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Abstract
We develop a stochastic approximation-type algorithm to solve finite state/action, infinite-horizon,

risk-aware Markov decision processes. Our algorithm has two loops. The inner loop computes the risk by
solving a stochastic saddle-point problem. The outer loop performs Q-learning to compute an optimal
risk-aware policy. Several widely investigated risk measures (e.g. conditional value-at-risk, optimized cer-
tainty equivalent, and absolute semi-deviation) are covered by our algorithm. Almost sure convergence
and the convergence rate of the algorithm are established. For an error tolerance ε > 0 for the optimal
Q-value estimation gap and learning rate k ∈ (1/2, 1], the overall convergence rate of our algorithm is
Ω((ln(1/δε)/ε2)1/k + (ln(1/ε))1/(1−k)) with probability at least 1− δ.

Keywords: Markov decision processes; Risk measure; Saddle-point; Stochastic approximation; Q-learning.

1 Introduction
The analysis of complex systems such as inventory control, financial markets, waste-to-energy plants, and
computer networks is difficult because of the intrinsic uncertainty in these systems. Risk-aware optimization
offers a possible remedy by searching for strong reliability guarantees. In particular, it gives more attention
to low probability but high cost events than a risk-neutral optimizer would. Risk awareness is especially
important in sequential decision-making.

Markov decision processes (MDPs) introduced by Bellman in [10] provide a mathematical framework for
sequential decision-making. However, the exact model of the underlying MDP is often unknown and one
can only observe the trajectory of states, actions, and costs. Q-learning, as developed in [71], can produce
an optimal policy in a model-free way based only on observed trajectories.

In this paper, we synthesize the work on risk-aware optimization with reinforcement learning, specifically,
Q-learning. As our main contribution, we develop a novel asynchronous stochastic-approximation type
algorithm to solve infinite-horizon risk-aware MDPs. This algorithm can compute the risk-aware optimal
policy based only on observations, without any knowledge of the explicit form of the cost function or the
transition probabilities.

1.1 Literature review
1.1.1 Risk measures

In general, a risk measure is a mapping from random variables to scalars. It can be interpreted as the amount
of an asset (traditionally currency) to be kept in reserve to make the risk acceptable. The literature empha-
sizes convex and coherent risk measures. In [58], a theory of convex analysis is developed for optimization
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of convex risk measures. Several specific examples of convex and coherent risk measures along with their
various risk envelopes are given in [63, Chapter 6].

Special attention has been given to the class of coherent and law invariant risk measures, the most well
known being conditional value-at-risk (CVaR). Optimization of CVaR is studied in [56], which reveals that
CVaR has many desirable properties for stochastic optimization. The most famous representation result for
law-invariant coherent risk measures is the Kusuoka representation (see [61] for example) which shows that
such risk measures can be ’built’ out of CVaR. There are several other important classes of risk measures
such as: optimized certainty equivalent [13], spectral risk measures [2], distortion risk measures [15], and
entropic risk measures [27].

Numerical methods for risk-aware optimization are critical for practical application. In [38], CVaR-
constrained optimization problems are solved with a combination of discretization, linearization, and sample
average approximation. For multistage CVaR optimization, [50] uses the dual representation of general
coherent risk measures to develop sampling-based algorithms. In [7], stochastic approximation is used to
estimate CVaR in data-driven optimization. In addition, in [23], stochastic interior-point algorithms are
developed for risk-constrained optimization.

1.1.2 Risk-aware MDPs

Risk-aware MDPs have been widely studied. In [8], the authors minimize the conditional value-at-risk of the
discounted cost over both the finite and infinite horizon. In the follow-up work [9], the authors minimize a
certainty equivalent of the total cost for both finite and infinite horizon problems. Dynamic programming
methods are developed in both [8] and [9]. A CVaR-constrained MDP is solved with both offline and online
iterative algorithms in [16]. In [24], both risk and modeling errors are taken into account in an MDP
framework for risk-sensitive and robust decision-making, and an approximate value-iteration type algorithm
is presented.

In [30], the authors study stochastic dominance-constrained MDPs, and show that this class of MDPs can
be reformulated as linear programming problems using the convex analytic approach. In [31], the authors
develop the convex analytic approach for a general family of risk-aware MDPs.

Dynamic programming equations are developed for a wide class of risk-aware MDPs in [57], and corre-
sponding value iteration and policy iteration algorithms are developed. The family of risk measures studied
in this work are often called “dynamic risk measures” or “Markov risk measures”, and are notable for sat-
isfying the property of time-consistency. In [65], the theory of risk-sensitive MDPs is developed based on
iterative risk measures which only depend on the current state, rather than on the whole history.

In [24], reinforcement learning algorithms for percentile risk-constrained MDPs are proposed. In [53,67],
policy gradient algorithms are applied to MDPs with CVaR appearing in either the objective or constraints.
In [36], a specific class of risk measures called quantile-based risk measures is proposed for MDPs and a
simulation-based approximate dynamic programming (ADP) algorithm is developed for the resulting prob-
lem. This paper emphasizes importance sampling, to direct samples toward the risky region as the ADP
algorithm progresses. In [66], a risk-sensitive reinforcement learning algorithm based on utility functions is
investigated. A similar technique is applied to the risk-sensitive control of finite MDPs in [17].

1.1.3 Stochastic approximation and Q-learning

Q-learning is introduced in [71]. The idea ofQ-learning is to use the observed transitions and costs to compute
the optimal policy (so that exact knowledge of the underlying MDP model is not needed). In [69], a thorough
convergence proof of the Q-learning algorithm is given based on stochastic approximation and the theory of
parallel asynchronous algorithms (see [18] for more details on the theory of stochastic approximation). Q-
learning has wide applications in the areas of robotics and operations management, and has also recently been
applied to stochastic games [33]. Stochastic approximation has also been applied to solve static stochastic
optimization problems. In [44, 45], efficient and robust stochastic approximation algorithms are developed
to solve saddle-point problem and optimize non-smooth functions.

2



1.2 Contributions
As our main contribution, we develop a stochastic approximation-type algorithm for infinite-horizon risk-
aware MDPs that covers a wide range of risk measures. This algorithm is model-free and it can compute the
risk-aware optimal policy based only on observations. We make the following three specific contributions:

1. Generality of risk measures: There exists literature (e.g. [17, 66]) studying reinforcement learning
for risk-sensitive MDPs. The “risk-sensitive” objective in [17] specifically refers to the expectation of
the exponential function of cumulative costs. In [66], the “risk-sensitive” objective is essentially utility-
based shortfall, and in [9], “risk-sensitive” refers to utility-based certainty equivalent. To the best of
our knowledge, our present paper adds to the literature by incorporating saddle-point risk measures.
In [36], only quantile-based risk measures are included. In [8,67], the algorithms are specific to CVaR.

2. Model-free asynchronous algorithm: There exist several dynamic programming based algorithms
for solving risk-aware MDPs (see [8, 36, 57, 65, 67]), but they all rely on some information about the
underlying transitions or cost function. Our novel stochastic approximation algorithm is completely
model-free. Our algorithm is also asynchronous, which means that the Q-value is only updated when
the corresponding state-action pair is explored. This algorithm works even when no prior information
on the underlying MDP is available.

3. Explicit sample complexity results: We give a detailed convergence rate analysis of our algorithm
for both polynomial and linear learning rates. We also show numerically that the convergence rate of
our algorithm is close to that of standard Q-learning. In [17, 36], the almost sure convergence of the
proposed algorithms is demonstrated, but the explicit convergence rates are not derived.

This paper is organized as follows. Section 2 reviews preliminaries on risk measures and risk-aware MDPs.
Section 3 then introduces saddle-point risk measures and shows by example that many widely investigated
risk measures fall within this framework. Section 4 presents the details of our algorithm as well as its almost
sure convergence and convergence rate. Section 5 contains the proofs of all our main theorems. We report
numerical experiments in Section 6 and then conclude the paper in Section 7.

2 Preliminaries
This section introduces preliminary concepts and notations (listed in Table 1).

2.1 Risk measures
We begin with a probability space (Ω,F , P ), where Ω is a sample space, F is a σ−algebra on Ω, and
P is a probability measure on (Ω, F). We work in L = L∞(Ω, F , P ), the space of essentially bounded
F−measurable mappings. For X, Y ∈ L, Y � X means that Y (ω)≥X(ω) for all ω ∈ Ω.

We define a risk measure to be a function ρ : L → R, which assigns to a random variable X ∈ L a real
scalar value ρ(X). The following are four key properties of risk measures:

(A1) Monotonicity: If X � Y , then ρ(X) ≥ ρ(Y ).
(A2) Translation Invariance: ρ(X + r) = ρ(X) + r for r ∈ R.
(A3) Convexity: ρ(λX + (1− λ)Y ) ≤ λρ(X) + (1− λ)ρ(Y ) for 0 ≤ λ ≤ 1.
(A4) Positive Homogeneity: ρ(αX) = αρ(X) for α ≥ 0.

These conditions were introduced in the pioneering paper [4] and have since been heavily justified in other
work including [15,42,58]. Property (A1) states that a random variable with greater cost almost surely must
have higher risk. (A2) states that the addition of a certain cost increases the risk by the same amount. (A3)
gives precise meaning to the idea that diversification should not increase risk. (A4) states that the risk of
a position is proportional to its size (i.e., if we double our cost then we double our risk). A risk measure
satisfying properties (A1)-(A3) is called a convex risk measure, and a risk measure satisfying properties
(A1)-(A4) is called a coherent risk measure.
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Table 1: List of Key Notation
Notations Definitions
N, n Outer iterations
T, t Inner iterations
G Objective function for saddle-point risk measure

S, A State and action space
T , TG Risk-aware Bellman operator
RG(s,a) Risk measure with respect to state-action pair (s, a) and function G
Y, Z Compact sets

KY , KZ Euclidean diameters of Y and Z.
L Bounds for the subgradients
KG Constant of Lipschitz continuity for function G
KS Stability modulus of saddle-point
Gnt The history of RaQL for t ≤ T and n ≤ N
εnt Risk estimation error, for t ≤ T and n ≤ N
ξnt Approximation error, for t ≤ T and n ≤ N
τ The iteration w.r.t sequence D
τm The iteration when the approximation error of Q-value is bounded by Dm

Dm A constructed sequence D with time horizon m
Zn+1,τ
t , Y n+1,τ

t Two random processes decomposed from {Qnt }
βT Discount factor of sequence Dm

e Natural logarithm
‖ · ‖2 L2-norm
‖ · ‖∞ Infinite norm

2.2 Risk-aware MDPs
A MDP is given by the tuple (S, A, P, c) where S and A are the state and action spaces and K :=
{(s, a) ∈ S× A} is the set of all state-action pairs. Let P(S) be the space of probability measures over
S, and define P(A) similarly. The transition law P governs the system evolution where P (·|s, a) ∈ P(S) for
all (s, a) ∈ K, i.e., P (s′|s, a) for s′ ∈ S is the probability of next visiting state s′ given the current state-
action pair (s, a). The cost function c : K→ R gives the cost of each state-action pair. Finally, γ ∈ (0, 1) is
the discount factor. Let φ : S→ P(A) be a randomized policy. For a given φ, we obtain a stochastic process
{(st, at)}t≥0 where st and at are the state and action at stage t, respectively.

We make the following assumptions.

Assumption 2.1. (i) S and A are finite.
(ii) 0 ≤ c(s, a) ≤ Cmax for all (s, a) ∈ K. Set Vmax := Cmax/(1− γ).

Many real life MDPs satisfy Assumption 2.1(i), including machine replacement and sequential online
auctions [34], critical infrastructure protection [48], wireless sensor networks [3], and human-robot interaction
systems [37,39].

In [57], the modern theory of risk measures is adapted to MDPs. This class of risk-aware MDPs is
constructed in the following way. Denote our sequence of costs as Xt = c(st, at) for all t ≥ 0. We begin by
formalizing some details about the risk of finite cost sequencesXt, T := (Xt, Xt+1, . . . , XT ) before we consider
the risk of the infinite cost sequence X0, X1, . . . actually faced by the controller. Let Lt := L∞(Ω, F t, P )
and Lt, T := Lt × Lt+1 × · · · × LT for all 0 ≤ t ≤ T <∞.

Definition 2.2. [57, Definition 1] For fixed T ≥ 1 and 0 ≤ t ≤ T , (i) A mapping ρt, T : Lt, T → Lt, is called
a conditional risk measure if: ρt, T (Zt, T ) ≤ ρt, T (Xt, T ) for all Zt, T , Xt, T ∈ Lt, T such that Zt, T ≤ Xt, T .

(ii) A dynamic risk measure is a sequence of conditional risk measures {ρt, T }Tt=0.

We now make our key assumptions about dynamic risk measures.
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Assumption 2.3. For fixed T ≥ 1 and 0 ≤ t ≤ T , suppose the dynamic risk measure {ρt, T }Tt=0 satisfies the
following conditions:

(i) (Normalization) ρt, T (0, 0, ..., 0) = 0.
(ii) (Conditional translation invariance) For any Xt, T ∈ Lt, T ,

ρt, T (Xt, Xt+1, ..., XT ) = Xt + ρt, T (0, Xt+1, ..., XT ).

(iii) (Convexity) For any Xt, T , Yt, T ∈ Lt, T and 0 ≤ λ ≤ 1, ρt, T (λXt, T + (1−λ)Yt, T ) ≤ λ ρt, T (Xt, T ) +
(1− λ)ρt, T (Yt, T ).

(iv) (Positive homogeneity) For any Xt, T ∈ Lt, T and α ≥ 0, ρt, T (αXt, T ) = αρt, T (Xt, T ).
(v) (Time-consistency) For any Xt, T , Yt, T ∈ Lt, T and 0 ≤ τ ≤ θ ≤ T , the conditions Xk = Yk for

k = τ, ..., θ − 1 and ρθ, T (Xθ, ...., XT ) ≤ ρθ, T (Yθ, ..., YT ) imply ρτ, T (Xτ , ..., XT ) ≤ ρτ, T (Yτ , ..., YT ).

Many of these properties (monotonicity, convexity, positive homogeneity, and translation invariance) were
originally introduced for static risk measures as properties (A1)-(A4). The next theorem gives a recursive
formulation for dynamic risk measures satisfying Assumption 2.3. This representation is the foundation
of [57] and subsequent work on time-consistent dynamic risk measures. To express this result, we define a
mapping ρt : Lt+1 → Lt for t ≥ 0 to be a one-step (conditional) risk measure if ρt(Xt+1) = ρt, t+1(0, Xt+1).

Theorem 2.4. [57, Theorem 1] Suppose Assumption 2.3 holds, then

ρt, T (Xt, Xt+1, ..., XT ) = Xt + ρt(Xt+1 + ρt+1(Xt+2 + · · ·+ ρT (XT ))), (2.1)

for all 0 ≤ t ≤ T , where ρt, . . . , ρT are one-step risk measures.

Now we consider the risk of an infinite cost sequence. Following [57], the discounted measure of risk
ργt, T : Lt, T → R is defined via

ργt, T (Xt, Xt+1, . . . , XT ) := ρt, T
(
γtXt, γ

t+1Xt+1, . . . , γ
TXT

)
.

Define Lt,∞ := Lt × Lt+1 × · · · for t ≥ 0 and ργ : L0,∞ → R via

ργ (X0, X1, . . .) := lim
T→∞

ργ0, T (X0, X1, . . .) .

To provide our final representation result, we introduce the additional assumption that risk preferences are
stationary (they only depend on the sequence of costs ahead, and are independent of the current time).

Assumption 2.5. (Stationary preferences) For all T ≥ 1 and s ≥ 0,

ργ0, T (X0, X1, . . . , XT ) = ργs, T+s (X0, X1, . . . , XT ) .

When Assumptions 2.3 and 2.5 are satisfied, the corresponding dynamic risk measure is given by the
recursion:

ργ(X0, X1, ..., XT , . . .) = X0 + ρ1(γX1 + ρ2(γ2X2 + · · ·+ ρT (γTXT ) + · · ·)), (2.2)

where ρ1, ρ2, . . . are all one-step risk measures. Based on representation (2.2), we may evaluate the risk of
a policy φ via

J(φ, s0) := ρ (c(s0, a0) + γ · ρ (c(s1, a1) + γ · ρ (c(s2, a2) + · · ·))) , (2.3)

where s0 is the initial state. To clarify, the same one-step risk measure ρ appears at all times t ≥ 0 due to
the property of stationarity. Formulation (2.3) explicitly captures the risk with respect to the cost associated
with the current state-action pair, as well as the future risk. Let Π denote the class of deterministic stationary
policies π which map from states to actions, i.e., π : S→ A. From [57, Theorem 4], it shows that there exists
an optimal deterministic stationary policy that minimizes Eq. (2.3). The corresponding risk-aware MDP is

min
π∈Π

J(π, s0). (2.4)
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3 Saddle-point risk measures
This section introduces the saddle-point representation of risk measures. We elaborate on two main rea-
sons for choosing this representation. First, many widely investigated risk measures can be represented
as stochastic saddle-point problems including: conditional value-at-risk, optimized certainty equivalent, ab-
solute semi-deviation, and functionally coherent risk measures. Second, there are efficient algorithms for
solving stochastic saddle-point problems (see [44,45]) and thus for computing the risk.

To proceed, we now assume that Ω is Borel measurable and L is the set of all X with bounded support
[ηmin, ηmax] and ηmin, ηmax satisfying −∞ < ηmin < ηmax < ∞ (i.e., X(ω) ∈ [ηmin, ηmax] for all ω ∈ Ω).
Take Y ⊂ Rd1 and Z ⊂ Rd2 to be closed and convex sets and define KY , KZ to be the Euclidean diameters
of Y and Z, respectively. For a proper function G : L × Y × Z → R, we consider the risk measure:

ρ(X) = max
z∈Z

min
y∈Y

EP [G(X, y, z)] . (3.1)

We define ∂yG(·, y, z) and ∂zG(·, y, z) to be the subdifferentials of G for all (y, z) ∈ Y × Z, and we define
Gy(·, y, z) ∈ ∂yG(·, y, z) and Gz(·, y, z) ∈ ∂zG(·, y, z) to be particular subgradients with respect to y and
z. We make the following assumptions on the function G.

Assumption 3.1. [45, Assumption B] (i) ω → G(X(ω), y, z) is P -square summable for every y ∈ Y and
z ∈ Z, i.e.,

∫
Ω |G(X(ω), y, z)|2 P (dω) <∞, for all (y, z) ∈ Y × Z.

(ii) G is Lipschitz continuous on L × Y × Z with constant KG > 1.
(iii) y → G(X, y, z) is convex and z → G(X, y, z) is concave for all (X, y, z) ∈ L × Y × Z.
(iv) Any selection of subgradients ω → Gy(X(ω), y, z) and ω → Gz(X(ω), y, z) is Borel measurable.

The subgradients Gy(X, y, z) and Gz(X, y, z) are uniformly bounded, i.e., there exists L > 0 such that
‖Gy(X, y, z)‖2 ≤ L and ‖Gz(X, y, z)‖2 ≤ L for all (X, y, z) ∈ L × Y × Z.

Under the assumption thatG is proper on L×Y×Z and Assumption 3.1(iii), we know that the subdifferen-
tials ∂yG(·, y, z) and ∂zG(·, y, z) are non-empty for all (y, z) ∈ Y ×Z by [55, Theorem 23.4]. Based on [63,
Theorem 7.47] and [63, Remark 18], under Assumption 3.1(i), the subdifferentials ∂yEP [G(X, y, z)] and
∂zEP [G(X, y, z)] are nonempty and satisfy ∂yEP [G(X, y, z)] = EP [∂yG(·, y, z)], and ∂zEP [G(X, y, z)] =
EP [∂zG(·, y, z)], for all x and y in the interior of Y and Z, respectively. Thus, the subgradients Gy(X, y, z)
and Gz(X, y, z) satisfy EPGy(X, y, z) ∈ ∂yEP [G(X, y, z)] and EPGz(X, y, z) ∈ ∂zEP [G(X, y, z)]. Under
Assumptions 3.1(i) and (iv), we see that ‖EPGy(X, y, z)‖2 and ‖EPGz(X, y, z)‖2 are both bounded by L.

The following Theorem 3.2 provides sufficient conditions for the saddle-point risk measure (3.1) to be
a convex risk measure satisfying axioms (A1)-(A3). In particular, we can find a special class of functions
{hz}z∈Z and then construct G from these {hz}z∈Z . The proof of Theorem 3.2 may be found in the Appendix.

Theorem 3.2. Set Y = [ηmin, ηmax] and let {hz}z∈Z be a collection of functions such that hz(X, y) (for
X ∈ L and y ∈ Y), parameterized by z ∈ Z that satisfies:

(i) ω → hz(X(ω), y) is P -square summable for every y ∈ Y and z ∈ Z.
(ii) hz(X, y) is convex in y ∈ Y and concave in z ∈ Z, for all X ∈ L.
(iii) Any selection of subgradients of hz(X, y) with respect to z ∈ Z and y ∈ Y is Borel measurable and

uniformly bounded for all X ∈ L.
(iv) hz is Lipschitz continuous on L × Y with constant KG − 1 for all z ∈ Z.

Then,
G(X, y, z) = y + hz(X, y), y ∈ Y, z ∈ Z, (3.2)

satisfies Assumption 3.1. Further, formulation (3.1) with the choice of (3.2) is a convex risk measure satis-
fying axioms (A1)-(A3).

We now detail several applications of Theorem 3.2.

Example 3.3. Optimized certainty equivalent (OCE, see [13]). Define Y = [ηmin, ηmax] (Z is a
singleton). First, we construct CVaR by choosing:

hz(X, y) = − 1
(1− α) max{X − y, 0}, α ∈ [0, 1], ∀z ∈ Z. (3.3)
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We then obtain:
G(X, y, z) = y + (1− α)−1EP [max{X − y, 0}] , ∀z ∈ Z,

and
CVaRα(X) := min

η∈[ηmin, ηmax]
E[G(X, y, z)] = min

η∈[ηmin, ηmax]
E[y + hz(X, y)], ∀z ∈ Z. (3.4)

We can generalize CVaR to OCE by substituting a general utility function in place of (3.3). Define u :
R→ [0, 1] to be a concave utility function that is differentiable with bounded derivative ∇u(·). In this case,
hz(X, y) = u(y −X), for all z ∈ Z, and the function G is:

G(X, y, z) = y − EP [u(y −X)], ∀z ∈ Z.

Example 3.4. Absolute semi-deviation is a type of mean-risk model. The absolute semi-deviation is
ρAS(X) := E[X] + ιE

[
(X − E([X])+

]
for the weight coefficient ι ∈ [0, 1] (see [63]). Define Y = [ηmin, ηmax],

and Z = [0, 1]. By [63, Chapter 6.5.2], we have: hz(X, y) = (1− ι z)X + ι (X − y)+ + ι z − 1,

G(X, y, z) = X + ι (X − y)+ + ι z (y −X),

and
ρAS(X) := min

y∈[ηmin, ηmax]
max
z∈[0, 1]

E[G(X, y, z)] = min
y∈[ηmin, ηmax]

max
z∈[0, 1]

E[y + hz(X, y)].

Example 3.5. The functionally coherent risk measure (see [46,47]) is a finite version of the Kusuoka
representation (see e.g. [61]), which is the weighted average multiple CVaR in terms of their confidence
levels. Given a range of confidence levels [0, 1) with {αi}mi=0 ⊂ [0, 1) and 0 ≤ α0 < α1 < · · · < αm < 1,
we define P({αi}mi=1) to be the set of probability distributions on {αi}mi=1, and we let M be a closed convex
subset of P({αi}mi=1). In this case, we let z = (z1, ..., zm) ∈ Rm, y = (y1, ..., ym) ∈ Rm, and hz(X, y) =∑m
i=1 zi(1− αi)−1 max{X − y, 0}, Y = [ηmin, ηmax]m, and Z = M, and

G(X, y, z) =
m∑
i=1

zi
{
yi + (1− αi)−1EP [max{X − yi, 0}]

}
.

We then obtain

ρKS(X) := min
y∈[ηmin, ηmax]m

max
z∈M

E[G(X, y, z)] = min
y∈[ηmin, ηmax]m

max
z∈M

E[y + hz(X, y)]. (3.5)

Each instance of G constructed in Examples 3.3, 3.5, and 3.4, satisfies parts (i)-(iv) in Assumption 3.1.

4 Risk-aware Q-learning algorithm
In this section, we introduce our ’Risk-aware Q-learning’ (RaQL) algorithm. RaQL is an asynchronous off-
policy learning algorithm with an inner and outer loop structure. It uses stochastic approximation in the
inner loop for risk estimation and Q-learning in the outer loop for computing the optimal risk-aware policy.
The “off-policy” characteristic means that the policy for exploring new states (denoted π̄) and the policy
π from the Q-value updates are different. The “asynchronous” characteristic means that the step-size rule
of the algorithm ensures that only a single state-action pair is updated when it is observed and sends the
step-size to zero whenever a state-action pair is not visited.

4.1 Algorithm description
Let V ⊂ R|S| be the space of value functions on S equipped with the supremum norm ‖v‖∞ := maxs∈S |v(s)|.
Under Assumption 2.1, we have ‖v‖∞ ≤ Vmax = Cmax/(1−γ) for all v ∈ V. The risk-aware Bellman operator
T : V → V corresponding to the MDP (2.4) is

[T v] (s) := min
a∈A
{c (s, a) + γ ρ (v (s′))} , ∀s ∈ S, (4.1)
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where s′ is the random next state following the transition kernel P (·|s, a). By [57, Theorem 4] and [65,
Theorem 5.5], T is a contraction with respect to the supremum norm and Problem (2.4) has an optimal
value function v∗ satisfying v∗ = T v∗. The following Proposition 4.1 demonstrates why T is a contraction
when ρ is a convex risk measure.

Proposition 4.1. Suppose ρ is a convex risk measure, then

‖T v1 − T v2‖∞ ≤ γ ‖v1 − v2‖∞,

for all v1, v2 ∈ V.

Proof. By [22,28,58], any convex risk measure ρ can be represented as

ρ(X) = sup
P∈P(Ω)

{EP [X]− µ(P )} , (4.2)

where µ is a convex function satisfying infP∈P(Ω) µ(P ) = 0, and P (Ω) is the set of probability distributions
on (Ω, F). Then, since ρ is convex risk measure,

‖T v1 − T v2‖∞ ≤γ

∣∣∣∣∣ sup
P∈P(Ω)

{EP [v1]− µ(P )} − sup
P∈P(Ω)

{EP [v2]− µ(P )}

∣∣∣∣∣
≤γ

∣∣∣∣∣ sup
P∈P(Ω)

EP [v1 − v2]

∣∣∣∣∣ ≤ γ sup
P∈P(Ω)

EP |v1 − v2| ≤ γ ‖v1 − v2‖∞,

since EP ′ |v1 − v2| ≤ ‖v1 − v2‖∞ for any P ∈ P(Ω).

For the dynamic setting, we now introduce the risk measure (3.1) for each state-action pair. Given the
current state s ∈ S and action a ∈ A, the risk for the value of the next state s′ ∈ S is defined to be:

RG(s, a)(v(s′)) := min
y∈Y

max
z∈Z

Es′∼P (·|s, a) [G (v(s′), y, z)] , (4.3)

where the expectation is with respect to the transition kernel P (·|s, a). Throughout the remainder of this
paper, we assume that RG(s, a) is a convex risk measure satisfying axioms (A1)-(A3) for all (s, a) ∈ K, which
means that G may be constructed from Theorem 3.2. For simpler notation, we just take G in (4.3) to be
the same for all state-action pairs (s, a) ∈ K. We also assume that the G in (4.3) satisfies Assumption 3.1.
The corresponding risk-aware Bellman operator is then TG: V → V defined by

[TG v] (s) := min
a∈A

{
c (s, a) + γRG(s, a) (v (s′))

}
, ∀s ∈ S. (4.4)

Since TG is a contraction operator, Problem (2.4) has an optimal value function v∗ satisfying v∗ = TGv∗.
Additionally, based on [57, Theorem 4] and [65, Theorem 5.5], Problem (2.4) has a stationary optimal policy
π∗ ∈ Π which is greedy with respect to v∗, i.e.

π∗(s) ∈ arg min
a∈A

{
c (s, a) + γRG(s, a) (v∗ (s′))

}
, ∀s ∈ S.

Now, based on [71] and [66, Theorem 1], we define the risk-aware Q-value to be:

Q(s, a) := c(s, a) + γRG(s, a)

(
min
a′∈A

Q(s′, a′)
)
, ∀(s, a) ∈ K, (4.5)

and the optimal risk-aware Q-value, denoted as Q∗, to be:

Q∗(s, a) := c(s, a) + γRG(s, a)

(
max
a′∈A

Q∗(s′, a′)
)
, ∀(s, a) ∈ K. (4.6)

The procedure of RaQL is presented as Algorithm 1 (we provide the pseudo code in Algorithm 1 and
later give the detailed descriptions of each step). RaQL is an asynchronous algorithm based on two loops: an
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Algorithm 1 Risk-aware Q-learning (RaQL)
Begin

Initialization using Step 0;
For n = 1, 2 , ..., N do

Update the approximation results using Step 1;
Observe the current state sn1 , and choose an action an according to exploration strategy π̄;
Observe resulting cost c, and next state sn2 ;
For t = 1, 2 , ..., T do

Update the risk-aware cost-to-go using Step 2;
Do stochastic approximation of {Qnt } with respect to t using Step 3;
Do stochastic approximation of risk measure by Step 4;
Observe new state snt+2, and set snt = snt+1;

end for
end for
Return QNT .

end

outer loop (with N iterations) and an inner loop (with T iterations). In Algorithm 1, we let Qnt (s, a) be the
Q-value of state-action pair (s, a) ∈ K w.r.t. iteration n ≤ N and t ≤ T . Define τ∗(·) to be a deterministic
function with τ∗(n) ∈ [1, n] for all n ≤ N satisfying the same conditions as in [45, Algorithm 2.1], and
define HY and HZ to be any positive constants. Here we use (ynt (s, a), znt (s, a)) to denote the approximate
saddle-point of Problem (4.3) for (s, a) ∈ K for all n ≤ N and t ≤ T . The step-sizes are θnk (s, a) (outer
loop) and λt,α (inner loop), and the exploration policy is π̄.

Define the collection of state-action pairs G := σ {(snt , an), n ≤ N, t ≤ T}, and the filtration is Gnt ={
σ
{

(siτ , aiτ ), i < n, τ ≤ T
}
∪ {(snτ , anτ ), τ ≤ t}

}
for all t ≤ T and n ≤ N , with G0

t = {∅, Ω′} for all t ≤ T .
This filtration is nested Gnt ⊆ Gnt+1 for all 1 ≤ t ≤ T − 1 and GnT ⊆ G

n+1
0 , for all 1 ≤ n ≤ N − 1, and captures

the history of the algorithm.

Definition 4.2. Given ε ∈ (0, 1), π̄ is an ε-greedy exploration policy that chooses a random action uni-
formly with probability ε and otherwise (with probability 1 − ε) greedily chooses the action with minimal
Q-value. We denote a′ ∈ arg mina∈AQn−1

T (s, a) and suppose π̄ satisfies P
(
(snt , an) = (s, a)|Gnt−1

)
= ε

and P
(
(snt , an) = (s, a′)|Gnt−1

)
= 1 − ε for all (s, a) ∈ K, for any n ≤ N, t ≤ T . Similarly, we have

P
(
(sn1 , an) = (s, a)|Gn−1

T

)
= ε, and P

(
(snt , an) = (s, a′)|Gn−1

T

)
= 1− ε for all (s, a) ∈ K, for any n ≤ N, t ≤

T .

The exploration policy π̄ in Definition 4.2 guarantees, by the Extended Borel-Cantelli Lemma in [21],
that we will visit every state-action pair infinitely often with probability one. This balances exploration
and exploitation in RaQL more generally, which helps the algorithm avoid getting stuck at locally optimal
policies. It should be noted that RaQL is an off-policy learning algorithm, so the policy for exploration i.e.
π̄ and the policy from the Q-value updates (i.e. π) are different.

Assumption 4.3. For all (s, a) ∈ K and for all n ≤ N, t ≤ T , the step-sizes for the Q-value update satisfy:∑∞
n=1 θ

n
k (s, a) = ∞ and

∑∞
n=1 θ

n
k (s, a)2 < ∞ for all t ≤ T and (s, a) ∈ K a.s. Let #(s, a, n) denote one

plus the number of times, until the beginning of iteration n, that the state-action pair (s, a) has been visited,
and let Ns,a denote the set of outer iterations where action a was performed in state s. The step-sizes
θnk (s, a) satisfy θnk (s, a) := 1

[#(s,a,n)]k if n ∈ Ns,a and θnk (s, a) = 0 otherwise.

Assumption 4.3 sends the step-size to zero whenever a state-action pair is not visited. This step-size
selection ensures that only a single state-action pair is updated when it is observed, which reveals the
asynchronous nature of the Q-learning algorithm stated in [26]. We choose k ∈ (1/2, 1], where we call k = 1
a linear learning rate and k ∈ (1/2, 1) a polynomial learning rate, and step-sizes λt,α = C t−α for the risk
estimation with α ∈ (0, 1] for arbitrary C > 0. The detailed description for each step of RaQL follows:

Step 0: Initialize an approximation for theQ-valuesQ0(s, a) for all (s, a) ∈ K; given step-sizes θnk , λt,α >
0 for t ≤ T and n ≤ N , with learning rates k and α; deterministic function τ∗(·); initialize

(
y0
t (s, a), z0

t (s, a)
)

for all t ≤ T and (s, a) ∈ K.
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Step 1: For all (s, a) ∈ K, set (yn1 (s, a), zn1 (s, a)) =
(
yn−1
T (s, a), zn−1

T (s, a)
)
and Qn1 (s, a) = Qn−1

T (s, a).
Step 2: Compute vn−1(snt+1) = mina∈AQn−1

T (snt+1, a). Compute

q̂nt (snt , an) = c(snt , an) + γ G
(
vn−1(snt+1), yn,t(snt , an), zn,t(snt , an)

)
, (4.7)

and (
yn,t(snt , an), zn,t(snt , an)

)
= 1
t− τ∗(t) + 1

t∑
τ=τ∗(t)

(ynτ (snt , an), znτ (snt , an)) . (4.8)

To explain, given iteration n, in each iteration t ≤ T , we observe a new state snt+1 given current state snt and
action an, compute the estimated risk-aware cost-to-go q̂nt from one sample in Eq. (4.7). Here, we use the
Q−value Qn−1

T at iteration T and we compute vn−1 from it as input for Eq. (4.7), although all the Q-values
{Qn−1

t }Tt=1 are recorded.
Step 3: For all (s, a) ∈ K, compute

Qnt (s, a) = (1− θnk (s, a))Qn−1
T (s, a) + θnk (s, a) q̂nt (snt , an). (4.9)

This update is the same as in standard Q-learning w.r.t. the outer loop.
Step 4: Update(

ynt+1(snt , an), znt+1(snt , an)
)

=ΠY×Z {(ynt (snt , an), znt (snt , an))
−λt,αψ

(
vn−1(snt+1), yn,t(snt , an), zn,t(snt , an)

)}
, (4.10)

where ΠY×Z [(y, z)] := arg min(y′, z′)∈Y×Z ‖(y, z)− (y′, z′)‖2 is the Euclidean projection onto Y × Z, and

ψ
(
vn−1(snt+1), yn,t(snt , an), zn,t(snt , an)

)
=
(

HYGy(vn−1(snt+1), yn,t(snt , an), zn,t(snt , an))
−HZGz(vn−1(snt+1), yn,t(snt , an), zn,t(snt , an))

)
. (4.11)

We provide some further remarks on Algorithm 1.

1. In Eqs. (4.8), (4.10), and (4.11), we use the stochastic approximation for saddle-point problems (SASP)
algorithm as presented in [45, Algorithm 2.1] (the detailed steps appear in Algorithm 2). In Algorithm
1, we apply and extend SASP to estimate the risk with respect to each state-action pair, where the value
functions on random next states are the problem input. Classic stochastic approximation may result
in extremely slow convergence for degenerate objectives (i.e. the objective has a singular Hessian).
However, based on the analysis in [45], SASP with properly chosen α ∈ (0, 1] preserves a “reasonable”
(close to O(n−1/2)) convergence rate even when the objective is non-smooth and/or degenerate. For
instance, the Kusuoka representation (3.5) is non-smooth and degenerate since the Hessian matrix is
singular with respect to p ∈M. Thus, SASP is more appropriate for estimation of risk measures.

2. The risk estimation and the Q-value updates are mutually dependent. Given iteration n, the risk
estimation, Step 4, applies SASP to update the candidate solution of the saddle-point problem for
each selected state-action pair, using the Q-value from the previous iteration (i.e. Qn−1

T ). Given
the current state-action pair (s, a), neither the expected value of G in (4.3), nor the subdifferentials
{∂yEG (v(s′), y, z) , ∂zEG (v(s′), y, z)} (the expectation is with respect to the transition kernel), are
available. We assume that at any iteration t, for every desired point (yn,t(snt , an), zn,t(snt , an)), one
can obtain a biased estimator of the aforementioned subgradients. These estimates form a realization
of the pair of random vectors,

Gy(vn−1(snt+1), yn,t(snt , an), zn,t(snt , an)) ∈ Rd1 ,

and
Gz(vn−1(snt+1), yn,t(snt , an), zn,t(snt , an)) ∈ Rd2 ,

where {vn−1(snt )}Tt=1 is a sequence of independent identically distributed “observation noises” according
to the underlying transition kernel. In Step 3, the Q-value in the current iteration {Qnt }Tt=1 is updated
based on Qn−1

T and the approximate risk-to-go q̂nt (snt , an) follows the same update rule in standard
Q-learning.
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Algorithm 2 SASP
Step 0. Input: i.i.d samples {xt}∞t=1 of random variable X; step-sizes λt = C t−α with α ∈ (0, 1] for C > 0;
deterministic function τ∗(·); initial (y1, z1) ∈ Y × Z; positive constants HY , HZ ,
Step 1. for t = 1, 2, ... do

Step 1a. Update

(yt+1, zt+1) = ΠY×Z [(yt, zt)− λnψ(xt; yt, zt)] , t ≥ 1.

The vector ψ(x; y, z) ∈ Rd1 × Rd2 is

ψ(x; y, z) = (HYGy(x, y, z), −HZGz(x, y, z)) ,

and x is any realization of the random variable X,
Step 1b. Take the moving average

(yt, zt) = 1
t− τ∗(t) + 1

t∑
τ=τ∗(t)

(yτ , zτ ).

3. We resolve the “overestimation” problem (the accumulated error from poor risk estimation) in rein-
forcement learning described in [32, 70] through the special inner-outer loop structure of RaQL. This
phenomenon is not mentioned or resolved in [66], where the iterative procedure is analogous to stan-
dard Q-learning because of the special structure of utility-based shortfall. RaQL reduces the bias by
multiple iterations of inner loop to provide an accurate risk estimate before updating the Q-values. Our
algorithm is thus related to “Repeated updated Q-learning” as proposed in [1], which resolves perfor-
mance degradation when the algorithm is used in noisy non-stationary environments. Our algorithm
addresses what we refer to as the “policy-bias” of the action value update. Policy-bias appears in Q-
learning because the value of an action is only updated when the action is executed. Consequently, the
effective rate of updating an action value directly depends on the probability of choosing the action for
execution. For any state-action pair (sn1 , an) chosen by π̄ in the outer loop w.r.t. n ≤ N , we perform
stochastic approximation to estimate the risk for state-action pairs with fixed action an in iterations
t ≤ T . This convention increases the probability of choosing optimal actions while also getting a more
accurate risk estimate.

4. Often, the cost function is random rather than deterministic. For example, in inventory control, for
stock s, we order quantity a, and then only learn the cost after seeing the random demand. Let
c(s, a, X) denote the random cost, where X is random noise, and assume that 0 ≤ c(s, a, X) ≤ Cmax
for all (s, a) ∈ K a.s. Following the same technique as for standard Q-learning from [52, 69], we can
substitute realizations of the random cost for deterministic costs in our update rule Eq. (4.6), and
then compute the risk of the sum of the random cost and the discounted cost-to-go,

Q∗(s, a) = RG(s, a)

[
c(s, a, X) + γ min

a∈A
Q∗(s′, a)

]
, (4.12)

for all (s, a) ∈ K. Let {xnt }1≤t≤T, 1≤n≤N denote a sequence of independent identically distributed
samples of X indexed by t and n, and let c(snt , an, xnt ) denote the cost observed in state snt , for action
an, with noise xnt at iteration t and n. In terms of solving Problem (4.12), we replace the earlier
expression (4.7) in Algorithm 1 with

q̂nt (snt , an) = G
(
c(snt , an, xnt ) + γ vn−1(snt+1), yn,t(snt , an), zn,t(snt , an)

)
, (4.13)

and replace Step 4 in Algorithm 1 with(
ynt+1(snt , an), znt+1(snt , an)

)
=ΠY×Z {(ynt (snt , an), znt (snt , an))
−λt,αψ

(
c(snt , an, xnt ) + γ vn−1(snt+1), yn,t(snt , an), zn,t(snt , an)

)}
,
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and

ψ
(
vn−1(snt+1), yn,t(snt , an), zn,t(snt , an)

)
=
(

HYGy(c(snt , an, xnt ) + γ vn−1(snt+1), yn,t(snt , an), zn,t(snt , an))
−HZGz(c(snt , an, xnt ) + γ vn−1(snt+1), yn,t(snt , an), zn,t(snt , an))

)
.

This random cost variant of Algorithm 1 is also based on repeated stochastic approximation for risk
estimation for a fixed action in the inner loop, which resolves the overestimation problem caused by
the biased risk estimation.

4.2 Main results
We now state our convergence results for RaQL.

Theorem 4.4. (Almost Sure Convergence) Suppose Assumption 4.3 holds, and fix T ≥ 1. Let {QnT }n≥1 be
the Q-value produced by Algorithm 1. Then QnT → Q∗ as n→∞, almost surely.

The proof of Theorem 4.4 uses techniques from the stochastic approximation literature [40], [19] and
[18], which are applied to reinforcement learning and Q-learning in [14, 35, 69, 71]. However, our algorithm
differs from risk-neutral Q-learning because it updates Q-values as well as estimates risk via stochastic
approximation. The intuition of our proof follows the idea in [36] where multiple “stochastic approximation
instances” for both Q-value updates and risk estimation are “pasted” together. The error in Q-values is
captured by the distance of Qnt to the optimal Q∗, while the error in risk estimation is captured by the
duality gap of the corresponding stochastic saddle-point problem. We must account for the interdependence
of these two errors in several parts of our proof.

Next, we present the convergence rate for RaQL for a polynomial learning rate. We first clarify several im-
portant concepts and definitions that appear in this result. For any (s, a) ∈ K, we define (yn,∗(s, a), zn,∗(s, a))
to be a saddle-point of

(y(s, a), z(s, a))→ Es′∼P (·|s,a)
[
G
(
vn−1(s′), y(s, a), z(s, a)

)]
,

for each (s, a) ∈ K, where vn−1(s′) := mina∈AQnT (s′, a). Similarly, we define (y∗(s, a), z∗(s, a)) to be a
saddle-point of

(y(s, a), z(s, a))→ Es′∼P (·|s,a) [G (v∗(s′), y(s, a), z(s, a))] ,

for each (s, a) ∈ K, where v∗(s′) := mina∈AQ∗(s′, a). We define the Hausdorff distance between sets with
respect to the Euclidean norm based on [54]. Let A and B be two non-empty subsets of a metric space
(M, ‖ · ‖2). We define their Hausdorff distance DH(A, B) by

DH(A, B) := max
{

sup
A∈A

inf
B∈B

‖A−B‖2, sup
B∈B

inf
A∈A
‖A−B‖2

}
.

Let
Sn,t1 := {(∂Gy(vn−1, yn,t, zn,t), ∂Gz(vn−1, yn,t, zn,t))},

and
Sn,t2 := {(∂Gy(v∗, yn,t, zn,t), ∂Gz(v∗, yn,t, zn,t))},

be the two subdifferentials of G with respect to vn−1 and v∗, given (yn,t, zn,t). The results of the following
lemmas appear in our main convergence rate result. First, Lemma 4.5 bounds DH(Sn,t1 , Sn,t2 ) with respect
to ‖Qn−1

T −Q∗‖2.

Lemma 4.5. [5] [49, Theorem 4.1] Suppose Assumption 3.1(ii) holds, then there exist K(1)
ψ , K

(2)
ψ > 0, such

that

DH(Sn,t1 , Sn,t2 ) ≤ K(1)
ψ ‖Q

n−1
T −Q∗‖2 +K

(2)
ψ

√
‖Qn−1

T −Q∗‖2, (4.14)

for all n ≤ N and t ≤ T .
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The next result pertains to the modulus of stability of the saddle-points for the estimated risk measure
w.r.t. each n ≤ N .

Lemma 4.6. [68, Theorem 3.1] [41, Proposition 3.1] Suppose Assumption 3.1 holds, then there exists KS > 0
such that for all n ≤ N we have

‖(y∗, z∗)− (yn,∗, zn,∗)‖2
≤KS

∥∥Es′∼P (·|s,a)
[
G
(
vn−1(s′), y∗(s, a), z∗(s, a)

)]
− Es′∼P (·|s,a)

[
G
(
vn−1(s′), yn,∗(s, a), zn,∗(s, a)

)]∥∥
2 .

Theorem 4.7. (High Probability Convergence Rate) Suppose Assumption 4.3 holds, and choose ε̃ > 0 and
δ ∈ (0, 1). For a polynomial learning rate (i.e., k ∈ (1/2, 1)), there exist 0 < κ < 1/C K(1)

ψ and

βT := KG

2

{
1− γ −

√
C(τ∗(T ))−α

κ(1− C(τ∗(T ))−αK(1)
ψ κ)

−KGKS

}
, (4.15)

such that we have ‖QNT −Q∗‖2 ≤ ε̃ with probability at least 1− δ, for N and T satisfying:

(τ∗(T ))−α ≤ (1− γ −KGKS)2κ/C

1 +K
(1)
ψ (1− γ −KGKS)2κ2

, (4.16)

(τ∗(T ))−α ≥ [KG −KG(2γ +KGKS)− 2]2 κ
C
{
KG + [KG −KG(2γ +KGKS)− 2]2K(1)

ψ κ2
} , (4.17)

and

N = Ω

(V 2
max|S||A| ln(Vmax (|S||A|)3/2

/[δβT ε̃(1− ε)]
βT 2ε̃2(1− ε)1+3k

)1/k

+
(

1
(1− ε)βT

ln
Vmax

√
|S||A|
ε̃

) 1
1−k
 . (4.18)

Remark 4.8. To interpret the bound (4.18), we first consider its dependence on ε̃. This dependence gives
us the bound Ω((ln(1/ε̃)/ε̃2)1/k + (ln(1/ε̃))1/(1−k)), which mirrors the bound for classical asynchronous Q-
learning in [26, Theorem 4]. The lower bound on the number of outer iterations N (4.18) is decreasing with
βT . Since the quantity βT is increasing with T , the lower bound on N is decreasing with T . Consequently,
improving the quality of risk estimation by increasing the number of inner loops will improve the overall
convergence rate of the algorithm. In addition, the sample complexity will first decrease and then increase
as a function of the learning rate k (which is also observed for standard Q-learning in [26]). Furthermore,
the sample complexity is directly proportional to the discount factor γ, problem size |S||A|, and bound Vmax
on the magnitude of the value functions in V. It is inversely proportional to the Lipschitz constant KG

and the modulus of the Hausdorff distance of the subdifferentials K(1)
ψ . Increasing ε will also increase the

sample complexity, revealing that there is a tradeoff between avoiding the algorithm getting stuck at local
optima and reducing the overall computational complexity. The sample complexity also depends on the risk
measure, since different risk measures have different constants KG, K(1)

ψ , and KS .
We also derive the convergence rate of RaQL for a linear learning rate (i.e., k = 1) in Theorem 4.9.

Under a linear learning rate, we can obtain convergence rate results in both probability and expectation as
summarized in Theorem 4.10.

Theorem 4.9. (High Probability Convergence Rate) Suppose Assumption 4.3 holds, and choose ε̃ > 0 and
δ ∈ (0, 1). For a linear learning rate k = 1, there exists βT as described in (4.15), such that we have
‖QNT −Q∗‖2 ≤ ε̃ with probability at least 1− δ, for N satisfying

N = Ω

(2 + Ψ− ε
1− ε

) 1
βT

ln Vmax
√
|S||A|

ε̃ V 2
max|S||A| ln(Vmax(|S||A|)3/2/[ΨδβT ε̃(1− ε)])

Ψ2βT ε̃2(1− ε)2

 ,

where Ψ is any positive constant, and for T satisfying conditions (4.16) and (4.17).
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In Theorem 4.9, the positive constant Ψ is used to bound the duration of iteration m, which starts at
time τm, and ends at time τm+1. Define CG be the upper bound:{

1 + C

κ(1− C K(1)
ψ κ)

+ [KG(γ +KSKG)]2
}
‖Qn−1

T −Q∗‖22 ≤ CG, (4.19)

almost surely. Next, we prove convergence in expectation. We define a function

f(t) :=
[
KYH

−1
Y +KZH

−1
Z
] tα

C (t− τ∗(t) + 1)

+ (KY +KZ)L√
t− τ∗(t) + 1

+ C(KY +KZ)2L2 [HYKY +HZKZ ] τ−α∗ (t), (4.20)

for all integers 1 ≤ t ≤ T .

Theorem 4.10. (Convergence Rate in Expectation) Suppose Assumption 4.3 holds, and set linear learning
rate k = 1. Given ε̃ > 0, we have E

[
‖QNT −Q∗‖2|G

N−1
T+1

]
≤ ε̃, for N satisfying

N = Ω
(

max
{

(CG + (γ f(T ))2)ε/
(
(2− 2γKG)ε2 −KG(γ −KSKG − ε

)
, C2

max|S||A|
}

ε̃

)
,

where CG is defined in the inequality (4.19) and f(T ) is defined in Eq. (4.20) by choosing t = T .

In Theorem 4.10, the function f(t) bounds the duality gap of the stochastic saddle-point estimation in
each iteration t ≤ T , for a fixed iteration n ≤ N .

5 Proofs of main results
5.1 Almost sure convergence
We now present the proof of Theorem 4.4 step by step.

Step 1: Bounding ‖(yn,t, zn,t)−(yn,∗, zn,∗)‖22, for all n ≤ N and t ≤ T , by a function of ‖Qn−1
T −Q∗‖22.

Lemma 5.1. Suppose Assumption 4.3 holds, then there exists 0 < κ < 1/
(
C K

(1)
ψ

)
such that

‖(yn,t, zn,t)− (yn,∗, zn,∗)‖22 ≤
C(τ∗(t))−α

κ(1− C(τ∗(t))−αK(1)
ψ κ)

‖Qn−1
T −Q∗‖22, (5.1)

for all t ≤ T, n ≤ N .

Proof. From Eq. (4.10) in Step 4 of Algorithm 1, we know

‖(ynt+1, z
n
t+1)− (yn,∗, zn,∗)‖22 =

∥∥∥∥∥ ∏
Y×Z

(
(ynt , znt )− λt,αψ(vn−1, yn,t, zn,t)

)
−
∏
Y×Z

(yn,∗, zn,∗)

∥∥∥∥∥
2

2

≤‖(ynt , znt )− (yn,∗, zn,∗)− λt,αψ(vn−1, yn,t, zn,t)‖22
≤‖(ynt , znt )− (yn,∗, zn,∗)‖22 + (H2

Y +H2
Z)L2C2t−2α

− 2Ct−α ((ynt , znt )− (yn,∗, zn,∗))> ψ(vn−1, yn,t, zn,t), (5.2)

where the first inequality follows from non-expansiveness of the projection operator and the second inequality
holds by Assumption 3.1(iv). Based on Lemma 4.5, we have

‖ψ(vn−1, yn,t, zn,t)− ψ(v∗, yn,t, zn,t)‖2 ≤ D(Sn,t1 , Sn,t2 ) ≤ K(1)
ψ ‖Q

n−1
T −Q∗‖2 +K

(2)
ψ

√
‖Qn−1

T −Q∗‖2.
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Take the sum of the terms Ct−α ((ynt , znt )− (yn,∗, zn,∗))> ψ(vn−1, yn,t, zn,t) from τ∗(t) to t, divide by
1

t−τ∗(t)+1 , to obtain:

1
t− τ∗(t) + 1

t∑
τ=τ∗(t)

[
Cτ−α ((ynτ , znτ )− (yn,∗, zn,∗))> ψ(vn−1, yn,t, zn,t)

]
≤C(τ∗(t))−α

(
(yn,t, zn,t)− (yn,∗, zn,∗)

)> (
ψ(vn−1, yn,t, zn,t)− ψ(v∗, yn,t, zn,t)

)
≤C(τ∗(t))−α‖(yn,t, zn,t)− (yn,∗, zn,∗)‖2‖ψ(vn−1, yn,t, zn,t)− ψ(v∗, yn,t, zn,t)‖2

≤C(τ∗(t))−α‖(yn,t, zn,t)− (yn,∗, zn,∗)‖2
(
K

(1)
ψ ‖Q

n−1
T −Q∗‖2 +K

(2)
ψ

√
‖Qn−1

T −Q∗‖2
)
,

where the first inequality holds due to Assumption 3.1(iii). Using the inequality 2ab ≤ a2κ + b2/κ for all
κ > 0, we obtain

− 2C(τ∗(t))−α
(
(yn,t, zn,t)− (yn,∗, zn,∗)

)> (
ψ(vn−1, yn,t, zn,t)− ψ(v∗, yn,t, zn,t)

)
≥ −C(τ∗(t))−αK(1)

ψ ‖(y
n,t, zn,t)− (yn,∗, zn,∗)‖22 κ− C(τ∗(t))−α‖Qn−1

T −Q∗‖22/κ

−C(τ∗(t))−αK(2)
ψ ‖(y

n,t, zn,t)− (yn,∗, zn,∗)‖2
√
‖Qn−1

T −Q∗‖2. (5.3)

By summing the right hand side of (5.2) from τ∗(t) to t, dividing by 1
t−τ∗(t)+1 , and combining with (5.3) we

obtain

1
t− τ∗(t) + 1

t∑
τ=τ∗(t)

(
‖(ynτ , znτ )− (yn,∗, zn,∗)‖22 + (H2

Y +H2
Z)L2C2τ−2α)

− 2C(τ∗(t))−α
(
(yn,t, zn,t)− (yn,∗, zn,∗)

)>
ψ(vn−1, yn,t, zn,t)

≥C(τ∗(t))−α‖(yn,t, zn,t)− (yn,∗, zn,∗)‖22 − 2
(
(yn,t, zn,t)− (yn,∗, zn,∗)

)>
ψ(vn−1, yn,t, zn,t)

≥(1− C(τ∗(t))−αK(1)
ψ κ)‖(yn,t, zn,t)− (yn,∗, zn,∗)‖22

− C(τ∗(t))−α‖Qn−1
T −Q∗‖22/κ− C(τ∗(t))−αK(2)

ψ ‖(y
n,t, zn,t)− (yn,∗, zn,∗)‖2

√
‖Qn−1

T −Q∗‖2. (5.4)

Since the term (1−C(τ∗(t))−αK(1)
ψ κ)‖(ynt , znt ) decreases with κ, while the term C(τ∗(t))−α‖Qn−1

T −Q∗‖22/κ
increases with κ. We further claim that we can choose κ satisfying 0 < κ < 1/(C K(1)

ψ ) such that

(1− C(τ∗(t))−αK(1)
ψ κ)‖(ynt , znt )− (yn,∗, zn,∗)‖22 − C(τ∗(t))−α‖Qn−1

T −Q∗‖22/κ ≤ 0, (5.5)

which gives the desired result.

Step 2: Bounding ‖(y∗, z∗) − (yn,∗, zn,∗)‖2, for all n ≤ N , by a function of ‖Qn−1
T − Q∗‖2. We

first present a well known inequality.

Fact 5.2. Given two proper functions f1, f2 : X → R,

|max
x∈X

f1(x)−max
x∈X

f2(x)| ≤ max
x∈X
|f1(x)− f2(x)|

and
|min
x∈X

f1(x)−min
x∈X

f2(x)| ≤ max
x∈X
|f1(x)− f2(x)|.

In particular, Fact 5.2 implies that

|min
a
Qn−1
T (s, a)−min

a
Q∗(s, a)| ≤ ‖Qn−1

T −Q∗‖∞ ≤ ‖Qn−1
T −Q∗‖2, (5.6)

for all s ∈ S.

15



Lemma 5.3. Suppose Assumption 3.1 holds, then, for all n ≤ N , we have

‖(y∗, z∗)− (yn,∗, zn,∗)‖2 ≤ KS KG‖Qn−1
T −Q∗‖2. (5.7)

Proof. It can be shown that

‖(y∗, z∗)− (yn,∗, zn,∗)‖2
≤KS

∥∥Es′∼P (·|s,a)
[
G
(
vn−1(s′), y∗(s, a), z∗(s, a)

)]
− Es′∼P (·|s,a)

[
G
(
vn−1(s′), yn,∗(s, a), zn,∗(s, a)

)]∥∥
2

≤KS max
z∈Z

∥∥∥∥min
y∈Y

Es′∼P (·|s,a)
[
G
(
vn−1(s′), y(s, a), z(s, a)

)]
−min
y∈Y

Es′∼P (·|s,a) [G (v∗(s′), y(s, a), z(s, a))]
∥∥∥∥

2

≤KS max
y∈Y, z∈Z

∥∥Es′∼P (·|s,a)
[
G
(
vn−1(s′), y(s, a), z(s, a)

)]
− Es′∼P (·|s,a) [G (v∗(s′), y(s, a), z(s, a))]

∥∥
2

≤KS KG‖min
a
Qn−1
t (s, a)−min

a
Q∗(s, a)‖2

≤KS KG‖Qn−1
t −Q∗‖2,

where the first inequality follows from Lemma 4.6, the second inequalities holds due to Fact 5.2, the third
inequality holds by Lipschitz continuity of G under Assumption 3.1(ii), fourth inequality holds based on the
Lipschitz continuity of function G on V × Y × Z, and the last inequality holds by inequality (5.6).

Step 3: Apply the stochastic approximation convergence theorem. This step completes the
proof of Theorem 4.4. We introduce an operator H : V × Y × Z → R|S||A| defined via

H(v, y, z)(s, a) := c(s, a) + γG (v(s′), y(s, a), z(s, a)) , s′ ∼ P (·|s, a),

for all (s, a) ∈ K. Eq. (4.6) may then be written as

Q∗(s, a) = Es′∼P (·|s,a) [H (v∗, y∗, z∗)] (s, a), ∀(s, a) ∈ K. (5.8)

Next we define two stochastic processes,

εnt (s, a) := H
(
vn−1, yn,∗, zn,∗

)
(s, a)−H

(
vn−1, yn,t, zn,t

)
(s, a),

ξnt (s, a) := H (v∗ y∗, z∗) (s, a)−H
(
vn−1, yn,∗, zn,∗

)
(s, a),

for all (s, a) ∈ K, t ≤ T , and n ≤ N , where εnt corresponds to the risk estimation error (i.e. the duality
gap of the stochastic saddle-point problem) and ξnt corresponds to the error between QnT and Q∗. Therefore,
Step 3 in Algorithm 1 is equivalent to

Qnt (s, a)−Qn−1
T (s, a)

=− θnk
[
Qn−1
T (s, a)−Q∗(s, a) + ξnt (s, a) + εnt (s, a) +Q∗(s, a)−H (v∗, y∗, z∗) (s, a)] , (5.9)

for all (s, a) ∈ K, t ≤ T , and n ≤ N . Clearly, E
[
Q∗(s, a)−H (v∗, y∗, z∗(s, a)) |Gn−1

t+1
]

= 0 for all (s, a) ∈ K
by (5.8). By Lemma 5.1, we know that

E
[
‖εnt (s, a)‖22|Gn−1

t+1
]
≤ C KG

κ(1− C K(1)
ψ κ)

‖Qn−1
T −Q∗‖22, ∀(s, a) ∈ K. (5.10)

In particular, inequality (5.10) holds by setting t = 1 in (5.1). Furthermore, inequality (5.10) shows that the
conditional expectation w.r.t. Gn−1

t+1 of the risk estimation error for each state-action pair at each iteration
is always bounded by ‖Qn−1

T −Q∗‖22. In addition, by Lipschitz continuity of G, we have

|ξnt (s, a)| ≤γ KG|min
a∈A

Qn−1
T (snt , a)−min

a∈A
Q∗(snt , a)|+ γKG|(y∗(s, a), z∗(s, a))− (yn,∗(s, a), zn,∗(s, a))|

≤γKG

[
‖Qn−1

T −Q∗‖2 + ‖(y∗, z∗)− (yn,∗, zn,∗)‖2
]

≤γKG(1 +KGKS)‖Qn−1
T −Q∗‖2, (5.11)
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where the final inequality holds due to Lemma 5.3. Since G is P -square summable for every y ∈ Y and
z ∈ Z in Assumption 3.1(i), the risk measure (4.3) is bounded for all (s, a) ∈ K. Furthermore, based on
(4.5) and boundedness of the cost function c(s, a) by Assumption 2.1(ii), we have boundedness of Qnt for all
t ≤ T, n ≤ N . Boundedness of the Q-values together with results (5.10) and (5.11), along with the equality
E
[
Q∗ −H (v∗, y∗, z∗) |Gn−1

t+1
]

= 0, mean that the update rule (5.9) satisfies the conditions of [40, Theorem
2.4] and [19, Assumption A2]. We now have the ingredients needed to apply the stochastic approximation
convergence theorem (see e.g. [40, Theorem 2.4] or [19, Theorem 2.2]) to Eq. (5.9) to conclude that

QnT (s, a)→ Q∗(s, a) a.s.,

for all (s, a) ∈ K as n→∞.
Remark 5.4. In terms of RaQL with random costs, the result of Lemma 4.5 holds for the modified subdifferen-
tials of the functionG with respect to c(snt , an, xnt )+γ vn−1(snt , an) and c(snt , an, xnt )+γ v∗(snt , an), based on
(4.13). We can then follow Steps 1 and 2 to bound ‖(yn,t, zn,t)− (yn,∗, zn,∗)‖22 and ‖(y∗, z∗)− (yn,∗, zn,∗)‖2
in terms of ‖Qn−1

T − Q∗‖2. Finally, we can again apply the stochastic approximation convergence theo-
rem [40, Theorem 2.4] or [19, Theorem 2.2] to prove almost sure convergence of RaQL for random costs.

5.2 Convergence rate
In this subsection we derive the convergence rate of RaQL for a polynomial learning rate k ∈ (1/2, 1).
Our convergence rate proof follows [26]. The main idea is to connect the convergence of RaQL with
the convergence of an artificial deterministic sequence, which has a linear convergence rate that is eas-
ier to derive. In other words, the values {QnT }n≥1 could be bounded by a deterministic sequence almost
surely in each iteration. Explicitly, we will construct 0 < βT < 1 and an artificial deterministic sequence
{Dm}m≥1 satisfying D0 = D1 = Vmax and Dm+1 = (1 − βT )Dm for all m ≥ 1. Here we call m as “epoch”.
Clearly, the sequence {Dm}m≥1 converges to zero. This sequence also has the following special property:
for every m ≥ 1, there exists τm such that ‖QnT − Q∗‖2 ≤ Dm holds for all n ≥ τm. The duration of
epoch m is then τm+1 − τm. Subsequently, we show that Qnt (s, a) − Q∗(s, a) is bounded by two simpler
stochastic processes {Zn,τmt (s, a)}τm≤n≤N and {Y n,τmt (s, a)}τm≤n≤N . We then establish the relationship
of {Zn,τmt (s, a)}τm≤n≤N and {Y n,τmt (s, a)}τm≤n≤N with {Dm}m≥1. In particular, {Zl,τmt (s, a)}l=1,...,n is a
martingale difference sequence so we can derive a high probability bound on {Zn,τmt (s, a)}τm≤n≤N from the
Azuma-Hoeffding inequality. On the other hand, {Y n,τmt (s, a)}τm≤n≤N captures all of the biased estimation
error terms (from the risk estimation error and the Q-value estimation error) in RaQL, which can be bounded
almost surely by a function of {Dm}m≥1. By combining these two results, we show that ‖QNT − Q∗‖2 ≤ ε̃
holds with high probability for large enough N and any T ≥ 1.

We will verify the existence and provide the explicit forms of: Dm, βT , and τm in the upcoming steps.

Step 1: Constructing two stochastic processes and bounding ‖Qnt − Q∗‖2 by their sum. We
decompose (5.9) into two separate stochastic processes {Zn,τmt (s, a)}τm≤n≤N and {Y n,τmt (s, a)}τm≤n≤N .
We define, for a fixed m ≥ 1 and for n ≥ τm and t ≤ T , the quantity

Zn+1,τm
t (s, a) :=(1− θnk (s, a))Zn,τmt (s, a) + θnk (s, a)ζ(s, a), (5.12)

for all (s, a) ∈ K, where ζ(s, a) := Q∗(s, a) −H (v∗, y∗, z∗) (s, a) and Zτm,τmt = 0, for all t ≤ T . We also
define, for a fixed m ≥ 1 and for n ≥ τm and t ≤ T , the quantity

Y n+1,τm
t (s, a) :=(1− θnk (s, a))Y n,τmt (s, a) + θnk (s, a)KGγ (Dm + ‖(y∗, z∗)− (yn,∗, zn,∗)‖2)

+ θnk (s, a)KG‖(yn,t, zn,t)− (yn,∗, zn,∗)‖2, (5.13)

for all (s, a) ∈ K, where Y τm,τmt (s, a) = Dm, for all t ≤ T . The process (5.12) is a recursion for the unbiased
error terms ζ(s, a), while the process (5.13) is a recursion for the biased error terms (e.g. the sum of the
Q-value approximation errors and the duality gaps from the risk estimation). The following Lemma 5.5
which appears in [14] and [26, Lemma 9] shows that the almost sure lower and upper bounds for Q-value
estimation error at each iteration by the process (5.13) and (5.12).
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Lemma 5.5. Given the stochastic processes (5.12) and (5.13), and the update rule (5.9),

Zn,τmt (s, a)− Y n,τmt (s, a) ≤ Qnt (s, a)−Q∗(s, a) ≤Zn,τmt (s, a) + Y n,τmt (s, a), (5.14)

holds for all t ≤ T, τm ≤ n ≤ N , and (s, a) ∈ K.

Proof. Suppose both εnt (s, a) and ξnt (s, a) are non-negative for all (s, a) ∈ K. From the right hand side of
Eq. (5.13), for all t ≤ T, n ≤ N , we have

(1− θnk (s, a))Y n,τmt (s, a) + θnk (s, a)KGγ (Dm + ‖(y∗, z∗)− (yn,∗, zn,∗)‖2)
+ θnk (s, a)KG‖(yn,t, zn,t)− (yn,∗, zn,∗)‖2

≥(1− θnk (s, a))Y n,τmt (s, a) + θnk (s, a) (|ξnt (s, a)|+ |εnt (s, a)|)
=(1− θnk (s, a))Y n,τmt (s, a) + θnk (s, a) (ξnt (s, a) + εnt (s, a)) , (5.15)

where this inequality is due to inequality (5.11) (|ξnt (s, a)| ≤ γKG

[
‖Qn−1

T −Q∗‖2 + ‖(y∗, z∗)− (yn,∗, zn,∗)‖2
]
),

the definition of εnt (s, a), and Lipschitz continuity ofG from Assumption 3.1(ii) (|εnt (s, a)| ≤ KG‖(yn,t, zn,t)−
(yn,∗, zn,∗)‖2). Combining inequality (5.15) with Eqs. (5.13) and (5.12), for all t ≤ T, n ≤ N , and (s, a) ∈ K,
we have

Zn+1,τm
t (s, a) + Y n+1,τm

t (s, a)
≥(1− θnk (s, a)) (Zn,τmt (s, a) + Y n,τmt (s, a))

+ θnk (s, a) [ξnt (s, a) + εnt (s, a) +Q∗(s, a)−H (v∗, y∗, z∗) (s, a)] . (5.16)

We now use induction on n to show that the right-hand side in inequalities (5.14) holds. By setting the base
case to be n = τm, we have, for all t ≤ T and (s, a) ∈ K, that

Zτm,τmt (s, a) + Y τm,τmt (s, a) = Dm ≥ ‖Qτmt −Q∗‖2 ≥ Qnt (s, a)−Q∗(s, a).

The above equality holds by the definition of Znt (s, a) and Y nt (s, a) in Eqs. (5.12) and (5.13), respectively.
Suppose Zn,τmt (s, a) + Y n,τmt (s, a) ≥ Qnt (s, a)−Q∗(s, a) for all τm ≤ n ≤ N , t ≤ T , and (s, a) ∈ K. Then,
by inequality (5.16) and Eq. (5.9), we obtain the right hand side of the above inequality. Now, suppose both
εnt (s, a) and ξnt (s, a) are negative for all (s, a) ∈ K, then

− (1− θnk (s, a))Y n,τmt (s, a) + θnk (s, a)KGγ (−Dm − ‖(y∗, z∗)− (yn,∗, zn,∗)‖2)
− θnk (s, a)KG‖(yn,t, zn,t)− (yn,∗, zn,∗)‖2
≤− (1− θnk (s, a))Y n,τmt (s, a) + θnk (s, a)(ξnt (s, a) + εnt (s, a)), (5.17)

and so we obtain the left hand inequality in inequalities (5.14) following the same reasoning. Finally, when
εnt (s, a) and ξnt (s, a) have different signs for all (s, a) ∈ K, we can show that inequalities (5.15) and (5.17)
hold. Thus, following the same inductive reasoning, we can show that both inequalities in (5.14) hold.

Our main focus is on deriving a high probability bound for the convergence rate of ‖QnT − Q∗‖2. By
Lemma (5.5), this goal is equivalent to bounding the sum and the difference of the stochastic processes
{Zn,τmt (s, a)}τm≤n≤N and {Y n,τmt (s, a)}τm≤n≤N . In the following steps of the proof, we first derive almost
sure bounds on {Y n,τmT }τm≤n≤N .

Step 2: Bounding {Y n,τmT }τm≤n≤N and selecting βT . The next lemma provides an almost sure up-
per bound on the stochastic process {Y n,τmT }τm≤n≤N . Furthermore, this lemma shows that the duration
of epoch m, which starts at time τm and ends at time τm+1, is bounded by (τm)k, and it also provides an
explicit selection of βT .

Lemma 5.6. Given any m ≥ 1, assume that for all n ≥ τm, we have Y n,τmT (s, a) ≤ Dm. Then, for any
n ≥ τm + (τm)k = τm+1 we have

Y n,τmT (s, a) ≤KGDm

(
γ +

√
C(τ∗(T ))−α

κ(1− C(τ∗(T ))−αK(1)
ψ κ)

+KGKS

)
+ 2
e
βTDm,

for all (s, a) ∈ K, where βT is given in Eq. (4.15) with T satisfies conditions (4.16) and (4.17).
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Proof. Based on the proof in [26, Lemma 27], we combine the convergence rate results from Lemmas 5.1 and
5.3 into the definition of the process Y n+1,τm

T as described in Eq. (5.13). We then obtain

Y τm,τmT (s, a) = KGDm

(
γ +

√
C(τ∗(T ))−α

κ(1− C(τ∗(T ))−αK(1)
ψ κ)

+KGKS

)
+ gτm ,

for all (s, a) ∈ K and m ≥ 1, where

gτm := KG

{
1− γ −

√
C(τ∗(T ))−α

κ(1− C(τ∗(T ))−αK(1)
ψ κ)

−KGKS

}
Dm,

for all (s, a) ∈ K and m ≥ 1. We may then write

Y n,τmT (s, a) = KGDm

(
1− γ −

√
C(τ∗(T ))−α

κ(1− C(τ∗(T ))−αK(1)
ψ κ)

−KGKS

)
+ (1− θnk )gn,

for all (s, a) ∈ K, n ≤ N and m ≥ 1. Since the step sizes θnk are monotonically decreasing in n, we can
rewrite gn as

gn = KG

{
1− γ −

√
C(τ∗(T ))−α

κ(1− C(τ∗(T ))−αK(1)
ψ κ)

−KGKS

}
Dm

n−τm∏
l=1

(1− θl+τmk )

≤ 2βTDm

n−τm∏
l=1

(1− 1
(l + τm)k )

≤ 2βTDm

n−τm∏
l=1

(1− ( 1
τm

)k)n−τm

≤ 2βTDm(1− ( 1
τm

)k)(τm)k

≤ 2
e
βTDm, (5.18)

for all n ≤ N , where the first inequality holds by the choice of βT in Eq. (4.15).

Step 3: Deriving high probability bound on {|Zn,τmT |}τm≤n≤N by the Azuma-Hoeffding in-
equality. The following Lemma 5.7 directly follows from the results in [26, Lemma 28]. It shows that
{Zl,τmt (s, a)}l=1,...,n for fixed n ≤ N , is a martingale difference sequence for all (s, a) ∈ K.

Lemma 5.7. [26, Lemma 28] Given a fixed n ≥ τm, for any i ∈ [τm, n], define

ηm,ni (s, a) := θi+τmk (s, a)
n∏

j=i+τm+1
[1− ζjt+1(s, a)].

Let w̃ni+τm(s, a) := ηm,ni (s, a) ζi+τmt+1 (s, a) so that |Zl,τmt (s, a)| =
∑l
i=1 w̃

n
i+τm(s, a). Then, for all (s, a) ∈ K,

we have: (i) for any n ∈ [τm+1, τm+2], the random variable w̃ni+τm(s, a) has zero mean and is bounded by
((1 − ε)k(τm)k)−1Vmax; (ii) for any n ∈ [τm+1, τm+2] and 1 ≤ l ≤ n, Zl,τmt (s, a) is a martingale difference
sequence satisfying |Zl,τmt (s, a)− Zl−1,τm

t (s, a)| ≤ ((1− ε)k(τm)k)−1Vmax.

Based on Lemma 5.7 and [6], we obtain a high probability bound on |Zn,τmT (s, a)| w.r.t. m ≥ 1 and
n ∈ [τm+1, τm+2] by the Azuma-Hoeffding inequality, we also derive a selection rule for choosing τ0 and
{τm}m≥1.

Lemma 5.8. Given 0 < δ < 1, we have: (i)

P
[
∀n ∈ [τm+1, τm+2] : ∀(s, a) ∈ K : |Zn,τmT (s, a)| ≤ (1− 2

e
)βTDm

]
≥ 1− δ(1− ε),
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for

τm = Θ
((

V 2
max ln(Vmax|S||A|/[δβTDm(1− ε)])

(βT )2Dm(1− ε)1+3k

)1/k)
,

and (ii)

P
[
∀m ∈ [1, 1

1− ε ], ∀n ∈ [τm+1, τm+2], ∀(s, a) ∈ K : |Zn,τmT (s, a)| ≤ ε̃
]
≥ 1− δ,

for

τ0 = Θ
((

V 2
max ln(Vmax|S||A|/[δβT ε̃(1− ε)])

(βT )2ε̃2(1− ε)1+3k

)1/k)
.

Proof. First, note that {Zl,τmt (s, a)}l=1,...,n is a martingale difference sequence for all (s, a) ∈ K by Lemma
5.7. Next, following the proofs of [26, Lemma 30] and [26, Lemma 31], for each state-action pair, we apply
Lemma 5.7 and the Azuma-Hoeffding inequality to Zn,τmT (s, a) with ci = 1

(1−ε)k(τm)k Vmax, for all i ∈ [τm, n].
Then, for any n ∈ [τm+1, τm+2], we have

P [|Zn,τmT (s, a)| ≥ ε̃ | n ∈ [τm+1, τm+2]] ≤ 2 exp
(

−ε̃2

2
∑n
i=τm+1, i∈Ns,a c

2
i

)

≤ 2 exp
(
−C ε̃

2τm(1− ε)1+3k

V 2
max

)
, (5.19)

with a constant C > 0. Let δ̃m denote the right hand side of the inequality (5.19), which holds for τm =
Θ(ln(1/δ̃m)V 2

max/(1− ε)1+3kε̃2). The union bound gives

P [∀n ∈ [τm+1, τm+2] : Zn,τmT (s, a) ≤ ε̃] ≤
τm+2∑

n=τm+1
P [Zn,τmT (s, a) ≤ ε̃] ,

and so taking δ̃m = δ(1−ε)
(τm+2−τm+1)|S||A| assures that with probability at least 1−δ(1−ε), we have |Zn,τmT (s, a)| ≤

ε̃ for all (s, a) ∈ K and n ∈ [τm+1, τm+2]. As a result, we have

τm = Θ(ln(1/δ̃m)V 2
max/(1− ε)1+3kε̃2) = Θ

((
V 2

max ln(Vmax|S||A|/[δβTDm(1− ε)])
(βT )2Dm(1− ε)1+3k

)1/k)
.

Setting ε̃ = (1− 2/e)βTDm gives the desired bound in Lemma 5.8(i). For Lemma 5.8(ii), we know that

P
[
∀n ∈ [τm+1, τm+2] : |Zn,τmT | ≥ (1− 2

e
)βTDm

]
≤ δ

m
,

and obviously
P [∀n ∈ [τm+1, τm+2] : |Zn,τmT | ≥ Dm] ≤ δ

m
.

Using the union bound again shows that

P
[
∀m ≤ 1

1− ε , ∀n ∈ [τm+1, τm+2], |Zn,τmT | ≥ ε̃
]
≤

M∑
m=1

P [∀n ∈ [τm+1, τm+2], |Zn,τmT | ≥ ε̃] ≤ δ,

where ε̃ = Dm. We replace Dm with ε̃ in Lemma 5.8(i) to obtain

τ0 = Θ
((

V 2
max ln(Vmax|S||A|/[δβT ε̃(1− ε)])

(βT )2ε̃2(1− ε)1+3k

)1/k

.

)
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Step 4: Completing the proof by combining Steps 1 through 3. This step completes the proof of
Theorem 4.7. The following Lemma 5.9 is a standard fact about numerical sequences that is used to derive
the final convergence rate in Theorem 4.7.

Lemma 5.9. [26, Lemma 32] Let am+1 = am + 1
1−ε (am)k = a0 +

∑m
i=0

1
1−ε (ai)k. Then, for any k ∈ (0, 1),

am = O
(

((a0)k + 1
1−εm)

1
1−k

)
= O

(
a0 + ( 1

1−εm)
1

1−k

)
.

Based on Lemma 5.9, we set a0 to be τ0 in Lemma 5.8, and we have

P
[
∀n ∈ [τm+1, τm+2] : ∀(s, a) ∈ K : |Zn,τmT (s, a)| ≤ (1− 2

e
)βTDm

]
≤P [∀n ∈ [τm+1, τm+2] : ∀(s, a) ∈ K : |Zn,τmT (s, a)|+ Y n,τmT (s, a) ≤ Dm+1]
≤P [∀n ∈ [τm+1, τm+2] : ‖QnT −Q∗‖∞ ≤ Dm+1]
≤P [∀n ∈ [τm+1, τm+2] : ‖QnT −Q∗‖∞ ≤ Dm]

≤P
[
∀n ∈ [τm+1, τm+2] : ‖QnT −Q∗‖2 ≤

√
|S||A|Dm

]
,

where the first above inequality holds based on Lemma 5.6, the second one holds based on Lemma 5.5, and the
third one holds based on the definition of sequence {Dm}m≥1. Choose ε̄ to satisfy (1− 2

e )βTDm = ε̄ ≤ Dm,
then we have by Lemma 5.8(ii) that

P
[
∀m ∈ [1, 1

1− ε ], ∀n ∈ [τm+1, τm+2], ∀(s, a) ∈ K : ‖QnT −Q∗‖2 ≤
√
|S||A|Dm

]
≥ 1− δ,

with

τ0 = Θ
((

V 2
max ln(Vmax|S||A|/[δβT ε̄(1− ε)])

(βT )2(ε̄)2(1− ε)1+3k

)1/k)
.

Since this statement holds for all m ∈ [1, 1
1−ε ], based on Lemma 5.9, we have

P
[
∀n ∈ [τm+1, τm+2], ∀(s, a) ∈ K : ‖QnT −Q∗‖2 ≤

√
|S||A|Dm

]
≥ 1− δ. (5.20)

Set ε̃ such that
√
|S||A|Dm ≤ ε̃ and Dm = Vmax(1− βT )m, we have m ≥ (1/βT ) ln(Vmax

√
|S||A|/ε̃) and so

τm = Θ

(V 2
max ln(Vmax|S||A|/[δβT ε̄(1− ε)])

(βT )2(ε̄)2(1− ε)1+3k

)1/k

+
(

1
(1− ε)βT

ln
(
Vmax

√
|S||A|
ε̃

)) 1
1−k
 .

Since the probability bound (5.20) holds for all n ∈ [τm+1, τm+2], if we replace ε̄ with ε̃/
√
|S||A|, we get the

desired result since ε̄ ≤ ε̃/
√
|S||A|.

6 Numerical experiments
We illustrate the application of RaQL with an infinite-horizon inventory control problem. In practice, RaQL
finds the optimal risk-aware ordering policy π∗ : S→ A, which is more reliable than the standard one because
it is sensitive to low probability events with extremely high random demand. In each stage, we first observe
the current stock s ∈ S in inventory, then order a ∈ A new units, after which a random demand D is realized.
The new inventory level in the next stage is

s′ = max{0, min{s+ a, Smax} −D},

where Smax denotes the largest state in S := {0, 1, ..., Smax}. The random cost is

c(s, a, D) = c̃ · a+ b ·max{D − s− a, 0} − p ·min{s+ a, D},
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where c̃, p and b are the unit order cost, selling price, and backorder cost, respectively.
For our experiments, we choose c̃ = 3, p = 5, b = 4, D is uniform on {1, 2, ..., 10}, and the finite

state/action spaces are: S = {0, 1, ..., 19} and A = {1, 2, ..., 10}. We set the discount factor to be γ = 0.1,
and we assume that all model parameters (costs, price, and transition probabilities) are all stationary. In
these experiments, we evaluate the performance in terms of the relative error ‖QnT − Q∗‖2/‖Q∗‖2, n ≤ N .
Here, we obtain Q∗ exactly by doing risk-aware DP (as proposed in [57]) where in each iteration the risk-
aware Bellman operator is computed by exactly solving a stochastic saddle-point optimization problem (see
TG in (4.4)). First, we verify the convergence of our algorithm for a few different risk measures, and then
we compare the performance with standard risk-neutral Q-learning. These results confirm the almost sure
convergence of our algorithm as well as its competitive convergence rate. We record and compare the
computation time required to reach the same relative error for RaQL with CVaR and standard Q-learning.
We also compare the reliability of risk-aware policy and risk-neutral policy by showing how the risk-aware
policy reduces the variance of expected cost when the demand is generated from the underlying distribution.
Second, we test the performance of our algorithm against risk-sensitive Q-learning (RsQL) as proposed
in [66] for the entropic risk measure, since both methods can be applied. This comparison reveals the
advantages of RaQL both in terms of computational efficiency and accuracy. Third, we compare SASP and
stochastic subgradient descent for risk estimation. This comparison demonstrates that SASP is better suited
for estimation of complex risk measures.

Throughout the experiments, we conduct 50 simulation runs for each implementation of Q-learning type
algorithms (RaQL, standard Q-learning, and RsQL), and record the mean and standard deviation of relative
errors among the simulation runs. The experiments were performed on a generic laptop with Intel Core i7
processor, 8GM RAM, on a 64-bit Windows 8 operating system running Matlab R2015a and CPLEX Studio
12.5.

6.1 Experiment I: Risk-aware vs. Risk-neutral
6.1.1 Convergence rate comparison

We intend to show that a variety of risk measures fit into our RaQL framework, and also to show that RaQL
has a convergence rate similar to risk-neutral Q-learning. We consider CVaR and absolute semi-deviation.
We set the number of outer iterations to be N = 10000, and the number of inner iterations to be T = 100.
In these experiments, Risk-aware DP terminates after finding an ε-optimal policy with ε = 0.01. We use a
linear learning rate i.e. k = 1, and set α = 0.1 for CVaR, and r = 0.5 for absolute semi-deviation.

As shown in Figure 1, RaQL converges almost surely to the optimal Q-value as expected. Moreover,
in this experiment, the convergence rate of RaQL matches classical Q-learning. In Figure 1, the error bars
represent the standard deviation from simulation.

6.1.2 Computation time comparison

In this experiment, we compare the time required for RaQL and standard Q-learning to reach the same
precision ε i.e. ‖QnT − Q∗‖2/‖Q∗‖2 ≤ ε. Table 2 shows the expected computation time results under 50
simulations when choosing different precision levels ε, and different T . Table 2 shows that for any ε, the
expected computation time for RaQL will decrease with the T selected, and will be close to that of standard
Q-learning, which means that RaQL has robust convergence even when the number of iterations for risk
estimation is small.

6.1.3 Policy comparison

Figure 2 compares the risk-aware ordering policy from RaQL (with CVaR) and the risk-neutral ordering
policy from standard Q-learning over 500 simulated trajectories. The histograms in Plot 4 show that the
risk-aware ordering policy leads to slightly higher expected cost but lower variance. In addition, the right
tails of these two distributions reveal that the risk-aware ordering policy is more reliable since it reduces the
probability of events with extremely high cost.
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Figure 1: Numerical Experiment Result I

ε = 0.5 ε = 0.2 ε = 0.15 ε = 0.1
RaQL (T = 100) 1.268s 3.493s 6.798s 30.976s
RaQL (T = 50) 0.537s 1.061s 6.135s 5.225s
RaQL (T = 10) 0.119s 0.302s 0.370s 1.329s
RaQL (T = 5) 0.062s 0.320s 0.286s 0.804s
RaQL (T = 2) 0.033s 0.169s 0.301s 0.350s
RaQL (T = 1) 0.022s 0.064s 0.143s 0.529s

Standard Q-learning 0.027s 0.125s 0.169s 0.374s

Table 2: Computation Time
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Figure 2: Policy Comparison

6.2 Experiment II: RaQL vs. RsQL
In this experiment, we compare the performance of RaQL with risk-sensitive Q-learning (RsQL) as pro-
posed in [66]. We use the entropic risk measure (constructed from utility-based shortfall) as in [27, 29]
to compare RaQL and RsQL. An entropic risk measure can be constructed from the utility function
u(x) = 1 − exp(−λx), λ > 0 for x ∈ R in OCE from Example 3.3. We set λ = 0.01, the number of
outer iterations to be N = 1 × 105, and the number of inner iterations to be T = 10 for RaQL. The total
number of iterations for RsQL is 1 × 105. The other settings remain the same as in Experiment I. Under
these settings, RsQL terminates after 4.559s in expectation and RaQL uses 4.521s in expectation, to com-
plete the first 1 × 104 iterations. Figure 2 shows that RaQL converges faster than RsQL. The convergence
rate has also has lower standard deviation as shown by the error bars. We conjecture that the inner-outer
loop structure of RaQL estimates the risk and updates the Q-values independently, which helps to reduce the
bias in iterative Q-learning. In contrast, in RsQL, the risk estimation and Q-value updates are conducted
simultaneously which may result in higher bias.

6.3 Experiment III: SASP vs. Stochastic subgradient descent
In this experiment, we compare RaQL with SASP and stochastic subgradient descent for risk estimation
procedure to show that SASP has more accurate risk estimation. In particular, for stochastic subgradient
descent we cut the moving average step (4.8), and change step (4.10) into(

ynt+1(snt , an), znt+1(snt , an)
)

=ΠY×Z {(ynt (snt , an), znt (snt , an))
−λt,αψ

(
vn−1(snt+1), ynt (snt , an), znt (snt , an)

)}
,

where the subgradient estimation of the current iteration is combined with computation of the saddle-point
(ynt (snt , an), znt (snt , an) (in SASP, the moving average of historical estimations (yn,t(snt , an), zn,t(snt , an)) is
used for this purpose). In this experiment, we set the number of outer iterations to be N = 3000 and the
number of inner iterations to be T = 100, we take a linear learning rate k = 1, and we set the step-size
for risk estimation to be λt,α = Ct−α with α = 1/2. We compare the two procedures for a functionally
coherent risk measure (see Example 3.5). Figure 3 suggests that RaQL running on SASP has a lower relative
error compared to the modified algorithm which uses stochastic subgradient descent, especially when the
underlying risk measure is non-smooth and degenerate.
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Figure 3: Numerical Experiment Result II

Figure 4: Numerical Experiment Result III
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7 Conclusion
We developed a new simulation-based algorithm for finite state/action, infinite-horizon, risk-aware Markov
decision process, called Risk-awareQ-learning (RaQL). This algorithm can be used to solve many real life risk-
aware dynamic optimization problems in areas such as robotics, sequential online auctions, and infrastructure
protection. We demonstrate that many commonly investigated risk measures (e.g. conditional value-at-risk,
optimized certainty equivalent, absolute semi-deviation, and functionally coherent risk measures) fit into our
framework. We analyze RaQL and establish both its almost sure convergence as well as its convergence
rate (Ω((ln(1/δε)/ε2)1/k + (ln(1/ε))1/(1−k)) with probability 1 − δ, where ε > 0 is the error tolerance and
k ∈ (1/2, 1] is the learning rate). For the case of a linear learning rate, we get an explicit convergence rate
(Ω(1/ε)) in expectation. Our experiments confirm the almost sure convergence of RaQL, and also show that
RaQL has a convergence rate comparable to classical Q-learning in terms of the required number of outer
loops. Additionally, our experiments illustrate the computational advantages of RaQL compared with some
alternative methods for solving risk-aware MDPs.

In future research, we will explore new methods for speeding up the risk estimation subroutine to reduce
the overall computational complexity, and we will also extend RaQL to handle continuous state and action
spaces by incorporating Q-value function approximation techniques.

Appendix
Proof of Theorem 3.2: Let P denote the probability distribution of X and construct {hz}z∈Z satisfying
conditions (i)-(iv) in the statement of the theorem. The stochastic saddle-point formulation in (3.2) is then

ρ(X) = min
y∈[ηmin, ηmax]

max
z∈Z
{y + EP [hz(X, y)]} . (7.1)

Since hz is P -square summable for every y ∈ Y and z ∈ Z, the corresponding function G (3.2) satisfies
Assumption 3.1(i). Concavity of hz in z ∈ Z leads to this function G satisfying Assumption 3.1(iii). Lipschitz
continuity of hz with modulus KG−1 implies that this function G satisfies Assumption 3.1(ii). The condition
that the subgradients of hz(X − y) on z ∈ Z and y ∈ Y are Borel measurable and uniformly bounded, for
any X ∈ L, implies that this G satisfies Assumption 3.1(iv).

Next, we prove that formulation (7.1) is a convex risk measure. Let φ(·) denote a continuous and
subdifferentiable φ-divergence function for the distance between two probability distributions P and P ′. We
refer to [51, Table 5] for examples of φ-divergence functions. Recall the Fenchel dual representation of convex
risk measures,

ρ(X) = sup
P ′∈P

{EP ′ [X]− µ(P ′)} , (7.2)

where µ is a convex function satisfying infP ′∈P µ(P ′) = 0, and P is the φ-divergence risk envelope,

P :=
{
P ′ : P ′ ≥ 0, 1>P ′ = 1,

∫
Ω
φ

(
dP ′

dP

)
dP ≤ β

}
,

consisting of all probability distributions with φ-divergence from P bounded by β > 0. Let φ∗ denote the
convex conjugate of φ defined as φ∗(X) := supP ′∈P {EP ′ [X]− φ(P ′)}. Based on the results for φ-divergence
risk envelopes constructed in [11, 12, 51], any convex risk measure (7.2) with corresponding set P can be
reformulated as:

ρ(X) = inf
b≥0, y∈R

{
y + bβ + bEP

[
φ∗
(
X − y
b

)]}
. (7.3)

Inspired by the minimax risk measure investigated in [59,60,62,64], we develop an extended variant for (7.3).
Let φz denote a family of divergence functions parameterized by z ∈ Z that is concave in z ∈ Z for all fixed
X ∈ L, and let φ∗z denote their corresponding convex conjugates. Define

Pz :=
{
P ′ : P ′ ≥ 0, 1>P ′ = 1,

∫
Ω
φz

(
dP ′

dP

)
dP ≤ β

}
,
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to be the set of probability distributions with bounded divergence with respect to φz, z ∈ Z, and set
PZ =

⋃
z∈Z Pz. The equivalent form for (7.2) with the set PZ is now

ρ(X) = min
b≥0, y∈R

max
z∈Z

{
y + bβ + bEP

[
φ∗z

(
X − y
b

)]}
. (7.4)

To complete the proof, given a constructed {hz}z∈Z , and if we choose the φ-divergence function with its
convex conjugate φ∗ satisfying

φ∗z

(
X − y
b

)
= hz(X, y)

b
− β,

for any y ∈ R and b ≥ 0, then the formulation (7.4) is equivalent to formulation (7.1). Thus formulation
(7.1) is a convex risk measure.

Proof of Theorem 4.9: In this part, we detail the procedures to prove Theorem 4.9. As a remark,
the natural logarithm term e in (5.18) of Lemma 5.6 is specific to a polynomial learning rate, while for a
linear learning rate we have a new relationship between τm and τm+1. Thus, we must construct a different
bound on {Y n,τmT }τm≤n≤N , which is defined in Eq. (5.13). We first derive the convergence rate of process
Y n,τmT (s, a) w.r.t. T . We prove the result by applying the same argument as in the proof of Lemma 5.6, and
combining the arguments of [26, Lemma 22].

Lemma 7.1. Given any m ≥ 1, assume that for all n ≥ τm we have Y n,τmT ≤ Dm. Then for any n ≥
(2 + Ψ)τm = τm+1, we have,

Y n,τmT (s, a) ≤ Dm

(
KG

{
1− γ −

√
C(τ∗(T ))−α

κ(1− C(τ∗(T ))−αK(1)
ψ κ)

−KGKS

}
+ 2

2 + ΨβT

)
,

for all (s, a) ∈ K, where βT is defined in (4.15) with T satisfying conditions (4.16) and (4.17), Ψ is any
positive constant and Ks is defined in (5.7).

The following Lemma enables the use of Azuma-Hoeffding inequality. Lemma 7.2 can be prove by
applying the same argument in Lemma 5.7, where we set k = 1 because of linear learning rate.

Lemma 7.2. For any n ≥ τm and 1 ≤ l ≤ n we have that {Zl,τmt (s, a)}l=1,...,n is a martingale difference
sequence, which satisfies |Zl,τmt (s, a)− Zl−1,τm

t (s, a)| ≤ Vmax
(1−ε)τm , for any t ≤ T .

Lemma 7.3. Given 0 < δ < 1, we have (i)

P
[
∀n ∈ [τm+1, τm+2] : Zn,τT (s, a) ≤ Ψ

2 + ΨβTDm

]
≥ 1− δ(1− ε), (7.5)

where τm = Θ
(
V 2

max ln(Vmax|S||A|/[ΨδβTDm(1−ε)])
Ψ2βTD2

m(1−ε)2

)
, and (ii)

P
[
∀m ∈ [1, 1

1− ε ], ∀n ∈ [τm+1, τm+2] : |Zn,τT | ≤ ε̃
]
≥ 1− δ,

where τ0 = Θ
(
V 2

max ln(Vmax|S||A|/[ΨδβT ε̃(1−ε)])
Ψ2βT ε̃2

)
.

Proof. Following the proofs of [26, Lemma 37] and [26, Lemma 38], we setci = Θ
(

Vmax
(1−ε)τm

)
, for any n ≥ τm+1,

therefore we obtain

P [|Zn,τT | ≥ ε̃] ≤ 2 exp
(

−ε̃2

2
∑n
i=τm+1, i∈Ns,a c

2
i

)
≤ 2 exp

(
−c ε̃

2τm(1 + Ψ)
V 2

max

)
,

for some constant c > 0. Let us define the following variable

Ξn(s, a) =
{

1, θnt,k 6= 0
0 otherwise,
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where k is fixed. Using the union bound and the fact in an interval of length 1+Ψ
1−ε τm, each state-action pair

is visited at least (1 + Ψ)τm times with certainty according to [26, Lemma 37], we get

P [∀n ∈ [τm+1, τm+2] : |Zn,τmT | ≥ ε̃] ≤ P
[
∀n ≥ (1 + Ψ

1− ε + 1)τm : |Zn,τmT | ≥ ε̃
]

≤
∞∑

n=((1+Ψ)/(1−ε)+1)τm

P [|Zn,τmT (s, a)| ≥ ε̃]

≤ 2
∞∑

n=((1+Ψ)/(1−ε)+1)τm

Ξn(s, a) exp
(
−cτm(1 + Ψ)ε̃2

V 2
max

)

≤ 2 exp
(
−c ((1 + Ψ)τm)ε̃2

V 2
max

) ∞∑
n=0

exp
(
− nε̃2

2V 2
max

)

=
2 exp

(
−c (1+Ψ)τmε̃2

V 2
max

)
1− exp

(
− ε̃2

V 2
max

)
= Θ

exp
(
− c
′τmε̃

2

V 2
max

)
ε̃2 V 2

max

 ,

for some positive constant c′. Controlling δ by setting

δ(1− ε)
|S||A|

= Θ

exp
(
− c
′τmε̃

2

V 2
max

)
ε̃2 V 2

max

 ,

which holds for τm = Θ
(
V 2

max ln(Vmax|S||A|/(δDm(1−ε))
βTDm

)
, and ε̃ = Ψ

2+ΨβTDm assures us that for every t ≥ τm+1

with probability at least 1− δ(1− ε) the statement (7.5) holds at every state-action pair.

Theorem 4.9 follows from Lemma 7.3, and the algebraic identity in the proof of [26, Theorem 5] that

ak+1 = ak + (1 + Ψ)
1− ε ak = a0( (1 + Ψ)

1− ε + 1)k.

The detailed proof follows the same procedures as the proof of Theorem 4.7.

Proof of Theorem 4.10: To start, we investigate the convergence rate of risk estimation step w.r.t.
t by stochastic approximation. We first refer to the convergence rate analysis of Algorithm 2 in [45]. As
a measure of the quality of a candidate solution (y, z) ∈ Y × Z, we use the duality gap d(y, z) proposed
by [45, Section 2.1.2]. Let Φ(y) = maxz∈Z EP [G(X, y, z)], and Φ(z) = miny∈Y EP [G(X, y, z)], for any
fixed X ∈ L, and

d(y, z) := [Φ(y)−min
y∈Y

Φ(y)] + [max
z∈Z

Φ(z)− Φ(z)] = Φ(y)− Φ(z).

The next theorem gives the convergence rate of SASP.

Theorem 7.4. [45, Theorem 1] Suppose Assumption 3.1 holds, set the step-size for all t as λt,α = Ct−α, α ∈
(0, 1], then for every t > 1, we have

d(yt, zt) ≤
[
KYH

−1
Y +KZH

−1
Z
] tα

C (t− τ∗(t) + 1) + (KY +KZ)L√
t− τ∗(t) + 1

+ C(KY +KZ)2L2 [HYKY +HZKZ ] τ−α∗ (t). (7.6)
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Lemma 7.5. Suppose Assumption 4.3 holds, for all (s, a) ∈ K, v ∈ V and for every t > 1 and n ≤ N , we
have the upper bound

Es′∼P (·|s,a)
[
|G
(
v(s′), yn,t(s, a), zn,t(s, a)

)
−G (v(s′), yn,∗(s, a), zn,∗(s, a)) |

]
≤
[
KYH

−1
Y +KZH

−1
Z
] tα

C (t− τ∗(t) + 1) + (KY +KZ)L√
t− τ∗(t) + 1

+ C(KY +KZ)2L2 [HYKY +HZKZ ] τ−α∗ (t). (7.7)

Proof. By the triangle inequality, we know that for all (s, a) ∈ K, v ∈ V and for every t > 1 and n ≤ N ,

Es′∼P (·|s,a)
[
|G
(
v(s′), yn,t(s, a), zn,t(s, a)

)
−G (v(s′), yn,∗(s, a), zn,∗(s, a)) |

]
≤max

z∈Z
Es′∼P (·|s,a)

[
G
(
v(s′), yn,t(s, a), zn,t(s, a)

)]
−min
y∈Y

Es′∼P (·|s,a)
[
G
(
v(s′), yn,t(s, a), zn,t(s, a)

)]
. (7.8)

From Theorem 7.4, we know that

max
z∈Z

Es′∼P (·|s,a)
[
G
(
v(s′), yn,t(s, a), zn,t(s, a)

)]
−min
y∈Y

Es′∼P (·|s,a)
[
G
(
v(s′), yn,t(s, a), zn,t(s, a)

)]
≤
[
KYH

−1
Y +KZH

−1
Z
] tα

C (t− τ∗(t) + 1) + (KY +KZ)L√
t− τ∗(t) + 1

+ C(KY +KZ)2L2 [HYKY +HZKZ ] τ−α∗ (t). (7.9)

Thus we obtain the desired result.

The next lemma bounds E
[
‖Qnt −Q∗‖22|Gn−1

t+1
]
w.r.t. n, for any t ≤ T . For simplicity, we use function

f(t) to denote the right hand side of (7.7).

Lemma 7.6. The sequence Qnt , generated by Algorithm 1 satisfies, for any κ0, κ > 0,

E
[
‖Qnt −Q∗‖22|Gn−1

t+1
]
≤
[
1− 1

nk
(2ε− γKGκ0 − γKGκ− γKG/κ0 −KS K

2
G/κ)

]
E
[
‖Qn−1

T −Q∗‖22|Gn−1
t+1

]
+ (CG + (γ f(t))2)

n2k ,

where CG bounds the term{
1 + C

κ(1− C K(1)
ψ κ)

+ [KG(γ +KSKG)]2
}
‖Qn−1

T −Q∗‖22 ≤ CG.

Proof. Let us recall that the update of Step 3 in Algorithm 1 is equivalent to

Qnt = Qn−1
T − θnk

[
Qn−1
T −Q∗ + ξnt + εnt +Q∗ −H (v∗, y∗, z∗))

]
.

Expanding, we have

‖Qnt −Q∗‖22 ≤‖Qn−1
T −Q∗‖22 + ‖θnk

[
Qn−1
T −Q∗ + εnt + ξnt

]
‖22

− 2
(
Qn−1
T −Q∗

)>
θnk
[
Qn−1
T −Q∗ + εnt + ξnt

]
. (7.10)

We focus on the cross term −2
(
Qn−1
T −Q∗

)>
θnk
[
Qn−1
T −Q∗ + εnt + ξnt

]
. First, by the ε-greedy exploration

policy, notice that

Ep
[(
Qn−1
T −Q∗

)>
θnk
(
Qn−1
T −Q∗

)
|Gn−1
t+1

]
≥ ε

nk
‖Qn−1

T −Q∗‖22, (7.11)
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and by the definition of εnt , we have by Lemma 7.5, that

E
[
εnt |Gn−1

t+1
]

= E
[
H
(
vn−1, yn,∗, zn,∗

)
−H

(
vn−1, yn,t, zn,t

)
|Gn−1
t+1

]
≤ γ Es′∼P (·|s,a)

[
|G
(
vn−1(s′), yn,t(s, a), zn,t(s, a)

)
−G

(
vn−1(s′), yn,∗(s, a), zn,∗(s, a)

)
|
]

≤ γ f(t),

and
E
[
−
(
Qn−1
T −Q∗

)>
θnkε

n
t |Gn−1

t+1

]
≤ γ f(t)

nk
‖Qn−1

T −Q∗‖2. (7.12)

Applying the algebraic identity 2ab ≤ a2κ+ b2/κ for all κ > 0, we see that

E
[
−2
(
Qn−1
T −Q∗

)>
θnkε

n
t |Gn−1

t+1

]
≤ κ‖Qn−1

T −Q∗‖22 + (γ f(t))2

n2kκ
.

We can see that

E
[
−
(
Qn−1
T −Q∗

)>
θnkξ

n
t |Gn−1

t+1

]
≤γ

2

nk
KG

[
‖Qn−1

T −Q∗‖2‖Qn−1
T −Q∗‖2

+ γ‖Qn−1
T −Q∗‖2 (‖(yn,∗, zn,∗)− (y∗, z∗)‖2)

]
.

Again applying the algebraic identity 2ab ≤ a2κ+b2/κ for all κ > 0, we see that for any constants κ0, κ > 0,

E
[
−2
(
Qn−1
T −Q∗

)>
θnkξ

n
t |Gn−1

t+1

]
≤ γ

nk
KG

[
(κ0 + κ) ‖Qn−1

T −Q∗‖22
]

+ γKG

nkκ0
‖Qn−1

T −Q∗‖22 + KG

nkκ

(
‖(yn,∗, zn,∗)− (y∗, z∗)‖22

)
≤ γ

nk
KG

[
(κ0 + κ) ‖Qn−1

T −Q∗‖22
]

+ γKG

nkκ0
‖Qn−1

T −Q∗‖22 + KS K
2
G

nkκ
‖Qn−1

T −Q∗‖22. (7.13)

Finally, there exists κ > 0 such that

‖θnk
[
Qn−1
T −Q∗ + εnt + ξnt

]
‖22

≤ 1
n2k

{
1 + C

κ(1− C K(1)
ψ κ)

+ [KG(γ +KSKG)]2
}
‖Qn−1

T −Q∗‖22, (7.14)

where the above inequality holds based on (5.10) and (5.11). For simplicity, let CG bound the term{
1 + C

κ(1− C K(1)
ψ κ)

+ [KG(γ +KSKG)]2
}
‖Qn−1

T −Q∗‖22.

The statement of the lemma follows by taking expectations of inequalities (7.10), (7.11), (7.12) and (7.13),
and using the inequality (7.14), and combining.

The convergence rate in expectation with a linear learning rate is based on the following result from [25],
which is useful for analyzing a specific type of sequence that often arises in recursive algorithms.

Lemma 7.7. [25] Consider a sequence {an}. Suppose for some b > 1 and every n ≥ 1 that an ≤(
1− b

n

)
an−1 + c

n2 .Then, if d ≥ max
{

c
b−1 , a

0
}
, it follows that an ≤ d

n for n ≥ 1.

Based on the results of Lemma 7.6, for linear learning rate k = 1, we let an = E
[
‖Qnt −Q∗‖22|Gnt+1

]
for

any t ≤ T , and choose

d ≥ max
{

(CG + (γ f(t))2)
(2ε− γKGκ0 − γKGκ− γKG/κ0 −KS K2

G/κ)− 1 , C
2
max|S||A|

}
,
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in Lemma 7.7, where we also have a0 = E
[
‖Q1

t −Q∗‖22|G0
t+1
]
≤ C2

max|S||A|. By setting κ = κ0 = ε, given a
small positive constant ε̃ > 0, we have the sample complexity

N = Ω
(

max
{

(CG + (γ f(t))2)ε/
(
(2− 2γKG)ε2 −KG(γ −KSKG)− ε

)
, C2

max|S||A|
}

ε̃

)
,

such that E
[
‖QNt −Q∗‖22|GN−1

t+1
]
≤ ε̃, for any t ≤ T . We have thus proved the desired result summarized in

Theorem 4.10.
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