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Abstract—This paper studies the control problem for safety-
critical multi-agent systems based on quadratic programming
(QP). Each controlled agent is modeled as a cascade connection
of an integrator and an uncertain nonlinear actuation system. In
particular, the integrator represents the position-velocity relation,
and the actuation system describes the dynamic response of
the actual velocity to the velocity reference signal. The notion
of input-to-output stability (IOS) is employed to characterize
the essential velocity-tracking capability of the actuation system.
The uncertain actuation dynamics may cause infeasibility or
discontinuous solutions of QP algorithms for collision avoidance.
Also, the interaction between the controlled integrator and the
uncertain actuation dynamics may lead to significant robustness
issues. By using nonlinear control methods and numerical opti-
mization methods, this paper first contributes a new feasible-set
reshaping technique and a refined QP algorithm for feasibility,
robustness, and local Lipschitz continuity. Then, we present a
nonlinear small-gain analysis to handle the inherent interaction
for guaranteed safety of the closed-loop multi-agent system. The
proposed methods are illustrated by numerical simulations and
a physical experiment.

Index Terms—Safety-critical systems, uncertain actuation dy-
namics, quadratic programming (QP), feasible-set reshaping,
small-gain synthesis.

I. INTRODUCTION

Attaining primary objectives while satisfying motion con-

straints is an essential yet challenging task for vehicles and

robotic systems. This has been one of the most attractive topics

in the interdisciplinary literature of controls and robotics in the

past decades [1]–[6].

Early utilized in constrained optimization [7], barrier func-

tions have been employed to characterize state constraints

for nonlinear control systems. Control barrier functions have

been developed to enable constrained control designs [8]–[16].

The substantial relationship between control barrier functions

and control Lyapunov functions [17] opens the door to a
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systematic development of a multi-objective control theory

[18]. In particular, the recent advancement of control barrier

functions relaxes the requirement of invariance of every level

set (see [19] for zeroing barrier functions). Still, it only

assumes an increasing property of the barrier function when

the system state is outside the desired safety set. Moreover,

for a control-affine nonlinear system, an appropriately defined

control barrier function entails linear inequality constraints

on admissible control inputs to keep the system state inside

the desired set. See [20] for a discussion on the half-space

robustness property of Sontag’s formula [21], and pointwise

minimum norm formula [22]. This treatment allows compu-

tationally efficient integration of different control strategies to

fulfill conflicting constraints.

Indeed, quadratic programming (QP) is a powerful tool for

real-time synthesis of controllers by incorporating different

specifications simultaneously [23]–[25]. For a system subject

to motion constraints, a QP algorithm calculates the admissible

control input that fulfills the constraints and is as close as

possible to the set of control inputs for primary objectives

[18]. The notions of robust barrier functions [18], [20] and

input-to-state safety [26], [27] have been developed to handle

perturbations. The study of Lipschitz continuity of QP-based

control laws is not only of theoretical interest for well-defined

solutions of closed-loop systems but also beneficial to avoiding

chattering and other unexpected transient behaviors in practice

[18], [20], [28], [29]. The integration of barrier functions

and QP algorithms have found various applications, including

automotive safety [18], robotic locomotion and manipulation

[29], [30], multi-robot systems [31]–[33]. See [34] for a recent

survey on control barrier functions and QP-based controller

synthesis.

Other velocity obstacle approach [35], [36] calculates the

set of feasible velocities for constrained motions. Still, the

underlying assumption of piecewise continuous speed or ac-

celeration possibly results in limited robustness to dynamic

uncertainties. We also recognize the refined designs to address

the discontinuity issue [37]. Interested readers may also con-

sult the recent paper [38] for a comparative study of control

barrier functions and the popular artificial potential fields [39].

This paper investigates the safety control problem for a

class of mobile agents modeled as a cascade connection of an

integrator and an uncertain actuation system. Such a system

setup covers a broad class of practical control systems. If the

dynamics of the actuation system are neglectable, then the

proposed model is reduced to an integrator, which is known

http://arxiv.org/abs/2211.16720v1
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as an essential model for safety control. Some other systems,

e.g., double-integrators and Euler-Lagrange systems, can also

be transformed into our model by introducing appropriate

virtual control laws. Interestingly, the identified model of a

quadrotor is in the form of our model (see Section VI).

Unsurprisingly, dynamic uncertainties challenge the robustness

and computational feasibility of QP-based algorithms and may

cause the collision avoidance performance to deteriorate (as

illustrated in Figure 1).

Destination

° Ideal

Actual

Obstacle

Fig. 1: The ideal path is collision-free, while uncertain actua-

tion dynamics may cause collision.

This paper assumes an essential velocity-tracking capability

for the actuation system, which is described by the notion

of input-to-output stability (IOS) [40], [41]. In the presence

of uncertain actuation dynamics, a conventional QP algorithm

may not be feasible, and the solution may be discontinuous

even if it exists. Moreover, the uncertain actuation system leads

to an unexpected feedback loop from the constrained position

to the velocity-tracking error and possibly destroys the usual

half-space robustness.

This paper proposes a seamless integration of numeri-

cal optimization and nonlinear control to address the major

technical difficulty caused by uncertain actuation dynamics.

Our first contribution lies in a new feasible-set reshaping

technique by refining a standard QP algorithm for guaranteed

feasibility, robustness, and local Lipschitz continuity. Based

on the treatment above, the controlled multi-agent system

is transformed into an interconnected system composed of

two subsystems, one corresponding to the nominal controlled

system subject to the velocity-tracking error and the other

caused by the uncertain actuation dynamics. We employ gains

to represent the interconnections and develop a nonlinear

small-gain analysis to guarantee safety.

To the best of our knowledge, some techniques in this

paper are reported for the first time. The feasible-set reshaping

technique ensures (local) Lipschitz continuity of the solution

of the refined QP algorithm and would be beneficial to other

related problems with continuous motion constraints. The

robustness analysis for collision avoidance subject to multiple

safety constraints is still valuable when the controlled agents

are free of uncertain actuation dynamics. The small-gain

analysis takes advantage of the inherent interaction between

the nominal system and the uncertain actuation dynamics. It

motivates a new integration methodology for kinematics and

dynamics control loops.

The rest of the paper is organized as follows. Section II

introduces the system setup and gives the collision avoidance

problem formulation. In Section III, we employ two examples

to discuss the technical difficulty caused by the uncertain

actuation dynamics. The main result of a refined QP algorithm

with a reshaped feasible set is presented in Section IV. The

proof of the main result, given in Section V, is based on several

new properties of the refined QP algorithm and local small-

gain analysis. In Section VI, we employ numerical simulations

and a physical experiment based on quadrotors to illustrate the

validity of the proposed method. Section VII presents some

concluding remarks. Due to space limitations, some proofs

are placed in the technical report [42].

Notations

The following notations are given to make the paper self-

contained.

We use |x| to represent the Euclidean norm of x ∈ R
n,

and use |A| to represent the induced 2-norm of A ∈ R
m×n.

For a nonzero real vector x, we denote x̂ = x/|x|. For

vectors x, x′ ∈ R
n, x < x′ represents that the corresponding

elements xi and x′
i satisfy xi < x′

i. The notations ≤, >
and ≥ are defined in the same way for vectors. For a real

vector x, min{x} and max{x} denote the smallest and the

largest element of x, respectively. For a real vector x, [x]i
represents the i-th element. For a real matrix A, [A]i,j , [A]i,:
and [A]:,j represent the element at the i-th row and the j-th

column, the i-th row vector and the j-th column vector of

the matrix A, respectively, min{A} denotes a column vector

containing the minimum value of each row, and max{A}
denotes a column vector containing the maximum value of

each row. We use ⊗ to represent the Kronecker product, and

use ⊙ to represent the Hadamard product. In particular, for

A ∈ R
m×n and B ∈ R

1×n, C = A ⊙ B is defined by

[C]i,j = [A]i,j [B]1,j . For A ∈ R
n×n, λmax(A) and λmin(A)

take the maximum eigenvalue and the minimum eigenvalue,

respectively, and σmax(A) and σmin(A) take the maximum

singular value and the minimum singular value, respectively.

For a measurable and locally essentially bounded signal u :
R+ → R

m, ‖u‖[t1,t2) = ess supτ∈[t1,t2) |u(τ)|, and ‖u‖t =
‖u‖[0,t). Let f(t) be a real-valued function defined over an

open interval (a, b). The upper right Dini derivative of f(t)
at t0 ∈ (a, b) is defined as D+f(t0) = lim supt→t

0+
(f(t) −

f(t0))/(t− t0).
The definitions of positive definite functions and functions

of classes K, K∞ and KL can be found in [43]. A continuous

function α : (−a, b) → (−c,∞) with constants a, b, c > 0 is

said to be of class Ke if it is strictly increasing and α(0) = 0.

A continuously differentiable function µ : (−a,∞) → (0, b)
with constants a, b > 0 is said to be of class M−C, denoted

by µ ∈ M−C, if it is strictly decreasing, strictly convex,

lims→∞ µ(s) = 0, and lims→∞ ∂µ(s)/∂s = 0. Id denotes the

identity function. sat(r) := max{min{r, 1}, 0} is a saturation

function defined for r ∈ R.

II. PROBLEM FORMULATION AND PRELIMINARIES

This section first introduces the class of systems to be

studied in this paper, and then gives the problem formulation

of collision avoidance.

Suppose there are na agents and no obstacles indexed by

Na = {1, . . . , na}, No = {na + 1, . . . , na + no}, (1)
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respectively. Denote Nao = Na∪No, and nao = na+no. For

each i ∈ Nao, we use pi ∈ R
n to represent the position of the

mobile agent or the obstacle, and use

p = [p1, . . . , pnao
] (2)

to represent the positions of all the mobile agents and the

obstacles.

For i ∈ Na, each agent i is modeled as a cascade connection

of a nominal system and an uncertain actuation system.

Specifically, the nominal system is represented by

ṗi = vi, (3)

where vi ∈ R
n is the velocity. The velocity vi is generated by

an actuation system, which is in the general form:

żi = f(zi, v
∗
i ), vi = g(zi, v

∗
i ) (4)

where zi ∈ R
m is the state of the actuation system, v∗i ∈ R

n

represents the velocity reference signal, and f and g are locally

Lipschitz functions.

The multi-agent system with each agent described by (3)-(4)

is said to be safe if under some specific initial conditions

min
i∈Na, j∈Nao\{i}

|pi(0)− pj(0)| ≥ D0, max
i∈Na

|zi| ≤ z̄0, (5)

with D0, z̄0 > 0, the relative positions of the multi-agent

system satisfy

min
i∈Na, j∈Nao\{i}

|pi(t)− pj(t)| ≥ D, (6)

for all t ≥ 0, where D > 0 is the safety distance.

We use vci ∈ R
n to represent the velocity command signal

for primary control objective. The safety control problem

is concerned about designing controllers for the agents to

incorporate the velocity command signals and the safety

qualifications. The expected control system is shown in Figure

2.

Safety

Controller

Actuation System Nominal System

(4) (3)

pi

pj (j 6= i)

v∗i

vi

vci

Mobile Agent

Fig. 2: Block diagram of the safety control system.

A. Assumptions on the Actuation Systems and the Velocity

Command Signals

In the presence of the uncertain actuation dynamics, the

actual velocity vi may not equal to the velocity reference signal

v∗i . Define velocity-tracking error

ṽi = vi − v∗i . (7)

Then, the nominal system (3) can be rewritten as

ṗi = vi = v∗i + ṽi. (8)

In practice, it is essential that the actuation system is inherently

stable and admits some velocity-tracking capability. In this

paper, we assume that for a constant reference signal v∗i , the

actual velocity vi asymptotically converges to v∗i , and for a

time-varying v∗i , the tracking error ṽi depends on the changing

rate of v∗i .

Suppose that the velocity reference signal v∗i is locally

Lipschitz on the time-line, and denote

v∗di (t) = D+v∗i (t). (9)

The following assumption is made on the uncertain actuation

system.

Assumption 1 (Stability and reference-tracking capability

of the actuation system): Consider the actuation system (4).

There exist locally Lipschitz functions αz1, αz2, γ
v∗d

ṽ ∈ K and

constants cṽ ≥ 1 and λ > 0 such that for any zi(0) and any

locally Lipschitz and bounded v∗i ,

|ṽi(t)| ≤ βṽ(|zi(0)|, t) + γv∗d

ṽ (‖v∗di ‖t) (10)

|zi(t)| ≤ αz1(|zi(0)|) + αz2(‖v∗i ‖t) (11)

hold for all t ≥ 0, where βṽ(s, t) = cṽe
−λts for s, t ∈ R+.

Remark 1: With the velocity-reference signal v∗i ’s Dini

derivative as the input and the velocity-tracking error ṽi as the

output, property (10) employs the notion of IOS to characterize

the velocity-tracking capability: ṽi ultimately converges to the

range of γv∗d

ṽ (‖v∗d‖∞). Given bounded velocity reference

signal v∗i , property (11) guarantees the boundedness of state

zi. See, e.g., [41], [44], [45] for tutorials of the related notions.

Remark 2: Suppose the dynamics of the actuation system

is neglectable. In that case, i.e., v∗i ≡ vi, the agent model is

reduced to a single-integrator, which has been widely studied

in the literature of safety control [46]. The double-integrator

model [31] can also be transformed into the form of (3)-

(4) by introducing a virtual control law to the velocity loop.

Interestingly, the experimental data of a quadrotor in Section

VI also coincides with model (3)-(4) and satisfies Assumption

1.

Example 1 gives a condition for linear control systems to

satisfy Assumption 1.

Example 1 (Reference tracking capability of linear control

systems): Consider a linear control system

ż = Az +Bv∗, v = Cz (12)

where z ∈ R
m is the state, v ∈ R

n is the output, v∗ ∈ R
n is

the input, and A, B and C are real matrices with appropriate

dimensions. It is assumed that A is a Hurwitz matrix and

satisfies

CA−1B = −In×n. (13)

Define the tracking error ṽ = v − v∗. For any constant input

v∗, condition (13) implies that limt→∞ ṽ(t) = 0.
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Suppose that v∗ is continuously differentiable, and denote

v∗d(t) = v̇∗(t). Then, define ζ = Az+Bv∗. Direct calculation

yields:

ζ̇ = Aż +Bv∗d = Aζ +Bv∗d, (14)

ṽ = Cz − v∗ = CA−1(ζ −Bv∗)− v∗ = CA−1ζ. (15)

Because A is Hurwitz, the transformed linear control system

(14)–(15) is stable. Property (10) can be proved by directly

applying the definition of IOS-Lyapunov function [47]; see

Section VI-A for details. ♦

In practice, vci is generated by the primary controller.

Without loss of generality, we make the following assumption

on the velocity command signal vci .

Assumption 2 (Boundedness of the velocity command and its

derivative): For each i ∈ Na, vci is continuously differentiable

with respect to time, and there exist positive constants v̄c and

v̄cd such that

|vci (t)| ≤ v̄c, |v̇ci (t)| ≤ v̄cd (16)

for all t ≥ 0.

B. Characterization of Safety

For the multi-agent system (3)–(4), define

p̃ij = pi − pj (17)

to represent the relative positions. Then, from (8), we have

˙̃pij = vi − vj = v∗i − v∗j + ṽi − ṽj . (18)

To describe the safety of agent i with respect to another

agent or an obstacle j, we define

V (p̃ij) = µ(|p̃ij | −Ds), (19)

where µ : (−Ds,∞) → R+ is an M−C function and Ds ∈
R+ is safety margin. If the velocity reference signals v∗i and

v∗j satisfy

− ˆ̃pTij(v
∗
i − v∗j ) ≤ −αV (V (p̃ij)− µ(0)) (20)

with αV ∈ Ke, then along the trajectories of (18), we have

∇V ˙̃pij ≤
∂µ(|p̃ij | −Ds)

∂(|p̃ij | −Ds)

(

αV (V (p̃ij)− µ(0)) + ˆ̃pTij(ṽi − ṽj)
)

,

(21)

and thus

V (p̃ij) ≥
(

α−1
V (|ṽi|+ |ṽj |) + µ(0)

)

⇒ ∇V ˙̃pij ≤ 0. (22)

If the initial states satisfy V (p̃ij(0)) ≤ µ(D − Ds), and the

velocity-tracking errors satisfy ‖ṽi‖∞ + ‖ṽj‖∞ ≤ αV (µ(D−
Ds)− µ(0)), then

V (p̃ij(t)) ≤ µ(D −Ds) (23)

holds for all t ≥ 0, which means safety by recalling equation

(6).

Remark 3: If the agents are free of uncertain actuation

dynamics, then the safety control problem would be readily

solvable by applying barrier-function-based QP designs [16]

and using the idea of forward invariance [18, Theorem 1].

However, for the class of multi-agent systems with uncertain

actuation dynamics, the velocity-tracking errors may violate

the safety constraint; see the discussions in Section III.

III. LIMITATIONS OF STANDARD DESIGNS

This section employs examples to discuss the technical

difficulty caused by the uncertain actuation dynamics. It is

shown that the velocity-tracking errors may either lead to

infeasibility of conventional QP-based controllers, or result

in non-Lipschitz solutions. A non-Lipschitz solution may

cause unexpected transient response of the uncertain actuation

system and destroy the safety of the controlled agent.

A. A QP-based Controller with an Extended Safety Margin

For convenience of notations, denote

Vij(t) = V (p̃ij(t)). (24)

Given the velocity command vci for the primary control

objective, inspired by the QP-based control strategy [27], [31],

one may choose the actual velocity reference signal v∗i such

that safety is ensured and at the same time v∗i is as close to

the velocity command vci as possible:

v∗i = argmin
v∗

i ∈Po
i (p)

1

2
v∗Ti v∗i − vcTi v∗i (25)

where

Po
i (p) = {v∗i ∈ R

n : Ao
i (p)v

∗
i + aoi (p) ≤ 0} (26)

is the feasible set with

Ao
i (p) = [− ˆ̃pi1, . . . ,− ˆ̃pi(i−1),− ˆ̃pi(i+1), . . . ,− ˆ̃pinao

]T , (27)

aoi (p) = [αV (Vi1 − µ0), . . . , αV (Vi(i−1) − µ0), . . .

αV (Vi(i+1) − µ0), . . . , αV (Vinao
− µ0)]

T . (28)

Here, αV is a continuously differentiable class Ke function,

and µ0 = µ(0). To avoid singularity, the algorithm requires

p̃ij 6= 0 for i ∈ Na and j ∈ Nao \ {i}.

However, the velocity-tracking errors ṽi may violate the

safety constraint of the conventional QP-based design [18],

[20]. An intuitive solution is to extend the safety margin [48],

which, however, still may not guarantee the feasibility of the

QP algorithm if the total number of the constraints is larger

than one; see Example 2.

Example 2 (Possible infeasibility of a conventional QP

algorithm by extending safety margin to handle velocity-

tracking error): Consider the scenario involving one mobile

agent with position p1 and two obstacles with positions p2 and

p3; see Figure 3. In this example, we consider p2 = [0.5; 0.5],
p3 = −[0.5; 0.5], and vc1 = [1;−1]. If the velocity-tracking

error is neglectable, then one may consider

v∗1 = argmin
v∗

1
∈Po

1

1

2
v∗T1 v∗1 − vcT1 v∗1 (29)

where Po
1 = {v∗1 ∈ R

n : Ao
1v

∗
1 + ao1 ≤ 0} with Ao

1 =
[− ˆ̃p12,− ˆ̃p13]

T and ao1 = [|p̃12|−1 −D−1, |p̃13|−1 −D−1]T .

When the velocity-tracking error is nonzero, one may con-

sider extending the safety margin and redesigning the safety

controller with new ao1 = [|p̃12|−1−D−1
s ; |p̃13|−1−D−1

s ]. But,

such a treatment may result in an empty feasible set in specific

cases. For example, in the case of D = 0.6 and Ds = 1,

when p1 = [0; 0], the feasible set Po
1 in (26) should satisfy√

2
−1

[1, 1;−1,−1]v∗ ≤ (
√
2− 1)[1; 1], and thus is empty. ♦
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p1

vc1

p2

p3

Ds

D

Fig. 3: Infeasibility of the QP algorithm by extending the

safety margin to handle the velocity-tracking error.

B. Introducing a Relaxation Parameter

An alternative solution is to introduce a relaxation parameter

[18], [20], [31] to the QP algorithm as

[

v∗i
δi

]

= argmin
[v∗

i ;δi]∈Ps
i (p)

1

2

[

v∗i
δi

]T [
v∗i
δi

]

−
[

vci
δ

]T [
v∗i
δi

]

(30)

where δi is the relaxation parameter, δ is intended to compen-

sate the effect of δi,

Ps
i (p) = {[v∗i ; δi] : As

i (p)v
∗
i + asi (p)δi ≤ 0, δi ∈ [0, δ]} (31)

is the feasible set with As
i (p) = Ao

i (p) defined in (27), and

without loss of generality,

asi (p) =
1

δ
aoi (p) (32)

where aoi (p) is defined in (28).

Clearly, if p̃ij 6= 0 for i ∈ Na and j ∈ Nao \ {i}, then zero

is always an element of Ps
i (p) and thus the QP algorithm

is always feasible. However, such a modification does not

guarantee the Lipschitz continuity of the solution; see Example

3.

Example 3 (Lipschitz continuity of the solution to a con-

ventional QP algorithm not guaranteed by simply adding a

relaxation parameter): Still consider the case in Example

2. We use (Ăs
i , ă

s
i ) to represent the non-redundant active

constraints1 of the QP algorithm defined by (30), with Ăs
i

and ăsi being submatrices of As
i and asi , respectively. From

[49, Example 2.1.5], the solution to the QP algorithm is

v∗1 = vc1 − ĂsT
1 (Ăs

1Ă
sT
1 + ăs1ă

sT
1 )−1(Ăs

1v
c
1 + ăs1δ). (33)

Suppose that the non-redundant active constraints are not

changed in some domain of p. Then, in this domain, taking

the partial derivative of v∗1 with respect to ăs1 yields

∂v∗1
∂ăsT1

=
δΛ2(2Λ3Λ

−1
0 − Λ1)− 2Λ2Λ3Λ

T
2 v

c
1ă

sT
1 Λ−1

0

Λ2
1

+

(vcT1 Λ2ă
s
1)⊗ Λ2 + (vcT1 Λ2)⊗ (Λ2ă

s
1)

Λ1
(34)

1A constraint of the QP problem is non-redundant if removing it changes
the feasible set; it is active at a solution v∗i to the QP problem, if its equality
holds at v∗i [7].

where Λ0 = Ăs
1Ă

sT
1 , Λ1 = (1 + ăsT1 Λ−1

0 ăs1), Λ2 = ĂsT
1 Λ−1

0

and Λ3 = ăs1ă
sT
1 . Ăs

1 is consisted of the relative positions

between the agent and the obstacles. Thus, σmin(Ă
s
1) cannot

be guaranteed to be lower bounded by a positive constant.

This means that the solution to the QP algorithm may not

be Lipschitz. Indeed, [50, Theorem 3.1] requires a posi-

tive lower bound of σmin(Ă
s
1) to guarantee the Lipschitz

continuity of the QP problem. In this numerical example,

we consider D = 0.6, Ds = 0.68, vc1 = [1;−1], p1 ∈
{p : |p − p2| ≥ D, |p − p3| ≥ D }, p2 = [0.5; 0.5],
p3 = −[0.5; 0.5], δ = 100, As

1(p) = [− ˆ̃p12,− ˆ̃p13]
T and

as1(p) = δ−1
[

|p̃12|−1 −D−1
s , |p̃12|−1 −D−1

s

]T
. Figure 4

shows how p1 influences |v∗1 |. One may observe the sudden

change of |v∗1 | when p1 is close to zero. ♦

Fig. 4: |v∗1 | with respect to different p1: Lipschitz continuity

of the solution to the QP algorithm cannot be guaranteed by

simply adding a relaxation parameter.

Examples 2 and 3 show that the methods mentioned above

do not guarantee the local Lipschitz property of the solution

to the QP algorithm with respect to time. However, the

local Lipschitz continuity of the solution is viewed to be

essential for the robustness of a QP algorithm in practical

systems. In the system setup in this paper, the non-Lipschitz

velocity reference signal may lead to a large gain from the

barrier function to the velocity-tracking error and result in the

unexpected dynamic response of the actuation system, which

may violate the safety of the nominal system. This is also

verified by the numerical example in Subsection VI-B.

IV. NEW QP-BASED DESIGN WITH RELAXATION

PARAMETER AND RESHAPED FEASIBLE REGION

In this section, we present our solution to the safety con-

trol problem involving multiple controlled mobile agents and

multiple stationary obstacles. Our major contribution lies in a

new class of QP-based controllers with relaxation parameters

and reshaped feasible sets to address the non-Lipschitz issue

discussed in Section III. To be specific, positive bases2 are

2A positive combination of the set of vectors {aj ∈ R
n : j = 1, . . . , r} is

a linear combination λ1a1 + · · ·+λrar with λj ≥ 0; it is a strictly positive
combination if λj > 0 for j = 1, . . . , r. A set of vectors {a1, . . . ar} is
positively dependent if one of the ai is a positive combination of the others;
otherwise, the set is positively independent. A positive basis for a subspace
C ⊆ R

n is a set of positively independent vectors whose span is C [51].
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used to reshape the feasible sets for ensured feasibility and

Lipschitz continuity.

The proposed safety controller is in the form of

[

v∗i
δi

]

= argmin
[v∗

i ;δi]∈Pr
i (p)

1

2

[

v∗i
δi

]T [
v∗i
δi

]

−
[

vci
δ

]T [
v∗i
δi

]

(35)

where

Pr
i (p) = {[v∗i ; δi] : Ar

i v
∗
i + ari (p)δi ≤ 0, δi ∈ [0, δ]} (36)

is the reshaped feasible set. Here, Ar
i ∈ R

np×n is a constant

matrix with np > n, and satisfies that each row is a unit vector,

any n rows are linearly independent, and for any unit vector

û ∈ R
n,

min
q∈Q(û)

max
j∈J (û)

[Ar
i ]j,:q > 0, (37)

card(J (û)) ≥ n, (38)

where Q(û) = {q ∈ R
n : qT û > 0}, J (û) = {j = 1, . . . , np :

[Ar
i ]j,:û ≥ cA} with cA being a positive constant less than 1,

and card takes the cardinality.

We choose ari : Rn×nao → R
np as

ari (p) = max
{

ϕ
(

As
i (p), a

s
i (p),

cP
δ

)}

(39)

with

ϕ
(

As
i , a

s
i ,
cP
δ

)

= Ar
iA

sT
i ⊙ asTi

− sat(cK(cA −Ar
iA

sT
i ))⊙ (Ar

iA
sT
i ⊙ asTi +

cP
δ
), (40)

where cA is associated with Ar
i given in the definition of J (û),

cK ≥ c−1
A and cP can be any positive constants, and δ, As

i

and asi are defined in (30)–(31).

Condition (37) guarantees that any vector in R
n can be

represented by a strictly positive combination of some row

vectors of Ar
i [51, Theorem 3.3]. Based on [50, Theorem 3.1],

it can be proved that such an Ar
i can be used to guarantee

Lipschitz continuity of the solution to the QP algorithm. The

existence of such an Ar
i is proved in Subsection V-A as part

of the proof of the main result in Theorem 1.

In Example 4, we examine the refined QP algorithm (35)

in the same scenario as in Examples 2 and 3.

Example 4 (Lipschitz continuity of the solution to the QP

algorithm guaranteed by adding a relaxation parameter and

reshaping the feasible set): Continue Example 3. We construct

a Pr
i in the form of (36) and examine the solution to the QP al-

gorithm (35) with a reshaped feasible set. For any specific odd

integer np ≥ 5, a typical Ar
i ∈ R

np×2 consists of the outward

normal vectors to an odd-sided regular polygon, that is, each

row of Ar
i is [cos(2πj/np), sin(2πj/np)] for j = 1, . . . , np.

Accordingly, cA = cos(2π/np). In the numerical simulation,

we choose np = 5, cK = 1, cP = 5/2 and cA = cos(2π/5).
Figure 5 shows the original and the reshaped feasible sets

when p1 = [−0.4; 0.4]. Figure 6 shows how p1 influences

|v∗1 |, which is in accordance with our expectation of Lipschitz

continuity. ♦

When the relaxation parameter δi goes to zero, the robust-

ness with respect to the velocity-tracking error ṽi is weakened

(see equation (88) in the proof of Proposition 4). In this case,

Fig. 5: The relaxed and the reshaped feasible sets with

Si : [As
1]i,:v

∗
1 = −[as1]iδ1 for i = 1, 2 and Ri : [Ar

1]i,:v
∗
1 =

−[ar1]iδ1 for i = 1, . . . , 5. R3 corresponds to a redundant

constraint, and is outside the range of the figure.

Fig. 6: |v∗1 | with respect to different p1: In the scenario of

Example 3, the Lipschitz continuity of the solution to the QP

algorithm can be guaranteed by adding a relaxation parameter

and reshaping the feasible set.

motivated by [31], we set v∗i = 0. Hence, the implemented

safety controller is defined as

[

v∗i (t)
δi(t)

]

=























argmin
[v∗

i ;δi]∈Pr
i (p)

1

2

[

v∗i
δi

]T[

v∗i
δi

]

−
[

vci
δ

]T[

v∗i
δi

]

,

if infτ∈[0,t) δi(τ) 6= 0

0, if infτ∈[0,t) δi(τ) = 0

(41)

where Pr
i is defined in (35).

For convenience of discussions later, we denote

Ti = min{t ∈ R+ : δi(t) = 0} (42)

as the braking time of mobile agent i, and set Ti = 0 for

i ∈ No. We use

Ns(t) = {i = 1, . . . , na : δi(t) = 0} (43)
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to represent the set of the breaking agents, and denote

Vm = max
i∈Na,j∈Nao\{i}

Vij , (44)

VR = max
i∈Na\Ns,j∈Nao\{i}

Vij , (45)

VS = max
i∈Ns,j∈Ns∪No\{i}

Vij , (46)

ṽm = argmax
x∈{ṽi:i∈Na}

|x|, (47)

zm = argmax
x∈{zi:i∈Na}

|x|. (48)

Our main result is given by Theorem 1.

Theorem 1: Under Assumptions 1 and 2, consider the multi-

agent system (3)–(4) and the safety controller (35)–(41). There

exist µ ∈ M−C, αV ∈ Ke and positive constants δ, D, Ds,

v̄c, v̄cd, z̄m0 and V̄m0, such that for any initial state satisfying

|zm(0)| ≤ z̄m0 and Vm(0) ≤ V̄m0, property (6) holds for all

t ≥ 0.

The proof of Theorem 1 is given in Section V.

Remark 4: For the special case involving a single agent

and a single obstacle as shown in Figure 1, it can be directly

verified that the conventional QP algorithm (25) satisfies all

the conditions given by [50, Theorem 3.1], and thus, the

solution is Lipschitz. In this case, adding relaxation parameters

and reshaping the feasible set are unnecessary. Still, the

idea of considering the controlled multi-agent system as an

interconnected system in Section IV is still valid even if the

obstacle is moving. A detailed discussion can be found in [42].

V. PROPERTIES OF THE PROPOSED DESIGN AND PROOF OF

THE MAIN RESULT

This section proves Theorem 1 by observing new properties

of the proposed refined QP-based controller. We first show

the existence of Ar
i for feasible-set reshaping (Subsection

V-A) and prove that the reshaped feasible set is a subset of

the feasible set with relaxation parameters (Subsection V-B).

Then, we use gains to describe the interconnections between

the controlled nominal systems and the uncertain actuation

systems (Subsections V-C and V-D) and present a small-gain

analysis to guarantee the safety of the controlled multi-agent

system (Subsection V-E).

A. Existence of Ar
i for Feasible-Region Reshaping

Proposition 1: There exist an Ar
i ∈ R

np×n with np > n,

any n rows of which are linearly independent, such that for

any unit vector û ∈ R
n, condition (37)–(38) is satisfied.

Due to space limitation, the proof of Proposition 1 is given

in the technical report [42].

B. Reshaped Feasible Region Belonging to the Original Fea-

sible Region

The following proposition shows that the reshaped feasible

set Pr
i is a subset of the relaxed feasible set Ps

i .

Proposition 2: Consider Ps
i (p) defined by (30) and Pr

i (p)
defined by (35). We have Pr

i (p) ⊆ Ps
i (p).

Proof: With v∗i ∈ R
n and δi ∈ [0, δ], we define

Hs
ik(p) = {[v∗i ; δi] : [As

i (p)]k,:v
∗
i + [asi (p)]k,:δi ≤ 0} (49)

Hr
ik(p) = {[v∗i ; δi] :

Ar
i v

∗
i + ϕ([As

i (p)]k,:, [a
s
i (p)]k,:, cP /δ)δi ≤ 0} (50)

for k = 1, . . . , nao − 1, where ϕ is defined in (40).

Obviously, Hs
ik(p) corresponds to the k-th constraint of the

feasible set Ps
i (p), and thus

Ps
i (p) =

nao−1
⋂

k=1

Hs
ik(p). (51)

The definition of Pr
i in (36) implies that

Ar
i v

∗
i + ari (p)δi ≤ 0 (52)

holds for any [v∗i ; δi] in Pr
i (p). We rewrite ϕ defined in (40)

as

ϕ(As
i (p), a

s
i (p), cP /δ) =







ϕT ([As
i (p)]1,:, [a

s
i (p)]1,:, cP /δ)

...

ϕT ([As
i (p)]nao−1,:, [a

s
i (p)]nao−1,:, cP /δ)







T

, (53)

which together with the definition of ari in (39) implies that

ϕ([As
i (p)]k,:, [a

s
i (p)]k,:, cP /δ) ≤ ari (p). (54)

for all k ∈ {1, . . . , nao − 1}. Then, by using δi ∈ [0, δ] and

combining (52) and (54), we have Pr
i ⊆ Hr

ik(p) and thus

Pr
i (p) ⊆

nao−1
⋂

k=1

Hr
ik(p). (55)

Based on (51) and (55), we have

Hr
ik(p) ⊆ Hs

ik(p) for k = 1, . . . , nao − 1

⇒Pr
i (p) ⊆ Ps

i (p). (56)

Now we prove Hr
ik(p) ⊆ Hs

ik(p).
For k = 1, . . . , nao − 1, denote

V([As
i (p)]k,:) = {[Ar

i ]q,: : q ∈ J ([As
i (p)]k,:)}. (57)

Then, from the conditions for the definition of Ar
i given by

(37) and (38), [As
i (p)]k,: is a positive combination of some n

elements of V([As
i (p)]k,:) [51, Theorem 3.3]. We use these n

elements to form the rows of matrix Cr
ik , and define

H̄r
ik(p) = {[v∗i ; δi] : Cr

ikv
∗
i + Cr

ik[A
s
i (p)]

T
k,:[a

s
i (p)]k,:δi ≤ 0}.

(58)

By using the definitions of ϕ in (40) and Hr
ik(p) in (50), we

have

Hr
ik(p) ⊆ H̄r

ik(p). (59)

Since any n rows of Ar
i are linearly independent, by

using the properties of positive combinations, we have

[As
i (p)]k,:C

r−1

ik ≥ 0. Multiplying both sides of the constraint

inequality of H̄r
ik(p) in (58) by [As

i (p)]k,:C
r−1

ik yields

[As
i (p)]k,:C

r−1

ik

(

Cr
ikv

∗
i + Cr

ik[A
s
i (p)]

T
k,:[a

s
i (p)]k,:δi

)

= [As
i (p)]k,:v

∗
i + [asi (p)]k,:δi ≤ 0. (60)
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Clearly, the last inequality is in accordance with the constraint

inequality of Hs
ik(p) defined in (49), which means

H̄r
ik(p) ⊆ Hs

ik(p). (61)

Properties (59) and (61) together imply

Hr
ik(p) ⊆ Hs

ik(p). (62)

Recall (56). This completes the proof of Proposition 2.

C. Robustness of the Nominal System Safety

The following proposition gives the range of the relaxation

parameter δi, which is to be used for the robustness analysis

later.

Proposition 3: For any p̃ij 6= 0 with i ∈ Na and j ∈
Nao \ {i}, the solution [v∗i ; δi] to the QP algorithm (35)–(40)

has the following properties:

1) If δi = 0, then v∗i = 0;

2) If δi > 0, then ari (p) is bounded;

3) By choosing δ large enough, it can be guaranteed that

δi > 0 ⇒ δi ≥ δ/2.

Proof: The properties are proved one-by-one.

Property 1: For any specific δi ≥ 0 and any p̃ij 6= 0 with

i ∈ Na and j ∈ Nao \ {i}, define

P̄r
i (p) = {v∗i : Ar

i v
∗
i ≤ −ari (p)δi} . (63)

Then, the definition of Ar
i below (36) guarantees that P̄r

i is a

bounded, closed, convex polyhedron3.

Suppose that there exists some d 6= 0 such that Ar
i d ≤ 0.

Then, for any v∗i ∈ P̄r
i (p) and any ǫ > 0,

Ar
i (v

∗
i + ǫd) = Ar

i v
∗
i + ǫAr

i d ≤ −ari (p)δi, (64)

i.e., (v∗i +ǫd) ∈ P̄r
i (p). This means that P̄r

i (p) is not bounded.

By contradiction, v∗i is the only solution of the constraint

Ar
i v

∗
i ≤ 0. Property 1 is proved.

Property 2: Recall the definitions of Ps
i , Pr

i and Hs
ik in

(31), (36) and (49), respectively. From the proof of Proposition

2, we have

Pr
i (p) ⊆ Ps

i (p) ⊆ Hs
ik(p). (65)

For k = 1, . . . , nao − 1, denote

V(−[As
i (p)]k,:) = {[Ar

i ]q,: : q ∈ J (−[As
i (p)]k,:)} . (66)

Then, from the properties of Ar
i given by (37) and (38),

−[As
i (p)]k,: is a positive combination of some n elements of

V(−[As
i (p)]k,:). We define matrix Cr

ik with these n elements

as the rows, define vector arik with the elements of ari (p)
corresponding to these n rows, and define

H̃r
ik(p) = {[v∗i , δi] : Cr

ikv
∗
i + arik(p)δi ≤ 0}. (67)

By using the definition of Pr
i in (36), we have

Pr
i (p) ⊆ H̃r

ik(p). (68)

3A polyhedron is the intersection of a finite number of half-spaces and
hyperplanes [7].

Combining (65) and (68) implies

Pr
i (p) ⊆ Hs

ik(p) ∩ H̃r
ik(p). (69)

Since any n rows of Ar
i are linearly independent, by using

the property of positive combinations, we have

−[As
i (p)]k,:C

r−1

ik =: ks ≥ 0. (70)

Multiplying both sides of the constraint inequality of H̃r
ik(p)

in (67) by the nonnegative ks defined in (70) yields

−[As
i (p)]k,:C

r−1

ik Cr
ikv

∗
i + ksa

r
ikδi = −[As

i (p)]k,:v
∗
i + ksa

r
ikδi

≤ 0. (71)

Also, the definition of Hs
ik(p) in (50) implies that

[As
i (p)]k,:v

∗
i ≤ −[asi (p)]k,:δi. (72)

By using (71) and (72), we have that any element [v∗i , δi]
of Hs

ik(p) ∩ H̃r
ik(p) satisfies

ksa
r
ikδi ≤ [As

i (p)]k,:v
∗
i ≤ −[asi (p)]k,:δi. (73)

If ksa
r
ik > −[asi (p)]k,:, then the only element of Hs

ik(p) ∩
H̃r

ik(p) is 0, and thus, Pr
i (p) = {0}. This contradicts with

δi > 0. Thus, we have

[asi (p)]k,: ≤ −ksa
r
ik. (74)

By using the definition of ϕ in (40), we rewrite

[ϕ(As
i , a

s
i , cP /δ)]j,k = −cP

δ
sat(cK(cA − [Ar

iA
sT
i ]j,k))

[Ar
iA

sT
i ]j,k[a

s
i ]k,:(1 − sat(cK(cA − [Ar

iA
sT
i ]j,k))) (75)

and then we have

[ϕ(As
i , a

s
i , cP /δ)]j,k ≥ min{[Ar

iA
sT
i ]j,k[a

s
i ]k,:,−

cP
δ
}

≥ 1

δ
min{αV (−µ(0)),−cP }. (76)

This, together with (74) implies

[asi (p)]k,: ≤ −ksa
r
ik ≤ −ks1n×1 min{arik},

≤ 1

δ

√
n|ks|max{−αV (−µ(0)), cP } (77)

where 1n×1 is the n-dimensional column vector of all ones.

On the other hand, by using the definitions of aoi (p) in (28)

and asi (p) in (32), we have

[asi (p)]k,: =
1

δ
αV (Vik − µ(0)) ≥ 1

δ
αV (−µ(0)). (78)

Combining (77) and (78) implies

1

δ
αV (−µ(0)) ≤ [asi (p)]k,:

≤ 1

δ
|ks|

√
nmax{−αV (−µ(0)), cP }. (79)

The boundedness of [asi (p)]k,: for all k = 1, . . . , nao − 1
guarantees the boundedness of ari (p). This completes the proof

of property 2.

Property 3: If [vci ; δ] ∈ Pr
i (p), then property 3 is obvious.

Now, we consider the case of [vci ; δ] /∈ Pr
i (p). We use Mi =

[Ăr
i , ă

r
i ] to represent the non-redundant active constraints of

the QP algorithm, with Ăr
i and ări being submatrices of Ar

i
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and ari , respectively. From [49, Example 2.1.5], the solution

to the QP algorithm is
[

v∗i
δi

]

=
(

I −MT
i (MiM

T
i )−1Mi

)

[

vci
δ

]

. (80)

Then, by using Mi = [Ăr
i , ă

r
i ], we have

δi = δ − ărTi (Ăr
i Ă

rT
i + ări ă

rT
i )−1

(

ări δ + Ăr
i v

c
i

)

=
δ − ărTi

(

Ăr
i Ă

rT
i

)−1

Ăr
i v

c
i

1 + ărTi (Ăr
i Ă

rT
i )−1ări

, (81)

where Sherman-Morrison-Woodbury formula [52] is used for

the second equality. Since ări is a submatrix of ari , according

to property 2 of Proposition 3, there exists a positive constant

τa such that

|ări | ≤
τa
δ
. (82)

Since any n rows of Ar
i are chosen to be linearly indepen-

dent as required after (36), there exists a positive constant cM
such that

sup
SA∈{[2Sp ]n\{∅}}

{

λ
1
2
max

(

([Ar
i ]SA,:[A

r
i ]

T
SA,:)

−1
)

}

≤ cM (83)

where Sp = {1, 2, . . . , np}, 2Sp is the power set of Sp, and

[2Sp ]n denotes the set of subsets of 2Sp with cardinality not

larger than n.

δi ≥
δ − v̄ccM |ări |
1 + c2M |ări |2

≥ δ − v̄ccMτaδ
−1

1 + c2Mτ2aδ
−2

= δ
δ2 − v̄ccMτa
δ2 + c2Mτ2a

(84)

If

δ2 ≥ 2v̄ccMτa + c2Mτ2a , (85)

then (84) directly implies δi ≥ δ/2. This completes the proof

of Property 3.

Based on Proposition 3, the following proposition shows a

robust safety property of the controlled nominal systems in

the presence of velocity-tracking errors.

Proposition 4: Consider the mobile agent defined by (8),

and the controller defined by (35)–(41). Given any class K∞

function γ ṽ
V and any positive constant c0, choose

αV (s) = 4(1 + c0)
(

γ ṽ
V

)−1
(s) (86)

for s ≥ 0. Then, αV is of class Ke, and the following

properties hold:

1) For any p̃ij 6= 0 with i ∈ Na and j ∈ Nao \ {i},

the QP algorithm (35)–(40) is feasible and has a unique

solution;

2) There exist βV ∈ KL, θ > 0 and dṽV = (1 + θ)µ0

such that for any Vij(0) ∈ R+ and any piecewise con-

tinuous and bounded ṽi, ṽj satisfying maxk=i,j ‖ṽk‖t ≤
(

γ ṽ
V

)−1
(µ(−Ds)− dṽV ),

Vij(t) ≤ βV (Vij(0), t) + γ ṽ
V

(

max
k=i,j

‖ṽk‖t
)

+ dṽV (87)

for all 0 ≤ t < max{Ti, Tj}.

Proof: The properties are proved one-by-one.

Property 1: For any p̃ij 6= 0 with i ∈ Na and j ∈ Nao, the

feasible set Pr
i (p) defined in (36) forms a convex, closed set

[7, Section 2.2.4]. Since zero is always an element of Pr
i (p),

the QP algorithm is feasible. The uniqueness of the solution is

guaranteed by the projection theorem [49, Proposition B.11].

Property 2: Recall p̃ij = pi− pj in (17) and Vij = V (p̃ij)
in (24). By taking the derivative of Vij along the trajectories

of (8), for any [v∗i ; δi] ∈ Pr
i (p), if Vij ≤ µ(−Ds), we have

∇Vij
˙̃pij = ∇Vij(v

∗
i + ṽi − v∗j − ṽj)

= αµ(Vij)(− ˆ̃pTij(v
∗
i − v∗j )− ˆ̃pTij(ṽi − ṽj))

≤ αµ(Vij)

(

−δij
δ
αV (Vij − µ0)− ˆ̃pTij(ṽi − ṽj)

)

(88)

where ˆ̃pTij = p̃Tij/|p̃ij |,

δij =

{

δi + δj, for j ∈ Na \ {i},
δi, for j ∈ No,

(89)

and

αµ(s) =

{

−∂µ(µ−1(s))
∂µ−1(s) , if s > 0,

0, if s = 0.
(90)

For the inequality in (88), we used the constraint of the feasible

set Ps
i (p) in (30) and the property that Pr

i (p) ⊆ Ps
i (p) given

in Proposition 2.

With αV defined by (86), for any p̃ij satisfying V (p̃ij) ≥
µ0, it holds that

−αV (Vij − µ0) = −4(1 + c0)
(

γ ṽ
V

)−1
(Vij − µ0). (91)

From property 2 of Proposition 3, for all 0 ≤ t <
max{Ti, Tj}, it holds that

δij
δ

≥ 1

2
. (92)

Then, (88), (91) and (92) together imply that

∇Vij
˙̃pij ≤2αµ(Vij)

(

− (1 + c0)(γ
ṽ
V )

−1(Vij − µ0)

+ max
k=i,j

‖ṽk‖t
)

(93)

as long as µ0 ≤ Vij ≤ µ(−Ds).
Denote dṽV = (1 + θ)µ0. In the case of

γ ṽ
V

(

max
k=i,j

‖ṽk‖t
)

+ dṽV ≤ Vij ≤ µ(−Ds), (94)

it can be easily verified that

Vij − µ0 ≥ γ ṽ
V

(

max
k=i,j

‖ṽk‖t
)

, Vij − µ0 ≥ θ

1 + θ
Vij . (95)

By substituting (95) into (93), we have that

∇Vij
˙̃pij ≤ −2c0αµ(Vij)(γ

ṽ
V )

−1

(

θ

1 + θ
Vij

)

(96)

holds in the case of (94).

Based on the discussion above, if αµ ∈ K, then there exists

a βV ∈ KL for property (87) [41].

Now, we show αµ ∈ K. By using the properties of

M−C functions and properties of limits of composition

functions [53, Section 8.16], we have lims→∞ µ(s) =
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0, lims→0 µ
−1(s) = ∞, lims→∞ ∂µ(s)/∂s = 0, and

lims→0 −∂µ(µ−1(s))/∂µ−1(s) = 0. This validates the right

continuity of αµ at the origin. Since µ is strictly decreasing,

for any s2 > s1 > 0, it holds that µ−1(s1) > µ−1(s2) > 0.

Also recall that µ is strictly convex. By using [7, Equation

3.3], we have

µ(µ−1(s1)) > µ(µ−1(s2))− αµ(s2)(µ
−1(s1)− µ−1(s2)),

(97)

µ(µ−1(s2)) > µ(µ−1(s1))− αµ(s1)(µ
−1(s2)− µ−1(s1)).

(98)

Then, it can be verified that

αµ(s2) >
s2 − s1

µ−1(s1)− µ−1(s2)
> αµ(s1), (99)

and thus αµ is strictly increasing. This proves αµ ∈ K.

Remark 5: Proposition 4 employs the gain γ ṽ
V to represent

the influence of max{|ṽi|, |ṽj |} on V (p̃ij), and accordingly,

the robustness of V (p̃ij) with respect to max{|ṽi|, |ṽj |}. With

v∗i considered as the control input, Proposition 4 also shows

how αV can be chosen for a desired gain γ ṽ
V .

D. Response of the Uncertain Actuation System

In this subsection, we study the dynamic response of the

actuation system with the velocity reference signal generated

by the refined QP-based controller.

Proposition 5: Under Assumptions 1 and 2, consider the

multi-agent system modeled by (3)–(4) and the controller

defined by (35)–(41). Then, the following properties hold:

1) For t ∈ [0, Ti), the solution to the QP algorithm (35)–

(40) is Lipschitz with respect to ari and vci ;

2) There exist a class K function αV
v∗ such that

|v∗i (t)| ≤ αV
v∗(VR(t)) + v̄c, (100)

for all t ≥ 0, where VR is defined in (45);

3) There exist βV
ṽ ∈ KL, γV

ṽ , γ ṽ
ṽ ∈ K, and a constant

dVṽ ∈ R+ such that for all zi(0) ∈ R
m,

|ṽi(t)| ≤


















max

{

βV
ṽ (|zi(0)|, t) + γV

ṽ (‖VR‖t) + dVṽ ,

γ ṽ
ṽ (‖ṽm‖t)

}

,

for t ∈ [0, Ti),

cṽe
−λ(t−Ti)|zi(Ti)|, for t ∈ [Ti,∞).

(101)

Proof: Before the proofs, we rewrite the QP algorithm

defined by (35)–(40) as

u = argmin
u∈{x∈Rn+1:MFx≤0,[x]n+1,:≥0}

0.5uTu+ ru (102)

where

u = [v∗i ; δi], MF = [Ar
i , a

r
i ], r = −[vci ; δ]. (103)

As for the proof of property 3 of Proposition 3, we define

Mi = [Ăr
i , ă

r
i ] to represent the non-redundant active con-

straints of the QP algorithm, where Ăr
i and ări are submatrices

of Ar
i and ari , respectively.

Now we prove properties of Proposition 5 one-by-one.

Property 1: For t ∈ [0, Ti), we prove the Lipschitz

continuity of the solution to the QP algorithm by using [50,

Theorem 3.1] as follows.

• As already proved for property 1 of Proposition 4, the

QP algorithm has a unique solution.

• Since ări is a submatrix of ari , according to property 2 of

Proposition 3, ări is bounded; since Ăr
i is composed of

unit vectors, Mi is bounded.

• We use n̆ to represent the number of non-redundant active

constraints of the QP algorithm. By using the definition

of Ti, we have n̆ ≤ n for all t ∈ [0, Ti). Since any n rows

of Ar
i are linearly independent and n̆ ≤ n, Ăr

i and Mi are

full row rank, which means that there exists a cλ > 0 such

that λ
1/2
min(Ă

r
i Ă

rT
i ) ≥ cλ. It can be directly verified that

|MT
i λ| ≥ λ

1/2
min(MiM

T
i )|λ| ≥ λ

1/2
min(Ă

r
i Ă

rT
i )|λ| ≥ cλ|λ|

for all λ.

Then, with all the conditions required by [50, Theorem 3.1]

satisfied, we can prove the Lipschitz continuity of the solution

with respect to MF and r. Since δ and Ar
i are constant,

property 1 can be proved by recalling the definitions of MF

and r in (103).

Property 2: When t ≥ Ti, the controller (41) guarantees

that v∗i ≡ 0. When t ∈ [0, Ti), we consider the cases of

[vci ; δ] /∈ Pr
i and [vci ; δ] ∈ Pr

i separately. In the case of

[vci ; δ] /∈ Pr
i , we have v∗i = vci .

Now we consider the case of [vci ; δ] /∈ Pr
i . Define

qi(v
c
i ) = argmin

ui∈{x∈Rn:Ar
i x+ar

i δi≤0}
0.5uT

i ui − vcTi ui. (104)

We use Ǎr
i and ǎri δi to represent the non-redundant active

constraints of (104). Clearly, Ǎr
i and ǎri δi are submatrices of

Ar
i and ari δi, respectively. By using the projection theorem

[49, Proposition B.11], qi(v
c
i ) is continuous and nonexpansive,

which means that

|qi(vci )− qi(0)| ≤ |vci |. (105)

From (104), we also have v∗i = qi(v
c
i ). Then following [49,

Example 2.1.5], we have

|v∗i | ≤ |vci |+ |qi(0)| = v̄c +
∣

∣ǍrT
i (Ǎr

i Ǎ
rT
i )−1ǎri δi

∣

∣

≤ v̄c + δi

√

ǎrTi (Ǎr
i Ǎ

rT
i )−1ǎri . (106)

By applying the Lagrange multiplier algorithms and Karush-

Kuhn-Tucker optimality conditions [49], we have

ǎrTi (Ǎr
i Ǎ

rT
i )−1 ≥ 0. (107)

Denote āi = max{ǎri }1n×1. It can be easily verified that

(āi − ǎri )
T (Ǎr

i Ǎ
rT
i )−1(āi − ǎri ) ≥ 0, (108)

ǎrTi (Ǎr
i Ǎ

rT
i )−1(āi − ǎri ) ≥ 0, (109)

and thus,

āTi (Ǎ
r
i Ǎ

rT
i )−1āi = (āi − ǎri )

T (Ǎr
i Ǎ

rT
i )−1(āi − ǎri )

+ 2ǎrTi (Ǎr
i Ǎ

rT
i )−1(āi − ǎri ) + ǎrTi (Ǎr

i Ǎ
rT
i )−1ǎri

≥ ǎrTi (Ǎr
i Ǎ

rT
i )−1ǎri , (110)
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where āi = max{ǎri }1n×1. This, together with (106) implies

|v∗i | ≤ |vci |+ δi

√

āTi (Ǎ
r
i Ǎ

rT
i )−1āi ≤ v̄c + cM

√
nmax{ǎri δ}

≤ v̄c + cM
√
n max

j∈{1,...,np:[A
r
i ]j,: is a row of Ǎr

i }
k∈{1,...,nao−1}

[ϕ(As
i , a

s
i δ, cP )]j,k

≤ v̄c + cM
√
nαV (VR − µ0) ≤ cM

√
nαV (VR) + v̄c, (111)

where we use (110) for the first inequality, use the definition

of cM in (83) and property 3 of Proposition 3 for the second

inequality and use the equivalent representation of ϕ in (75)

for the fourth inequality.

Thus, property 2 is proved by defining αV
v∗(s) =

cM
√
nαV (s).

Property 3: When t ≥ Ti, controller (41) gives v∗i ≡ 0.

Then, by using the definition of ṽi in (7) and property (10),

we have

|ṽi(t)| ≤ cṽe
−λ(t−Ti)|zi(Ti)| (112)

for all t ≥ Ti.

Now, we consider the case of t ∈ [0, Ti). Property 1 already

shows the Lipschitz continuity of (41) with respect to ari and

vci . To prove property 3, we first show the existence of two

class K functions αV
v∗d and αṽ

v∗d , and a positive constant cVv∗d

such that

|v∗di (t)| ≤ αṽ
v∗d(|ṽm(t)|) + αV

v∗d(VR(t)) + cVv∗d (113)

for all t ∈ [0, Ti). By using weak triangular inequality in [40],

properties (10) and (113) together guarantee the first case in

(101) with

dVṽ = (1 + kṽ)γ
v∗d

ṽ ◦ ρv∗d

ṽ (cVv∗d), (114)

γV
ṽ (s) = (1 + kṽ)γ

v∗d

ṽ ◦ ρv∗d

ṽ (αV
v∗d(s) + cVv∗d)− dVṽ , (115)

βV
ṽ (s, t) = (1 + kṽ)βṽ(s, t), (116)

γ ṽ
ṽ (s) = (1 + k−1

ṽ )γv∗d

ṽ ◦ρv∗d

ṽ ◦(ρv∗d

ṽ − Id)−1◦αṽ
v∗d(s), (117)

where ρv
∗d

ṽ is a function of class K∞ such that ρv
∗d

ṽ − Id is

of class K∞.

In the case of [vci ; δ] ∈ Pr
i , vci is the solution to the QP

algorithm, and thus |v∗di | ≤ v̄cd. In this case, property (113)

is obvious.

Now we consider the case of [vci ; δ] /∈ Pr
i . By using [50,

Theorem 3.1], there exists a positive constant cP ≥ 1 such

that
∣

∣v∗di
∣

∣ ≤ cP v̄
cd + 2c2P

√

v̄c2 + δ2
∣

∣D+ari (p(t))
∣

∣ . (118)

If there exist two class K functions αV
ϕ and αṽ

ϕ such that

∣

∣D+ari (p(t))
∣

∣ ≤ αV
ϕ (VR) + αṽ

ϕ(|ṽm|), (119)

then property (113) is established.

Now we prove inequality (119) holds for all [vci ; δ] /∈ Pr
i .

By taking derivatives of As
i and asi with respect to t, we obtain

∂As
i

∂t
=
[

Ad
i1, . . . , A

d
i(i−1), A

d
i(i+1), . . . , A

d
inao

]T

(120)

∂asi
∂t

=
[

adi1, . . . , a
d
i(i−1), a

d
i(i+1), . . . , a

d
inao

]T

(121)

where Ad
ij = −(I − ˆ̃pij ˆ̃p

T
ij)(vi − vj)|p̃ij |−1 and adij =

δ−1αµ(Vij)ˆ̃p
T
ij(vi − vj)(∂αV (Vij − µ0))/(∂(Vij − µ0)) with

j ∈ Nao \ {i}. By using the definition of velocity-tracking

error in (7), the maximal velocity of agents satisfies

max
i∈Na

|vi| = |ṽm|+ max
i∈Na

|v∗i | = |ṽm|+ max
i∈Na\Ns

|v∗i |

≤ |ṽm|+ αV
v∗(VR) + v̄c. (122)

The definition of αV shows the lower bound of αV (Vij −
µ0) and implies that there exist a class K function αd

V and a

constant cdV ∈ R+ such that
∣

∣

∣

∣

∂αV (Vij − µ0)

∂(Vij − µ0)

∣

∣

∣

∣

≤ αd
V (VR) + cdV . (123)

Then, (120), (121) and (123) imply
∣

∣

∣

∣

∂As
i

∂t

∣

∣

∣

∣

≤ 2
√
nao − 1αp(VR) max

i∈Na

|vi|, (124)

∣

∣

∣

∣

∂asi
∂t

∣

∣

∣

∣

≤ 2
√
nao − 1

δ
αµ(VR)(α

d
V (VR) + cdV ) max

i∈Na

|vi|, (125)

where αµ is a class K function defined in (90), and

αp(s) =

{

1
µ−1(s)+Ds

, for s > 0,

0, for s = 0.
(126)

Clearly, αp(s) is a class K function. Each row of As
i is a unit

vector, and asi is bounded when [vci ; δ] /∈ Pr
i and t ∈ [0, Ti)

(see (79)). By using the definition of ϕ in (40), we have that

ϕ is locally Lipschitz with respect to As
i and asi , and thus,

there exists a constant cϕ > 0 satisfying

∣

∣D+ari (p(t))
∣

∣ ≤ cϕ

(
∣

∣

∣

∣

∂As
i

∂t

∣

∣

∣

∣

+

∣

∣

∣

∣

∂asi
∂t

∣

∣

∣

∣

)

(127)

for all t ∈ [0, Ti). By substituting (122), (124) and (125) into

the inequality above, we can prove that (119) holds with

αV
ϕ (s) =

(

αV
v∗(s) + v̄c +

αd
Aa(s)

4kϕ

)

αd
Aa(s), (128)

αṽ
ϕ(s) = kϕs

2, (129)

where kϕ is a positive constant and αd
Aa(s) = 2cϕ(nao −

1)1/2
(

αp(s) + δ−1αµ(s)(α
d
V (s) + cdV )

)

. From (118), (119)

and (129), we have that (113) holds for all t ∈ [0, Ti). This

together with (112) proves property 3.

This ends the proof of Proposition 5.

E. Small-Gain Analysis for Safety of the Multi-Agent System

Propositions 4 and 5 naturally result in two interconnected

subsystems, each of which admits a gain property (see Figure

7). We employ a small-gain analysis to guarantee the safety

of the closed-loop system.

We suppose that the parameters are chosen to satisfy the

following small-gain-like condition:

(Id+ǫ1) ◦ γ ṽ
V ◦ (Id+ǫ2) ◦ γV

ṽ (s) ≤ s,

∀s ∈ [µ(0), µ(D −Ds)] (130)

γ ṽ
ṽ (s) < s, ∀s ∈ [dVṽ , αV (µ(D −Ds)− µ(0))] (131)

with ǫ1, ǫ2 ∈ K∞.
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For any agent i ∈ Na and any agent or obstacle j ∈ Nao \
{i}, we consider the following two cases.

Case (A): t < mink∈Na
Tk.

Recall the definitions of Vm, ṽm and zm given before

Theorem 1. In this case, properties (87) and (101) imply

|ṽm(t)| ≤ max

{

βV
ṽ (|zm(0)|, t) + γV

ṽ (‖Vm‖t) + dVṽ ,
γ ṽ
ṽ (‖ṽm‖t)

}

,

(132)

Vm(t) ≤ βV (Vm(0), t) + γ ṽ
V (‖ṽm‖t) + dṽV . (133)

ṽmVm

γ ṽ
V

γV
ṽ

γ ṽ
ṽ

Fig. 7: Gain interconnection between Vm and ṽm.

By taking the superemum of the left-hand sides of the in-

equalities above and using the definition of class KL functions,

we have

‖ṽm‖t ≤ max

{

βV
ṽ (|zm(0)|, 0) + γV

ṽ (‖Vm‖t) + dVṽ ,
γ ṽ
ṽ (‖ṽm‖t)

}

,

(134)

‖Vm‖t ≤ βV (Vm(0), 0) + γ ṽ
V (‖ṽm‖t) + dṽV . (135)

With γ ṽ
ṽ (s) < s for dVṽ ≤ s ≤ αV (µ(D−Ds)−µ(0)) given

by (131), property (134) implies

‖ṽm‖t ≤ βV
ṽ (|zm(0)|, 0) + γV

ṽ (‖Vm‖t) + dVṽ (136)

as long as ‖ṽm‖t ≤ αV (µ(D −Ds)− µ(0)).
By substituting (135) into (136), we have

‖Vm‖t ≤ γ ṽ
V ◦ (Id+ǫ2) ◦ γV

ṽ (‖Vm‖t) + ∆V (137)

where

∆V = γ ṽ
V ◦ (Id+ǫ−1

2 ) ◦ (βV
ṽ (|zm(0)|, 0) + dVṽ )

+ βV (Vm(0), 0) + dṽV (138)

with ǫ2 being a class K∞ function.

Condition (130) implies

γ ṽ
V ◦ (Id+ǫ2) ◦ γV

ṽ (s) ≤ (Id+ǫ1)
−1(s) (139)

for all s ∈ [µ(0), µ(D −Ds)], and thus

γ ṽ
V ◦ (Id+ǫ2) ◦ γV

ṽ (s) ≤ (Id+ǫ1)
−1(s) + d1 (140)

for all s ∈ [0, µ(D−Ds)], with d1 = γ ṽ
V ◦(Id+ǫ2)◦γV

ṽ (µ(0)).
By substituting (140) into (137), we have

‖Vm‖t ≤ (Id+ǫ1)
−1(‖Vm‖t) + d1 +∆V , (141)

and thus

‖Vm‖t ≤ (Id−(Id+ǫ1)
−1)−1(d1 +∆V )

= (Id+ǫ−1
1 )(d1 +∆V ), (142)

provided that ‖Vm‖t ≤ µ(D − Ds). With (136), this means

that

‖ṽm‖t ≤ βV
ṽ (|zm(0)|, 0)

+ γV
ṽ ◦ (Id+ǫ−1

1 )(d1 +∆V ) + dVṽ . (143)

It can be verified that, ‖Vm‖t and ‖ṽm‖t are monotone

with respect to µ(0), v̄cd and the upper bounds of the initial

states and the external inputs. Thus, all the conditions in the

proof above can be satisfied by appropriately choosing these

values, and the boundedness of Vm and ṽm is proved. Then,

by directly applying properties (100) and (11), the maximal

state zm of the actuation systems is bounded.

Case (B): t ≥ mink∈Na
Tk.

In this case, NS is not empty and the cardinality of NS is

nondecreasing with respect to t.

In accordance with the definitions of VR and VS in (45) and

(46), we define

ṽR = argmax
x∈{ṽi:i∈Na\NS}

|x|, ṽS = argmax
x∈{ṽi:i∈NS}

|x|, (144)

to represent the maximal velocity-tracking error of the agents

belonging to Na \ NS and NS , respectively. By using the

definitions of Vm, VR, VS , ṽm, ṽR and ṽS , we have

Vm = max{VR, VS}, |ṽm| = max{|ṽR|, |ṽS |}. (145)

Thus, the boundedness of Vm and ṽm is guaranteed by proving

the boundedness of VR, VS , ṽR and ṽS .

Denote

TS = max
i∈NS

Ti. (146)

(B1) Boundedness of ṽS and VS . For any i ∈ NS and

t ≥ TS , we have v∗di (t) ≡ 0, and the following property can

be verified by directly applying property (10):

|ṽi(t)| ≤ cṽ|zi(TS)|e−λ(t−TS), (147)

which implies

|ṽS(t)| ≤ cṽ|zm(TS)|e−λ(t−TS) ≤ cṽ|zm(TS)|. (148)

This means the boundedness of ṽS .

For any i ∈ NS and any j ∈ NS ∪ No \ {i}, by using (3)

and (19), we have

|Vij(t)| = µ

(
∣

∣

∣

∣

p̃ij(TS) +

∫ t

TS

(vi(τ)− vj(τ))dτ

∣

∣

∣

∣

−Ds

)

≤ µ

(

µ−1(Vij(TS))−
∫ t

TS

|ṽi(τ)| + |ṽj(τ)|dτ
)

≤ µ
(

µ−1(Vij(TS))− cṽλ
−1(|zi(TS)|+ |zj(TS)|)

)

(149)

for all t ≥ TS . We use (7) for the first inequality and use (10)

for the last inequality above. It is a direct consequence that

|VS(t)| ≤ µ
(

µ−1(VS(TS))− 2cṽλ
−1|zm(TS)|

)

(150)

for all t ≥ TS . This shows the boundedness of VS .
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(B2) Boundedness of ṽR and VR. Properties (87) and (101)

imply that

|ṽR(t)| ≤ max
{

βV
ṽ (|zm(TS)|, t− TS) + γV

ṽ (‖VR‖[TS,t)) + dVṽ ,
γ ṽ
ṽ (‖ṽR‖[TS,t))

}

,

(151)

|VR(t)| ≤ βV (VR(TS), t− TS) + dṽV

+ γ ṽ
V (max{‖ṽR‖[TS ,t), ‖ṽS‖[TS ,t)}) (152)

for all t ≥ TS . From (148), it can be easily verified that

‖ṽS‖[TS,t) ≤ cṽ|zm(TS)|. (153)

By combining (152) and (153), we have

|VR(t)| ≤ βV (VR(TS), t− TS) + γ ṽ
V (‖ṽR‖[TS,t))

+ γ ṽ
V (cṽ|zm(TS)|) + dṽV

= βV (VR(TS), t− TS) + γ ṽ
V (‖ṽR‖[TS,t)) + dṽVk

(154)

for all t ≥ TS .

Properties (151) and (154) result in an interconnection

between ṽR and VR, with a structure quite similar with the

one between ṽm and Vm shown in Figure 7. The boundedness

of ṽR and VR can be proved following the small-gain analysis

as for Case (A). The boundedness of Vm, ṽm and zm can be

proved by combining the analysis in Cases (B1) and (B2).

Due to space limitation, a step-by-step guideline of choosing

controller parameters to satisfy the conditions required in the

proofs above is given in the technical report [42].

This completes the proof of Theorem 1.

VI. SIMULATION AND EXPERIMENT

In this section, we consider two safety control scenarios for

quadrotors. Numerical simulations and physical experiments

are used to verify our approach.

The experimental system for model identification and al-

gorithm verification is composed of quadrotors (Crazyflie 2.0

with original onboard attitude controller), an optical motion

capture system (OptiTrack), and a laptop computer running

the Robot Operating System (ROS). The motion capture

system measures the real-time positions and velocities of the

quadrotors. Data transmission from the laptop computer to

the quadrotors is based on Crazyradio PA, and that from the

motion capture system to the laptop computer is through a

TCP/IP ethernet.

A. An Identified Model of a Quadrotor and Verification of

Assumption 1

The quadrotor velocity is controlled by a PID controller de-

signed by Matlab Control System Designer and implemented

by ROS. We perform system identification for the velocity-

controlled quadrotor by using Matlab System Identification

Toolbox based on indoor experiment data.

The identified model with v∗ as the input and the actual

velocity v as the output is in the form of (12) where

A = diag{A11, A22, A33, A44}, (155)

BT =

[

BT
11 BT

21 0 0
0 0 BT

32 BT
42

]

, (156)

C =

[

C11 0 C13 0
0 C22 0 C24

]

, (157)

with A11 = [−1.58, 2.92;−2.92,−1.58],
A22 = [−2.68, 7.18;−7.18,−2.68],
A33 = [−2.56, 6.86;−6.86,−2.56], A44 =
[−2.14, 3.71;−3.71,−2.14], BT

11 = [1.65, 0.65],
BT

21 = [1.5, 0.92], BT
32 = [1.58, 0.84], BT

42 = [1.51,−2.29],
C11 = [0.78,−1.98], C13 = [2.13, 2.41], C22 =
[−2.2,−2.82], CT

24 = [−1.51,−0.99].

Choose Q = A+AT and P = I8×8. Then, PA+ATP =
−Q. Define V (ζ) = ζTPζ with ζ = Az+Bv∗. By taking the

derivative of V (ζ) along the trajectories of the system (14)–

(15), we have

∇V ζ̇ = ζT (ATP + PA)ζ + 2ζTPBv∗d

= −ξ|ζ|2 − ζT (Q − ξI)ζ + 2ζTPBv∗d

≤ −ξ|ζ|2 − |ζ|
(

λmin(Q− ξI)

√

λ−1
max(P )V − 2|PB||v∗d|

)

(158)

where ξ is a constant satisfying 0 ≤ ξ ≤ λmin(Q).

It is a direct consequence that

V (ζ) ≥
(

2λ
1/2
max(P )|PB||v∗d|
λmin(Q − ξI)

)2

⇒∇V ζ̇ ≤ −ξ|ζ|2. (159)

By directly applying the definitions of input-to-state stability

(ISS) and ISS-Lyapunov function [41], there exists a β ∈ KL
such that

V (ζ(t)) ≤ max







β(|ζ(0)|, t),
(

2λ
1/2
max(P )|PB||v∗d|
λmin(Q− ξI)

)2






(160)

for all t ≥ 0.

By applying the norm inequality to (15), we have

|ṽ|2 ≤ λmax(C
T
ζ Cζ)|ζ|2 ≤

λmax(C
T
ζ Cζ)

λmin(P )
V (ζ) (161)

with Cζ = CA−1.

Properties (159) and (160) together imply

|ṽ(t)| ≤ 2

√

λmax(P )λmax(CT
ζ Cζ)

λmin(P )

|BTP |
λmin(Q− ξI)

|v∗d|

+

√

λmax(CT
ζ Cζ)

λmin(P )
β(|ζ(0)|, t). (162)

Clearly, (162) is in the form of (10). Property (11) can also

be easily validated based on the Lyapunov formulation above.

Assumption 1 is verified.
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B. Collision Avoidance in the Case of One Mobile Agent and

Two Obstacles

In this subsection, we consider the scenario in Examples

3 and 4. The identified quadrotor model given in Subsection

VI-A is used for numerical simulations.

The QP algorithm with relaxation parameter and reshaped

feasible set (RPRF) defined by (35)–(41) is compared with

the QP algorithm with relaxation parameter (RP) defined by

(30)–(32), to show the effectiveness of the proposed method.

In particular, we consider constant velocity command:

vc1(t) ≡ [2;−2]. (163)

For both of the algorithms, we choose

D = 0.6, Ds = 0.65, δ = 100, (164)

µ(s) =
1

s+Ds
, V (p̃) = |p̃|−1, αV (s) = 0.75s. (165)

For the QP algorithm with RPRF, we also choose

cK = 1, cP = 2
√
2 (166)

and [Ar
1]j,: = [cos(2πj/11), sin(2πj/11)] for j = 1, . . . , np

with np = 11. Accordingly, cA = cos(2π/11).
Figures 8 and 9 show the trajectories of the controlled

mobile agent and the velocity reference signals with the

two algorithms. Due to the uncertain actuation dynamics, the

velocity reference signal generated by the QP algorithm with

RP leads to an unexpected response and causes collision. The

QP algorithm with RPRF avoids collision.
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Initial Position RP
RP after crash
RPRF

Fig. 8: Trajectories of the controlled mobile agent with differ-

ent QP-based controllers.

C. Collision Avoidance in the Case of Three Quadrotors

To verify the proposed method in practice, we consider a

scenario of three quadrotors swapping positions.

The primary controller is trajectory tracking. The reference

trajectories of the agents are generated by sinusoidal functions:

pr1(t) = [− cos(2πt/15);− cos(2πt/15); 1], (167)

pr2(t) = [cos(2πt/15)− 0.23; cos(2πt/15) + 0.23; 1], (168)

pr3(t) = [cos(2πt/15) + 0.23; cos(2πt/15)− 0.23; 1]. (169)
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Fig. 9: Velocity reference signals with different QP-based

controllers.

And the velocity commands are generated by feedforward-

feedback controllers:

vci (t) = −1.7(pi(t)− pri (t)) + ṗri (t) (170)

for i = 1, 2, 3.

For both of the algorithms, we choose

D = 0.2, Ds = 0.3, δ = 100, (171)

µ(s) =
1

s+Ds
, V (p̃) = |p̃|−1, αV (s) = 0.3s. (172)

For the QP algorithm with RPRF, we also choose

cK = 1, cP = 1 (173)

and [Ar
1]j,: = [cos(2πj/np), sin(2πj/np)] for j = 1, . . . , np

with np = 11. Accordingly, cA = cos(2π/11).
Figures 10 and 11 show the trajectories of the controlled

mobile agents and the norms of the velocity reference signals

with the two algorithms. Although collision avoidance is

achieved in both of the cases, one may recognize a sudden

change of agent 1’s velocity reference signal at t = 4.1
when the QP-based algorithm without feasible-set reshaping

is applied.
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Fig. 10: Trajectories of the agents with different QP-based

controllers.

VII. CONCLUSIONS

This paper has developed a systematic solution to the control

of safety-critical multi-agent systems subject to uncertain

actuation dynamics. The major contribution lies in a seamless
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Fig. 11: Norms of the velocity reference signals with different

QP-based controllers.

integration of a new QP-based design with reshaped feasible

set and a nonlinear small-gain analysis. In particular, the new

feasible-set reshaping technique has been proved to be quite

useful for feasibility of the refined QP algorithm and Lipschitz

continuity of its solution. The nonlinear small-gain analysis

takes advantage of the interconnection between the controlled

nominal system and the uncertain actuation system for ensured

safety.

We imagine that the new techniques are beneficial to solving

multi-objective control problems for more general systems,

e.g., control-affine systems and nonholonomic systems, and

control systems subject to information constraints, e.g., partial-

state feedback and sampled-data feedback. It is also of theoret-

ical and practical interest to study distributed and coordinated

implementations of the algorithms.

APPENDIX A

TECHNICAL LEMMAS ON LINEAR SPANS AND POSITIVE

SPANS

The following two lemmas are used to prove the imple-

mentability of the feasible-set reshaping technique proposed in

this paper. One may consult [51] for basic notions of positive

linear combination. Due to space limitation, the proofs of the

lemmas are given in the technical report [42].

Lemma 1: Suppose that any n of the nonzero vectors

v1, . . . , vm ∈ R
n with m ≥ n are linearly independent. For

any specific v∗ ∈ R
n and any positive constant ǫ, one can find

a vector vm+1 ∈ R
n such that |vm+1 − v∗| ≤ ǫ and any n of

the vectors v1, . . . , vm+1 are linearly independent.

Lemma 2: There exist v1, . . . , vr ∈ R
n with r ≥ n+1, any

n of which are linearly independent, to positively span R
n.
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