑
i=1

σi(y)gi(y)| each σi ∈
∑
m

}

with
∑
m being the set of sum of squares (SOS) polynomials over variables y, i.e.∑

m

:= {p ∈ R[y]|p =

k∑
i=1

q2i , qi ∈ R[y], i = 1, . . . , k}.

Corollary 3: There exists a sequence of polynomials {ψk+N (x, t)}∞k=1 satisfying (22), where ψk+N (x, t) ∈ Rk+N [x, t] and
N is some positive integer, such that ψk+N (x, t) approximates u(x, t) over the space B(0, R)× [0, T ] uniformly as k approaches
infinity, where u(x, t) is the viscosity solution to (11).
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Proof: From Theorem 4, for every ε > 0, there exists a smooth function v(x, t) ∈ C∞(B(0, R)× [0, T ]) such that

v(x, t) ≥ u(x, t),

|v(x, t)− u(x, t)| ≤ ε, and

Lv ≤ 0

for (x, t,d) ∈ B(0, R)× [0, T ]×D. Next, we follow the proof of Theorem 5 in [19]. Let

ṽ(x, t) = v(x, t)− εt+ (T + 1)ε.

We have Lṽ = Lv − ε ≤ −ε, maxi∈{1,...,nX }{gi(x, t)} − ṽ(x, t) ≤ −ε and ṽ(x, T )−maxi∈{1,...,nTR}{li(x)} = v(x, T ) + ε−
maxi∈{1,...,nTR}{li(x)} ≥ ε. Since [0, T ]× B(0, R) is compact, there exists a polynomial ψN ∈ RN [x, t] of a sufficiently high
degree N such that

sup
[0,T ]×B(0,R)

|ṽ − ψN | < ε and

sup
[0,T ]×B(0,R)×D

|Lṽ − LψN | < ε.

The polynomial ψN is therefore strictly feasible in (22) (this follows from the classical Putinar’s Positivstellensatz, as formulated
in Theorem 5), and moreover ψN (x, t) ≥ u(x, t) for (x, t) ∈ B(0, R)× [0, T ]. Also,

sup
[0,T ]×B(0,R)

|ψN − u| < ε(T + 3).

Since ε is arbitrary, we conclude that as the degree k tends to infinity, ψk+N (x, t) ∈ Rk+N [x, t] converges to u(x, t) uniformly
over B(0, R)× [0, T ]. �

Corollary 3 establishes a uniformly functional convergence of ψ to u. Let the sequence of polynomials {ψk+N (x, t)}+∞k=0
satisfy Corollary 3, and

X0k = {x ∈ X0 | ψk+N (x, 0) ≤ 0}.

Obviously, the inclusion X0k ⊂ R0 holds for all k ∈ {1, 2, . . .}. Finally, we will show that X0k approximates the interior of
the backward reachable set R0 in measure. Before this, we first prove the non-fattening property of the zero level set of u(x, t)
evolving over time.

Lemma 5: {x ∈ Rn | u(x, 0) = 0} is the boundary of the set {x ∈ Rn | u(x, 0) ≤ 0}, where u(x, t) is the viscosity solution
to (11).

Proof: The fact that {x ∈ Rn | u(x, T ) = 0} = ∂{x ∈ Rn | u(x, T ) ≤ 0} is easily assured by the fact that u(x, T ) =
max{maxi∈{1,...,nTR} li(x),maxi∈{1,...,nX } gi(x, T )}, ∂Xt = ∪nX

i=1{x ∈ Xt | gi(x, t) = 0} for t ∈ [0, T ] and ∂TR = ∪nTR

i=1{x ∈
TR | li(x) = 0}.

Suppose that y ∈ {x ∈ Rn | u(x, T ) = 0} and there exists y0 belonging to the interior of the set {x ∈ Rn | u(x, 0) ≤ 0}
and d ∈ M0 such that y = φd

y0,0(T ). Thus, there exist y1 and x1 satisfying y1 /∈ {x ∈ Rn | u(x, T ) ≤ 0} but y1 ∈ U(y; ε)
and x1 ∈ U(y0; ε1) ⊂ {x ∈ Rn | u(x, 0) ≤ 0} such that y1 = φd

x1,0, where U(·; δ) with δ > 0 denotes the δ−neighborhood
of the argument. Thus this contradicts the fact that the states xs in {x ∈ Rn | u(x, 0) ≤ 0} will enter the target set {x ∈ Rn |
u(x, T ) ≤ 0} after the time duration of T for d ∈ M0. Thus, y0 belongs to the boundary of the set {x ∈ Rn | u(x, 0) ≤ 0},
implying u(y0, 0) = 0.

Since ∂{x ∈ Rn | u(x, 0) ≤ 0} ⊆ {x ∈ Rn | u(x, 0) = 0} is clear, it is sufficient to prove that {x ∈ Rn | u(x, 0) = 0} ⊆
∂{x ∈ Rn | u(x, 0) ≤ 0}. Let u(x0, 0) = 0. Since pointwise limits of measurable functions are measurable, M0 is a closed
subset and thus remains compact [40], [33]. Therefore, there exists dx0

∈M0 such that

u(x0, 0) = max
{

max
i∈{1,...,nTR}

{li(φ
dx0
x0,0

(T ))}, max
i∈{1,...,nX }

{ max
s∈[0,T ]

gi(φ
dx0
x0,0

(s), s)}
}
. (24)

We will prove that x0 ∈ ∂{x ∈ Rn | u(x, 0) ≤ 0}.
Assume that x0 belongs to the interior of the set {x ∈ Rn | u(x, 0) ≤ 0}. Then

max
i∈{1,...,nX }

{gi(φ
dx0
x0,0

(s), s)} < 0.

Moreover, from above discussions, we deduce that

max
{

max
i∈{1,...,nTR}

{li(φ
dx0
x0,0

(T ))}, max
i∈{1,...,nX }

{gi(φ
dx0
x0,0

(T ), T )}
}
< 0. (25)
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Then there exists s ∈ (0, T ) such that
max

i∈{1,...,nX }
{gi(φ

dx0
x0,0

(s), s)} = 0,

implying that
φ

dx0
x0,0

(s) ∈ ∂{x ∈ Rn | gi(x, s) ≤ 0, i = 1, . . . , nX }

since ∂Xs = ∂{x ∈ Rn | gi(x, s) ≤ 0, i = 1, . . . , nX } = ∪nX
i=1{x ∈ Xs | gi(x, s) = 0}. Therefore, there exist y1 satisfying

gj(y1, s) > 0, j ∈ {1, . . . , nX }, and x1 satisfying u(x1, 0) ≤ 0 such that φdx0
x1,0

(s) = y1, contradicting that all possible trajectories
starting from the set {x ∈ Rn | u(x, 0) ≤ 0} stay inside the set Xt at t ∈ [0, T ]. Thus, x0 ∈ ∂{x ∈ Rn | u(x, 0) ≤ 0} and
therefore

{x ∈ Rn | u(x, 0) = 0} = ∂{x ∈ Rn | u(x, 0) ≤ 0}.
In conclusion, {x ∈ Rn | u(x, 0) = 0} is the boundary of R0 = {x ∈ Rn | u(x, 0) ≤ 0}. �
Theorem 6 states that the inner-approximation X0k approximates the interior of the backward reachable set R0 with k

approaching infinity.
Theorem 6: Let the sequence of polynomials {ψk+N (x, t)}∞k=1 satisfy Corollary 3. Then the set X0k satisfies that X0k ⊂ R0

and
lim
k→∞

µ(R0 \ X0k) = µ(∂R0),

where ∂R0 = {x ∈ Rn | u(x, 0) = 0}, X0k = {x ∈ X0 | ψk+N (x, 0) ≤ 0} and u(x, t) is the viscosity solution to (11).
Proof: According to Corollary 3, we have limk→+∞

∫
B(0,R)

|ψk+N (x, 0) − u(x, 0)|dµ(x) = 0, implying that for every
ε > 0,

lim
k→+∞

µ({x | |ψN+k(x, 0)− u(x, 0)| ≥ ε}) = 0.

Then following the proof of Theorem 3 in [23] and combining with Lemma 5, we have the conclusion. �

V. EXAMPLES AND DISCUSSIONS

In this section we evaluate our approach on three examples. All computations were performed on an i7-7500U 2.70GHz CPU
with 32GB RAM running Windows 10. For numerical implementation, we formulate the sum-of-squares programming problem
(22) using the MATLAB package YALMIP [25] and use Mosek [31]1 as a semi-definite programming solver. In order to evaluate
the performance of our approach, we also present results for these three examples by dealing with (11) directly. We employ the
ROC-HJ solver [4]2 for solving (11).

A. Examples
In this subsection we test our method on three illustrative examples. Examples 1 and 2 are employed to illustrate the performance

of our method under different parameter settings. Example 3 is primarily used to evaluate the scalability of our method. The
parameters that control the performance of our approach in these three examples are presented in Table I, which together shows
the computation times for these three examples in solving (11) directly. Note that in solving (11), uniform grids of 5002 on the
state space [−1.1, 1.1]× [−1.1, 1.1] are adopted for Examples 1 and 2, and uniform grids of 107 on the state space [−0.55, 0.55]7

for Example 3. Due to the curse of dimensionality suffered by grid-based numerical methods for solving (11), this coarse grid
for Example 3 is adopted.

Example 1: Consider a two-dimensional system given by

ẋ = −1

2
x− (

1

2
+ d)y +

1

2
,

ẏ = −1

2
y + 1,

where T = 1, TR = {x | x2 + y2 − 0.64 ≤ 0}, D = {d | 0.012 − d2 ≥ 0}, Xt = {x | x2 + y2 − 1 ≤ 0} for t ∈ [0, T ] and
1a).B(0, R) = {x | 1.21− (x2 + y2) ≥ 0}; 1b).B(0, R) = {x | 2− (x2 + y2) ≥ 0}.

Example 2: Consider a scaled version of the reversed-time Van der Pol oscillator subject to uncertainties given by

ẋ = −y,
ẏ = 0.4x+ 5(x2 − (d+ 0.2))y,

where T = 1, TR = {x | x2 + y2 − 0.25 ≤ 0}, D = {d | 0.012 − d2 ≥ 0}, Xt = {x | x2 + y2 − 0.64 ≤ 0} for t ∈ [0, T ] and
2a).B(0, R) = {x | 0.65− (x2 + y2) ≥ 0}; 2b).B(0, R) = {x | 1− (x2 + y2) ≥ 0}.

1Mosek is free for academic use and can be obtained from https://www.mosek.com/.
2The ROC-HJ solver can be downloaded from https://uma.ensta-paristech.fr/soft/ROC-HJ/.

https://uma.ensta-paristech.fr/soft/ROC-HJ/
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SDP (22) HJE (11)
Ex. [t0, T ] k ds ds′ Time Time

1 [0,1]

1a 1b

334.20

4 2 2 0.69 0.71
6 4 4 0.73 0.83
8 6 6 0.81 1.32

10 8 8 4.17 4.08
12 10 10 21.09 21.20
14 12 12 89.23 97.43

2 [0,1]

2a 2b

519.30

4 4 4 0.60 0.60
6 6 6 1.07 1.13
8 8 8 3.80 4.24

10 10 10 24.47 25.90
12 12 12 88.54 93.11
14 14 14 423.73 478.47

3 [0,1]
4 4 4 57.45

–5 4 4 72.86
6 6 4 5638.23

TABLE I: Parameters and performance of our implementations of solving (22) and (11) on the examples presented in this section.
[t0, T ]: reachability time interval; k: degree of the polynomial ψk in (22); ds: degree of sum-of-squares multipliers in the first
constraint in (22); ds′ : degree of sum-of-squares multipliers in the second and third constraints in (22); Time: computation times
in seconds.

The computed inner approximations are illustrated in Fig. 1 and 2 for Examples 1 and 2 respectively. Note that the semi-definite
program (22) does not produce an inner approximation for Example 2 when k = 4 in the case of 2b) and consequently one cannot
find the corresponding presentation in Fig. 2. Observing the results illustrated in these two figures, we find that the accuracy of
inner approximations to the backward reachable set is increasing with degree of the polynomial ψ(x, t). Also, a relatively-fast
convergence of inner-approximations to the backward reachable set is observed. The convergence rate is particularly fast when
the degree of approximating polynomials is less than or equal to 10 and 12 for Example 1 and Example 2, respectively. Moreover,
the results in Fig. 2 indicate that tighter sets B(0, R) in (5) help to compute tighter inner approximations, although this indication
is not obvious for Example 1.

Meanwhile, it is observed from Table I that the semi-definite programming based method (22) with polynomials of appropriate
degree is more efficient in terms of computation time for Examples 1 and 2, compared with grid-based numerical methods
for solving (11). We continue exploring the performance of the semi-definite programming based method (22) based on a
seven-dimensional system.

Example 3: Consider an example adapted from a seven-dimensional biological system,

ẋ1 = −0.4x1 + 5x3x4 + d,

ẋ2 = 0.4x1 − x2,

ẋ3 = x2 − 5x3x4,

ẋ4 = 5x5x6 − 5x3x4,

ẋ5 = −5x5x6 + 5x3x4,

ẋ6 = 0.5x7 − 5x5x6,

ẋ7 = −0.5x7 + 5x5x6,

where T = 1, TR = {x | x21 + (x2 + 0.2)2 + x23 + x24 + x25 + x26 + x27 − 0.25 ≤ 0}, D = {d | 0.12 − d2 ≥ 0}, Xt = {x |∑7
i=1 x

2
i − 0.25 ≤ 0} for t ∈ [0, T ] and B(0, R) = {x | 0.26−

∑7
i=1 x

2
i ≥ 0}.

Unlike Examples 1 and 2, the grid-based numerical method for solving (11) runs out of memory and thus does not return
an estimation for Example 3. In contrast, the method of solving (22) is still able to compute inner-approximations, which are
illustrated in Fig. 3. Consequently, compared with grid-based numerical methods for solving (11), the semi-definite programming
based method (22) is capable of dealing with reachability problems of moderately high-dimensional systems, especially for cases
where inner approximations formed by polynomials of low degree suffice. Although the size of the semidefinite program (22)
grows extremely fast with the number of state and uncertainty variables and the degree of polynomials in (22), the computational
efficiency and scalability advantage of the semi-definite programming based method (22) could be further enhanced with template
polynomials such as diagonally dominant sum-of-squares (DSOS) and scaled diagonally dominant-sum-of-squares (SDSOS)
polynomials [27].

Note that in order to shed light on the accuracy of computed inner approximations for Example 3, we partition state spaces
[−0.5, 0.5]2×[0, 0]5 and [0, 0]4×[−0.5, 0.5]2×[0, 0] and then employ the first-order Euler method to synthesize coarse estimations
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Fig. 1: An illustration of computed backward reachable sets for Example 1 at time t = 0. (Black and white curves denote the
boundaries of inner-approximations in cases of 1a) and (1b), respectively. Gray region denotes the backward reachable set obtained via solving
(11).)

of the backward reachable set on planes x1 − x2 with x3 = x4 = x5 = x6 = x7 = 0 and x5 − x6 with x1 = x2 = x3 = x4 =
x7 = 0 respectively. The estimations are the regions covered by grey points in Fig. 3. The results in Fig. 3 further confirm that
the accuracy of an inner approximation returned by solving (22) is increasing with the degree of approximating polynomials.

In Examples 1 to 3, we employ grid-based numerical methods for solving (11), e.g., Examples 1 and 2, and simulation
based methods, e.g., Example 3, to evaluate the quality of inner-approximations computed by solving (22). Another method
is to estimate outer approximations of the backward reachable set R0 and calculate the Hausdorff distance between the outer
approximation and inner approximation: narrower distance proves higher quality, which is the future work we are considering.

VI. CONCLUSION

We proposed a convex optimization based method to address the problem of computing safe inner approximations of backward
reachable sets for state-constrained polynomial systems subject to time-varying uncertainties in the setting of finite time horizons.
The backward reachable set was first formulated as the zero sub-level set of the unique Lipschitz viscosity solution to a HJE.
As opposed to traditionally grid-based numerical methods for solving the HJE, we proposed a novel semi-definite program,
which was constructed from the HJE and falls within the convex programming category, to synthesize inner-approximations of
the backward reachable set. We proved that solutions to the constructed semi-definite program are guaranteed to exist and can
generate a convergent sequence of inner approximations to the interior of the backward reachable set. Three illustrative examples
were employed to evaluate the performance of our approach.
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APPENDIX

The proof of Lemma 1:
Proof: Let x1,x2 ∈ X , where X is an arbitrary but fixed compact set in Rn, and d1 ∈Mt such that

u(x1, t) ≤max
{

max
i∈{1,...,nTR}

{li(φd1
x1,t(T ))}, max

i∈{1,...,nX }
{ max
s∈[t,T ]

gi(φ
d1
x1,t(s), s)}

}
+ ε, (26)

where ε > 0 is arbitrary but fixed.
Therefore, we infer that

u(x1, t)− u(x2, t)

≤ max
{

max
i∈{1,...,nTR}

{li(φd1
x1,t(T ))}, max

i∈{1,...,nX }
{ max
s∈[t,T ]

gi(φ
d1
x1,t(s), s)}

}
− u(x2, t) + ε

≤ max
{

max
i∈{1,...,nTR}

{li(φd1
x1,t(T ))}, max

i∈{1,...,nX }
{ max
s∈[t,T ]

gi(φ
d1
x1,t(s), s)}

}
−

max
{

max
i∈{1,...,nTR}

{li(φd1
x2,t(T ))}, max

i∈{1,...,nX }
{ max
s∈[t,T ]

gi(φ
d1
x2,t(s), s)}

}
+ ε

≤ max
{

max
i∈{1,...,nTR}

{li(φd1
x1,t(T ))− li(φd1

x2,t(T ))}, max
i∈{1,...,nX }

{ max
s∈[t,T ]

(gi(φ
d1
x1,t(s), s)− gi(φ

d1
x2,t(s), s))}

}
+ ε

≤ max
{
Ll‖φd1

x1,t(T )− φd1
x2,t(T )‖, max

s∈[t,T ]
Lg‖φd1

x1,t(s)− φ
d1
x2,t(s)‖

}
+ ε

≤ max{Ll, Lg}eLF T ‖x1 − x2‖+ ε,

(27)

where Ll and Lg are Lipschitz constants 3 such that

|li(x− y)| ≤ Ll‖x− y‖, i = 1, . . . , nTR

|gj(x− y)| ≤ Lg‖x− y‖, j = 1, . . . , nX

over x,y ∈ S[0,T ](X ). S[0,T ](X ) is defined in Definition 2 and is compact. Note that we have used the following simple
inequalities in above deduction:

max{A,B} −max{C,D} ≤ max{A− C,B −D}

max
s
A(s)−max

s
B(s) ≤ max

s
(A(s)−B(s)),

and the Gronwall-Bellman Lemma [20].
Using the similar argument as above with x1 and x2 reversed, we obtain

u(x2, t)− u(x1, t) ≤ max{Ll, Lg}eLFT ‖x1 − x2‖+ ε.

Since ε is arbitrary, we have
|u(x1, t)− u(x2, t)| ≤ max{Ll, Lg}eLFT ‖x1 − x2‖. (28)

Next, let t1, t2 ∈ [0, T ], t1 < t2 and x ∈ X , where X is an arbitrary but fixed compact set in Rn. According to the definition
of u(x, t), i.e. (7), there exists a d1 ∈Mt for any ε > 0 such that

u(x, t1) ≤max
{

max
i∈{1,...,nTR}

{li(φd1
x,t1(T ))}, max

i∈∈{1,...,nX }
{ max
s∈[t1,T ]

gi(φ
d1
x,t1(s), s)}

}
+ ε. (29)

3Such constants always exists since li and gj are polynomials.
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Therefore, we have the following deduction:

u(x, t1)− u(x, t2)

≤ max{ max
i∈{1,...,nTR}

{li(φd1
x,t1(T ))}, max

i∈{1,...,nX }
{ max
s∈[t1,T ]

gi(φ
d1
x,t1(s), s)}}−

max{ max
i∈{1,...,nTR}

{li(φd1
x,t2(T ))}, max

i∈{1,...,nX }
{ max
s∈[t2,T ]

gi(φ
d1
x,t2(s), s)}}+ ε

= max{ max
i∈{1,...,nTR}

{li(φd1
x,t1(T ))}, max

i∈{1,...,nX }
{ max
s∈[t1,T ]

gi(φ
d1
x,t1(s), s)}}−

max{ max
i∈{1,...,nTR}

{li(φd1
x,t1(T − t2 + t1))}, max

i∈{1,...,nX }
{ max
s∈[t1,T−t2+t1]

gi(φ
d1
x,t1(s), s)}}+ ε,

(30)

where Ll and Lg are Lipschitz constants such that

|li(x)− li(y)| ≤ Ll‖x− y‖, i = 1, . . . , nTR

|gj(x)− gj(y)| ≤ Lg‖x− y‖, j = 1, . . . , nX

over x,y ∈ S[0,T ](X ).
Assume that s0 makes maxi∈{1,...,nX }{gi(φ

d1
x,t1(s0), s0)} = maxi∈{1,...,nX }{maxs∈[t1,T ] gi(φ

d1
x,t1(s), s)}.

In case that s0 ∈ [t1, T − t2 + t1], we have

u(x, t1)− u(x, t2)

≤ ε+ max{ max
i∈{1,...,nTR}

{li(φd1
x,t1(T ))}, max

i∈{1,...,nX }
{gi(φd1

x,t1(s0), s0)}}

−max{ max
i∈{1,...,nTR}

{li(φd1
x,t1(T − t1 + t2))}, max

i∈{1,...,nX }
{gi(φd1

x,t1(s0), s0)}}

≤ max
{

max
i∈{1,...,nTR}

{li(φd1
x,t1(T ))− li(φd1

x,t1(T − t2 + t1))}, 0
}

+ ε

≤ max
{
Ll‖φd1

x,t1(T )− φd1
x,t1(T − t2 + t1)‖, 0

}
+ ε

≤ LlbF |T − T + t1 − t2|+ ε

≤ LlbF |t2 − t1|+ ε,

(31)

where bF is an upper bound of ‖F ‖ over S[0,T ](X )×D.
In case that s0 ∈ [T − t2 + t1, T ], we first have

max
i∈{1,...,nX }

{ max
s∈[t1,T−t2+t1]

gi(φ
d1
x,t1(s), s)} ≥ max

i∈{1,...,nX }
{gi(φd1

x,t1(T − t2 + t1), T − t2 + t1)}. (32)

Therefore, we have the following deduction:

u(x, t1)− u(x, t2)

≤ max
{

max
i∈{1,...,nTR}

{li(φd1
x,t1(T ))}, max

i∈{1,...,nX }
{gi(φd1

x,t1(s0), s0)}
}
−

max
{

max
i∈{1,...,nTR}

{li(φd1
x,t1(T − t1 + t2))}, max

i∈{1,...,nX }
{gi(φd1

x,t1(T − t2 + t1), T − t2 + t1)}
}

+ ε

≤ max
{

max
i∈{1,...,nTR}

{
li(φ

d1
x,t1(T ))− li(φd1

x,t1(T − t2 + t1))
}
,

max
i∈{1,...,nX }

{
gi(φ

d1
x,t1(s0), s0)− gi(φd1

x,t1(T − t2 + t1), T − t2 + t1)
}}

+ ε

≤ max
{
Ll‖φd1

x,t1(T )− φd1
x,t1(T − t2 + t1)‖, Lg‖φd1

x,t1(s0)− φd1
x,t1(T − t1 + t2)‖

}
+ ε

≤ max{Ll, Lg}bF |T − T + t2 − t1|+ ε

≤ max{Ll, Lg}bF |t2 − t1|+ ε,

(33)

where bF is an upper bound of ‖F ‖ over S[0,T ](X )×D.
Therefore,

u(x, t1)− u(x, t2) ≤ max{Ll, Lg}bF |t2 − t1|+ ε

holds. Using the similar argument, we obtain that

u(x, t1)− u(x, t2) ≥ −max{Ll, Lg}bF |t2 − t1| − ε. (34)



18

Therefore,
|u(x, t1)− u(x, t2)| ≤ max{Ll, Lg}bF |t2 − t1| (35)

since ε is arbitrary.
Combining inequalities (28) and (35), we get:

|u(x1, t1)− u(x2, t2)| ≤ C(|t1 − t2|+ ‖x1 − x2‖)

for some constant C ≥ 0. Therefore u(x, t) is locally Lipschitz continuous on Rn × [0, T ].
The proof of Lemma 2:

Proof: Let

w(x, t) := sup
d∈M[t,t+δ]

max
{
u(φd

x,t(t+ δ), t+ δ), max
i∈{1,...,nX }

{ max
s∈[t,t+δ]

gi(φ
d
x,t(s), s)}

}
. (36)

We will prove that for ∀ε > 0, |w − u| ≤ ε.
According to the definition of u(x, t), i.e. (7), for any ε1, there exists d ∈Mt such that

u(x, t) ≤ max
{

max
i∈{1,...,nTR}

{li(φd
x,t(T ))}, max

i∈{1,...,nX }
{ max
s∈[t,T ]

gi(φ
d
x,t(s), s)}

}
+ ε1. (37)

We then separately define d1(s) as the restriction of d(s) ∈ Mt over [t, t+ δ] and d2(s) as the restriction of d(s) ∈ Mt+δ

over s ∈ [t+ δ, T ], and y = φd1
x,t(t+ δ), we obtain that

w(x, t) ≥max
{
u(y, t+ δ), max

i∈{1,...,nX }
{ max
s∈[t,t+δ]

gi(φ
d1
x,t(s), s)}

}
≥max

{
max

{
max

i∈{1,...,nTR}
{li(φd2

y,t+δ(T ))}, max
i∈{1,...,nX }

{ max
s∈[t+δ,T ]

gi(φ
d2

y,t+δ(s), s)}
}
, max
i∈{1,...,nX }

{ max
s∈[t,t+δ]

gi(φ
d1
x,t(s), s)

}}
≥max

{
max

i∈{1,...,nTR}
{li(φd

x,t(T ))}, max
i∈{1,...,nX }

{ max
s∈[t,T ]

gi(φ
d
x,t(s), s)}

}
≥u(x, t)− ε1.

(38)

Therefore,
u(x, t) ≤ w(x, t) + ε1. (39)

By the definition of w(x, t), i.e. (36), for any ε1 > 0, there exists d1(·) ∈M[t,t+δ] such that

w(x, t) ≤max
{
u(φd1

x,t(t+ δ), t+ δ), max
i∈{1,...,nX }

{ max
s∈[t,t+δ]

gi(φ
d1
x,t(s), s)}

}
+ ε1. (40)

Also, by the definition of u(x, t), i.e. (7), for any ε1, there exists d2(·) ∈Mt+δ such that

u(y, t+ δ) ≤max
{

max
i∈{1,...,nTR}

{li(φd2

y,t+δ(T ))}, max
i∈{1,...,nX }

{ max
s∈[t+δ,T ]

gi(φ
d2

y,t+δ(s), s)}
}

+ ε1, (41)

where y = φd1
x,t(t+ δ). We can define

d(s) =

{
d1(s), s ∈ [t, t+ δ)

d2(s), s ∈ [t+ δ, T ]
, (42)

Therefore, we infer that

w(x, t) ≤ max
{

max
i∈{1,...,nTR}

{li(φd
x,t(T ))}, max

i∈{1,...,nX }
{ max
s∈[t,T ]

gi(φ
d
x,t(s), s)}

}
+ 2ε1

≤ u(x, t) + 2ε1.
(43)

Combining (39) and (43) together, we finally have |u−w| ≤ ε = 2ε1, implying that u(x, t) = w(x, t) since ε1 is arbitrary.
The proof of Theorem 2:

Proof: Firstly, applying the definition of u(x, s), i.e. (7), to the terminal condition when t = T , u(x, T ) satisfies the
boundary condition (11), i.e. u(x, T ) = max

{
maxi∈{1,...,nTR}{li(x)},maxi∈{1,...,nX }{gi(x, T )}

}
.

The continuity property of the function u(x, t) is assured by Lemma 1. According to Definition 3, a continuous function is
a viscosity solution if it is both a sub-solution and a super-solution, we will respectively prove that u is a viscosity sub- and
super-solution to (11).

Firstly we prove that u(x, t) is a sub-solution to (11). Let ψ ∈ C∞(Rn × [0, T ]) such that u − ψ attains a local maximum
at (x0, t0), where t0 ∈ [0, T ]; without loss of generality, assume that this maximum is 0, i.e. u(x0, t0) = ψ(x0, t0). Therefore,
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there exists a positive value δ such that u(x, t)− ψ(x, t) ≤ 0 for (x, t) satisfying ‖x− x0‖ ≤ δ and 0 ≤ t− t0 ≤ δ. Suppose
(13) in Definition 3 is false. Then there definitely exists a positive number ε1 such that

max
i∈{1,...,nX }

{gi(x0, t0)} ≤ ψ(x0, t0)− ε1 (44)

holds. Therefore, there exists a sufficiently small δ′ > 0 with δ′ ≤ δ such that for (x, τ) satisfying ‖x − x0‖ ≤ δ′ and
0 ≤ τ − t0 ≤ δ′, maxi∈{1,...,nX }{gi(x, τ)} ≤ ψ(x0, t0)− ε1

2 . Also, there exists a positive number ε2 such that

∂tψ(x0, t0) +H(x0,Oxψ) ≤ −ε2 (45)

holds. Since ‖φd
x0,t0(τ)−x0‖ = ‖

∫ τ
t=0

F (x(t),d(t))dt‖ ≤M(τ−t0) for d ∈Mt0 , where τ ∈ [t0, T ] and M is a positive number
such that M ≥ ‖F (x,d)‖ over S[t0,T ](x0)×D, there exists small enough δ > 0 with δ ≤ δ′ such that ‖φd

x0,t0(τ)− x0‖ ≤ δ′

for τ ∈ [0, δ] and d ∈M[t0,t0+δ]. Integrating (45) from t0 to t0 + δ, we have

ψ(φd
x0,t0(t0 + δ), t0 + δ)− ψ(x0, t0) ≤ −ε2

2
δ, ∀d ∈M[t0,t0+δ].

Further, since u− ψ attains a local maximum of 0 at (x0, t0), we infer that

u(φd
x0,t0(t0 + δ), t0 + δ) ≤ u(x0, t0)− ε2

2
δ

holds. Therefore, according to the dynamic principle (14) in Lemma 2, we finally have

u(x0, t0) = sup
d∈M[t0,t0+δ]

max{u(φd
x0,t0(t0 + δ), t0 + δ), max

i∈{1,...,nX }
{ max
s∈[t0,t0+δ]

gi(φ
d
x0,t0(s), s)}}

≤ u(x0, t0)−min{ε1
2
,
ε2
2
δ}

(46)

which is a contradiction, since ε1, ε2 and δ are positive. Therefore, u is a sub-solution to (11).
Next, we prove that u is a viscosity super-solution to (11) as well. Let ψ ∈ C∞(Rn × [0, T ]) such that u− ψ attains a local

minimum at (x0, t0), where t0 ∈ [0, T ]. Similarly, we assume that this minimum is 0, i.e. u(x0, t0) = ψ(x0, t0). Therefore,
there exists a positive value δ such that u(x, t)− ψ(x, t) ≥ 0 for (x, t) satisfying ‖x− x0‖ ≤ δ and 0 ≤ t− t0 ≤ δ.

If (12) is false, then either
max

i∈{1,...,nX }
{gi(x0, t0)} ≥ ψ(x0, t0) + ε1, (47)

holds or
∂tψ(x0, t0) +H(x0,∇xu) ≥ ε2, (48)

holds for some ε1, ε2 > 0.
If (47) holds, then there is a small enough δ′ > 0 with δ′ ≤ δ such that for (x, t) satisfying t0 ≤ t ≤ t0+δ′ and ‖x−x0‖ ≤ δ′,

max
i∈{1,...,nX }

{gi(x, t)} ≥ ψ(x0, t0) +
ε1
2

= u(x0, t0) +
ε1
2
.

Moreover, there exists δ > 0 with δ ≤ δ′ such that ‖φd
x0,t0(τ)− x0‖ ≤ δ′ for τ ∈ [0, δ] and d ∈M[t0,t0+δ].

Then the dynamic programming principle (14) in Lemma 2 yields

u(x0, t0) = sup
d∈M[t0,t0+δ]

max{u(φd
x0,t0(t0 + δ), t0 + δ), max

i∈{1,...,nX }
{ max
s∈[t0,t0+δ]

gi(φ
d
x0,t0(s), s)}}

≥ u(x0, t0) +
ε1
2
,

(49)

which is a contradiction since ε1 > 0.
However, if (48) holds, there is a small enough δ′ > 0 with δ′ ≤ δ such that ∂tψ(x, t)+H(x,∇xu) ≥ ε2

2 for (x, t) satisfying
‖x− x0‖ ≤ δ′ and 0 ≤ t− t0 ≤ δ′. Moreover, there exists a postive δ ≤ δ′ such that ‖φd

x0,t0(τ)− x0‖ ≤ δ′ for τ ∈ [0, δ] and
d ∈M[t0,t0+δ]. Therefore, there exists d1 ∈M[t0,t0+δ] such that

δ
ε2
4
≤ ψ(φd1

x0,t0(t0 + δ), t0 + δ)− ψ(x0, t0). (50)

Note that (50) can be assured by integrating (48) with the fixed strategy d1 from t0 to t0 + δ since ψ ∈ C∞(Rn × [0, T ]).
Further, due to the fact that u− ψ attains a local minimum at (x0, t0) and u(x0, t0) = ψ(x0, t0), we have

δ
ε2
4
≤ u(φd1

x0,t0(t0 + δ), t0 + δ)− u(x0, t0). (51)
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Therefore, the following contradiction is obtained with the help of (14):

u(x0, t0) = sup
d∈M[t0,t0+δ]

{max(u(φd
x0,t0(t0 + δ), t0 + δ), max

i∈{1,...,nX }
{ max
s∈[t0,t0+δ]

gi(φ
d
x0,t0(s), s))}}

≥ u(x0, t0) +
ε2
4
δ,

(52)

Thus, (12) holds and u is a super-solution to (11).
Uniqueness follows from Proposition 2 in [13]: Let v(x, t) : Rn × [0, T ] 7→ R and u(x, t) : Rn × [0, T ] 7→ R be viscosity

solutions with identical boundary condition v(x, T ) = u(x, T ). According to local comparison principle as illustrated in
Proposition 1 in [13], v ≤ u and u ≤ v, implying that u = v over Rn × [0, T ].
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