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Abstract

We have developed a new Synthetic Aperture Radar (SAR) algorithm based on physical models

for the detection of a Man-Made Target (MMT) embedded in strong clutter (trunks in a forest). The

physical models for the MMT and the clutter are represented by low-rank subspaces and are based on

scattering and polarimetric properties. Our SAR algorithm applies the oblique projection of the received

signal along the clutter subspace onto the target subspace. We compute its statistical performance in

terms of probabilities of detection and false alarms. The performances of the proposed SAR algorithm

are improved compared to those obtained with existing SAR algorithms: the MMT detection is greatly

improved and the clutter is rejected. We also studied the robustness of our new SAR algorithm to

interference modeling errors. Results on real FoPen (Foliage Penetration) data showed the usefulness of

this approach.

Index Terms

SAR algorithms, subspace methods, oblique projection, physical-based models, polarimetry, statistical

performance, FoPen detection.

I. INTRODUCTION

Detection of targets in strong disturbance using synthetic aperture radar (SAR) is a current issue in the

signal processing community. Generally low frequencies are used to penetrate foliage (FoPen) and several

techniques are available in the literature to improve this detection. Among these methods, we can quote
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change detection (for instance, see [1]) that consists in detecting temporal changes by comparing two SAR

images acquired over the same area, with the same frequency support. The clutter is assumed stationary

and therefore is expected to be suppressed. The performance may be improved but they highly depend

on the incidence angle and on the choice of test statistics. In addition, it is assumed that the target has

moved between two acquisitions. Other techniques rely on the variation of the scattering properties of the

target to detect with either this incidence angle (also named range angle) or the azimuthal angle. These

methods, generally called subaperture decompositions provide subaperture datasets from SAR images

using deconvolution. The distinction between targets and clutter relying on the aspect dependency of

their scattering signatures has been presented in [2]. It is to note that subaperture technique applied to

target detection has been extended to polarimetry (for instance see [3], [4]). However, several limitations

have been listed in [2], [3] regarding in particular the robustness to variations in the target response.

Polarimetric interferometry has also been used to derive filter to suppress the foliage clutter, but not the

target to detect [5]. This technique has been tested in [6] on real full polar data acquired by RAMSES

ONERA sensor in P-band and in repeat-pass mode. The forest clutter is widely suppressed, but a lot of

false alarms remain in this case that prevent from an efficient detection. All these techniques analyze data

that have been already synthesized using classical SAR tools that assume that any target can be seen as a

set of isotropic scatterers. So, even if these postprocessing methods try to compensate this assumption, a

lot of information is missing. We proposed in previous works [7], [8] new SAR algorithms that take into

account MMTs and interference scattering properties and do not assume any more the isotropy of the

scatterers. Moreover, we assume that the forest disturbance is a sum of deterministic clutter (interferences)

caused by the trunks and random noise caused by the foliage, the branches of the trees ...

Some solutions have been proposed to use the radar signature of the targets, and all of them postulate

that MMTs are a set of canonical scatterers (as a set of plates) [9], [10]. In this case, the orientation of the

canonical scatterers is important to determine, in addition to their location. Considering the directivity of

a MMT scattering has consequently led to an increased number of unknowns in the detection problem. A

simple approach is to develop a filter adapted to the orientations and sizes of the target to detect [11] (a

dihedral corner reflector in the above quoted paper). This processing has several limitations: it is not robust

to configurations not exactly described by the sampling, the computation time may be prohibitive and the

interpretation may be dubious (as a target contains elements with various orientations). A similar approach

has been developed in [12], where the authors use a subspace generated from the signals scattered by a

dihedral corner reflector. However, the dimension of this subspace is large, and therefore does not lead to

a significant improvement of the detection performances. In addition, the generation of such a subspace
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requires a significant computation time, which prevents from any application to real data. Recently,

methods based on sparse representation using structured dictionaries have been proposed to taking into

account scattering features of targets in the SAR image formation process. Dictionary which takes into

account anisotropic properties of the target is proposed in [13]; shape-based and wavelet-dictionaries are

studied in [14]. Although these methods give good results for SAR image quality enhancement, they

have not been applied to deterministic noise rejection for FoPen detection.

We have previously proposed to reconsider the SAR algorithms by including prior knowledge based on

simple physical models of the MMT and the interferences. In the first algorithm [7], the Signal Subspace

Detector SAR (SSDSAR), a MMT is assumed to be a set of plates whose scattering belongs to a low-rank

subspace, called target subspace. The SSDSAR consists in projecting orthogonally the SAR received signal

into the target subspace. Compared to classical SAR processors, the SSDSAR algorithm has shown a 5dB

detection gain for a single polarization [7]. To reduce false alarms due to the interferences, another SAR

algorithm (SISDSAR for Signal and Interference Subspace Detector SAR) has been proposed in [8]. An

interference is assumed to be a dielectric cylinder whose scattering also belongs to a low-rank subspace,

called interference subspace. The SISDSAR consists of the difference between the orthogonal projection

of the SAR received signal into the target subspace and the orthogonal projection of the SAR received

signal into the interference subspace. We observed that the SISDSAR performs generally poorly as the

interference responses are widely decreased but the response of the target too.

In this paper, we decide to use a new interference model and to develop a new subspace SAR algorithm

which rejects the interferences without reducing the response of the target. This new subspace SAR

algorithm is based on oblique projection [15] and consists in projecting the SAR received signal along

the interference subspace onto the target one. Compared to the SSDSAR, the oblique projection reduces

random noise and the interferences at the same time; and unlike the SISDSAR, the MMT response is

not reduced. In this paper, we also show the importance of the polarimetric information to obtain good

performances. Actually, some SAR algorithms use the polarimetric information in the pre-processing

stage but they only focus on polarimetric properties of the random noise [16], [17]. We propose to use

the polarimetric information of the MMT and the deterministic interferences. Compared to classical SAR

processors, we already showed for the SSDSAR a 8dB detection gain when considering two polarization

channels (HH and VV in [18]). Therefore in this paper, the OBSAR algorithm (for Oblique SAR) is

developed by incorporating the polarimetric information in the target and the interference subspaces.

For the polarimetric target subspace, the method presented in [18] is used. The polarimetric interference

subspace generation is given in this paper. We compute the statistical performances of the OBSAR and
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compare them to those of the SSDSAR. These results show the importance of the polarimetry. We also

study its robustness to interference modeling errors. Results on real FoPen data show the interest and the

robustness of this new SAR algorithm compared to classical SAR and SSDSAR [7].

The paper is organized as follows: section II first describes the SAR configuration, the MMT and

interference modeling as well as the construction of the target and interference subspaces. Section III

presents our new SAR algorithm, OBSAR, its statistical performances and a study on its robustness

to interference modeling errors. Section IV gives the different simulation results, in particular different

Receiving Operating Characteristics (ROC) and finally section V shows the results on real FoPen data.

The following convention is adopted: italic indicates a scalar quantity, lower case boldface indicates a

vector quantity and upper case boldface a matrix. T denotes the transpose operator and † the transpose

conjugate. CN (a, b) is the complex normal distribution of mean a and variance b and Idd is the identity

matrix with dimension d× d.

II. PROBLEM STATEMENT AND MODELING

A. SAR configuration and notation

In SAR (Synthetic Aperture Radar) systems, an antenna on an airborne platform moves along a linear

or non-linear trajectory (e.g. circular SAR). In this paper we assume a linear trajectory for clarity of

presentation but SAR algorithms presented in this paper can be applied directly for non-linear trajectories

as well. As shown in Fig. 1, at each position ui, i ∈ J1, NK, the antenna transmits a signal e and receives

the response zi from the scene under observation (we make the stop and go assumption which means

that the antenna is not moving when transmitting and receiving). The distance between adjacent positions

is constant and equal to δu. For more details on SAR configuration, see [19].

The transmitted signal is a chirp in polarization H and V, with bandwidth B, center frequency f0 and

pulsewidth Te. After demodulation and sampling, we denote the transmitted signal e as follows:

e =
[
e0 . . . edFsTe−1e 0dFsTr−FsTee

]T
(1)

where Fs =
1
Ts

is the sampling frequency and Tr is the integration time.

From an electromagnetic point of view, the response of a scatterer in the scene under observation depends

on several physical parameters. Firstly, the signal e contains several frequencies; secondly, at each position

ui of the antenna, e is transmitted at different incident angles (θi, ϕi) as illustrated in Fig. 2. Finally, e

is transmitted for different polarimetric channels; we consider only the HH and VV channels. For clarity,

HH and VV channels are denoted by H and V, respectively. For each polarization channel p (p = H or

March 25, 2013 DRAFT



5

Fig. 1. SAR geometric configuration.

p = V ), the received signal at the position ui is denoted by zpi ∈ CK , with K = dFsTre the number of

time samples. Finally, the total received signal zp for one polarization channel is the concatenation of

the N vectors zpi :

zp ∈ CNK , zp =

[
zp1

T

zp2

T

. . . zpN

T
]T
. (2)

The total polarimetric received signal z is then the concatenation of zH and zV :

z ∈ C2NK , z =

[
zH

T

zV
T
]T
. (3)

The principal parameters used in the SAR algorithms are listed in Table I.

B. Classical modeling

1) Received signal: In classical SAR algorithms, no prior knowledge is considered on the scatterers.

Thus all the deterministic scatterers are modeled using the white and isotropic point [19]. Without

considering random noise, the SAR received signals zp ∈ CNK×1 for single polarization p and z ∈

C2NK×1 for dual polarization, of any deterministic scatterer at the position (x, y) can then be written as:

zp = dpxyr
p
xy , z = dxyrxy (4)

where dpxy and dxy are unknown complex amplitude coefficients, rp ∈ CNK×1 and rxy ∈ C2NK×1 are

respectively the SAR responses of the white and isotropic point located at (x, y) for a single polarization

and dual polarization respectively. For single polarization, rpxy is the emitted signal delayed by the round

trip time between the antenna position and the position (x, y). We have then rpxy = rHxy = rVxy. The

generation of rxy for dual polarization is discussed below.

March 25, 2013 DRAFT



6

Fig. 2. Definition of the incidence angles (θi, ϕi).

2) Polarimetric modeling: As proposed in [18], polarimetric SAR models rxy ∈ C2NK×1 including

contributions of H and V channels can be generated. To include polarimetric properties to rxy, we write

it as follows:

rxy = P

rpxy

rpxy

 (5)

where P ∈ C2NK×2NK is a matrix which characterizes the polarimetric properties of the model. Several

matrices P can be defined depending of the application. We choose to characterize the polarimetric

properties by using Pauli decompositions [20] which consider canonical scatterers to describe the po-

larimetric scattering mechanisms. Considering H and V channels, we propose to model two polarimetric

mechanisms: the single bounce (or odd bounce) scattering associated to a trihedral corner and the double

bounce (even bounce) scattering associated to a dihedral. Thus we can generate two models r+xy ∈ C2NK×1

and r−xy ∈ C2NK×1 with different polarimetric properties by using the white and isotropic point:

r+xy = P+

rpxy

rpxy

 =

1[NK×NK] 0[NK×NK]

0[NK×NK] 1[NK×NK]

rpxy

rpxy

 =

rpxy

rpxy

 (6)
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N number of antenna positions

K number of time samples

σ2 variance of the random noise

n white complex Gaussian noise response

zp received signal for single polarization p

z received signal for dual polarization

(α, β) orientation angles of PC plate model

(γ, δ) orientation angles of dielectric cylinder model

yxy(α, β) SAR response of the PC plate model with orientation (α, β) and located at (x, y)

ixy(γ, δ) SAR response of the dielectric cylinder with orientation (γ, δ),

standing over the ground and located at (x, y)

rxy SAR response of isotropic point scatterer located at (x, y)

〈Hp
xy〉, 〈Hxy〉 target subspaces for single polarization p and for dual one

Hp
xy , Hxy orthonormal basis of target subspaces

〈Jp
xy〉, 〈Jxy〉 interference subspaces for single polarization p and for dual one

Jp
xy , Jxy orthonormal basis of interference subspaces

λxy , λSSD
xy , λOB

xy unknown complex coordinate vectors on the target subspaces

µxy unknown complex coordinate vector on the interference subspace

dxy unknown complex amplitude

Pa orthogonal projection into the subspace spanned by a

Eab oblique projection along the subspace spanned by b onto the subspace spanned by a

TABLE I

List of principal parameters used in the SAR algorithms.

and

r−xy = P−

rpxy

rpxy

 =

1[NK×NK] 0[NK×NK]

0[NK×NK] −1[NK×NK]

rpxy

rpxy

 =

 rpxy

−rpxy

 (7)

The choice of one of these polarimetric SAR models allows us to select the target to detect according to

its polarimetric properties. Using these models to generate SAR images, we can easily shown that these

images are equivalent to the polarimetric SAR images classically generated using Pauli decompositions

with H and V channels.

C. Man-made target and interference subspace modeling

In FoPen detection, a man-made target is located in a forest environment. The forest represents a strong

disturbance with random and deterministic scatterers. We assume that at the frequencies used (P-band)
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only the tree trunk scattering has a deterministic behavior. The other elements of the forest such as the

branches or the foliage are assumed to be random scatterers. Thus, we consider two kinds of scatterers

of interest with a deterministic scattering behaviour:

• the target to detect which is assumed to be man-made (man-made target or MMT),

• the interferences which are the trunks of the trees.

Rather than the white and isotropic point model used in classical SAR processors [19], we propose to

include prior knowledge of the scatterers to improve the SAR algorithm performance. The scattering

properties of the target and the interferences are taken into account by considering them as a set of

canonical elements which are more complex than the isotropic point. For the sake of clarity, the models

are presented for dual polarizations although they are derived in the same way for single polarization.

1) MMT modeling: To include prior knowledge on the MMT, we assume that the target can be

considered as a set of perfectly conducting (PC) plates with several orientations in free space. As the

plate possesses an axis of symmetry, only two angles denoted (α, β) are needed to describe its orientation.

These angles are shown in Fig 3.

As the MMT orientation is unknown, one single PC plate with a fixed orientation is not enough to

Fig. 3. Definition of orientation angles (α, β) for the PC plate. (a) The PC plate lies originally on the plane (xOy). (b) When

applying a counter-clockwise rotation α about the axis x̂, the axes ŷ and ẑ are rotated in the plane (yOz). The PC plate is

rotated in the same way. (c) A second rotation is applied to the new axis ŷ′. The axes x̂ and ẑ′ are then rotated by β in the

plane (x0y′). We finally obtain a new coordinate system (O, x̂′′, ŷ′, ẑ′′) and there again the PC plate has been rotated likewise.

describe the scattering properties of the target. We assume that any response of a PC plate yxy(α, β)

with an orientation (α, β) located at the position (x, y) belongs to a subspace which is assumed to be of

low rank:

∀(α, β) ∈ [αmin, αmax]× [βmin, βmax] yxy(α, β) ∈ 〈Hxy〉 (8)
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where 〈Hxy〉 is the target subspace of rank DH .

As a consequence, the SAR response of a MMT located at the position (x, y) can be written as:

z = Hxyλxy (9)

where Hxy ∈ C2NK×DH is an orthonormal basis of the target subspace 〈Hxy〉 and λxy ∈ CDH×1 is

an unknown complex coordinate vector which represents the target complex amplitude decomposition in

〈Hxy〉.

2) Interference modeling: Similarly to the MMT modeling, we include prior knowledge on the in-

terferences by assuming that they can be seen as a set of canonical elements. In the FoPen detection

framework, the interferences are the trunks of the trees [21]. We assume that the interferences can be

modeled by dielectric cylinders standing on a PC ground. As the cylinder has an axis of symmetry, only

two angles (γ, δ) as shown in Fig. 4 are needed to describe all the possible orientations of the cylinder.

As the orientations (γ, δ) of the trunks are unknown, we assume that the response of a dielectric cylinder

Fig. 4. Definition of orientation angles (γ, δ) for the dielectric cylinder. (a) The main axis of the cylinder is along ẑ. (b) A

first rotation δ about the ẑ-axis leads to a new local coordinate system (O, x̂′, ŷ′, ẑ). (c) A second rotation γ is applied on ŷ′.

x̂′ and ẑ are rotated in the plane (x̂′Oẑ′) leading to a new local coordinate system (O, x̂′′, ŷ′, ẑ′′). After the two rotations, the

main axis of the cylinder is now along ẑ′′.

on ground ixy(γ, δ) at (x, y) with an orientation (γ, δ) belongs to a low rank subspace:

∀(γ, δ) ∈ [γmin, γmax]× [δmin, δmax] ixy(γ, δ) ∈ 〈Jxy〉

where 〈Jxy〉 is the interference subspace of rank DJ .

Therefore, the SAR response of an interference located at the position (x, y) can be expressed as:

z = Jxyµxy (10)
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where Jxy ∈ C2NK×DJ is an orthonormal basis of the interference subspace 〈Jxy〉 and µxy ∈ CDJ×1 is

an unknown complex coordinate vector which represents the trunk complex amplitude decomposition in

〈Jxy〉.

D. Construction of the basis Hxy and Jxy

We explain briefly in this section how to generate the target and interference subspaces and to compute

the corresponding basis. For more details on the target subspace, see [7] for single polarization and [18]

for dual polarization. The generation of the interference subspace in single polarization is presented in [8]

and the corresponding generation in dual polarization is given in this paper.

1) Subspace generation: We first present the generation of the target and interference subspaces for

a single polarization p. There are two steps:

• we compute the SAR response yp
xy(α, β) using Physical Optics (PO) [22] (or ipxy(γ, δ) using the

approximation of the truncated infinite cylinder [22]) of the canonical element located at the position

(x, y), for all the orientations (α, β)1 covering J0◦, 180◦K× J0◦, 180◦K (or J0◦, 10◦K× J0◦, 360◦K for

(γ, δ))2. We assume that (Q,R) (or (Q′, R′)) samples are available to cover all the orientations

(α, β) (or (γ, δ)).

• using the responses of the PC plate, we generate the target matrix Yp
xy ∈ CNK×QR:

Yp
xy =

[
yp
xy(α1, β1) . . . yp

xy(αQ, βR)
]

(11)

=


yp
1xy(α1, β1) . . . yp

1xy(αQ, βR)

. . . . . . . . .

yp
Nxy(α1, β1) . . . yp

Nxy(αQ, βR)

 . (12)

As the responses of a PC plate are the same in HH and VV using PO [22], we have YH
xy = YV

xy ≡

Yxy.

Two interference matrices IHxy and IVxy with the same structure are also generated from the responses of the

dielectric cylinder standing over the ground. As its responses are not equal in HH and VV [22], we have

IHxy 6= IVxy. Subspaces generated from shape-based scattering such as target and interference subspaces

have also been studied as dictionaries in [23] and for SAR algorithms based on sparse representation in

1We have to choose a sample step for the orientation angle. The value of the sample step is a trade-off between the accuracy

of the subspace and the computational cost of its generation. For more details, see [7].
2For the plate, we consider all the orientations. For the interferences, we assume that the trunk tilt γ can not be more than

10◦.
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[13], [14].

We now present the generation of the subspaces for dual polarization.

• Polarimetric target subspaces: the generation of the polarimetric subspace has previously been studied

in [18]. As a plate in free space describes only one polarimetric mechanism (trihedral type), we

can apply the same method used for the white and isotropic point model, to characterize the

polarimetric properties of the target. Thus, two polarimetric target matrices have to be generated

to cover the two main polarimetric mechanisms associated to the MMT (trihedral- and dihedral-type

mechanisms) [24]. The first one Y+
xy ∈ C2NK×DH is obtained using the matrix P+, that corresponds

to concatenating the target matrices in the HH and VV polarizations:

Y+
xy = P+

Yxy

Yxy

 =

Yxy

Yxy

 . (13)

We have shown in [18] that the polarimetric subspace 〈H+
xy〉 generated from the signal matrix Y+

xy

describes a target with trihedral polarimetric mechanism [25].

A second polarimetric signal matrix Y−xy ∈ C2NK×DH can be obtained using the matrix P−, that

corresponds to concatenating the target matrices in HH and VV polarizations in opposite phase:

Y−xy = P−

Yxy

Yxy

 =

 Yxy

−Yxy

 . (14)

We have shown in [18] that the polarimetric subspace 〈H−xy〉 generated from the signal matrix Y−xy

describes a target with dihedral polarimetric mechanism [25].

• Polarimetric interference subspace: the cylinder over the ground already describes all the scattering

mechanisms: trihedral and dihedral types. Consequently, only one polarimetric interference matrix

Ixy ∈ C2NK×Q′R′
is needed to fully describe the interferences in dual polarization:

Ixy =

IHxy

IVxy

 . (15)

2) Computation of the basis: The computation of the basis is the same for target and interference

subspaces and for single and dual polarizations. For this reason, we only present the computation of the

basis Hp
xy of the target subspace 〈Hp

xy〉. The computation of Hp
xy is done as follows:

• the required orthonormal basis Hp
xy must minimize the criterion [26]:

C(Hp
xy) =

∑
i,j

‖yp
xy(αi, βj)−Hp

xy
†yp

xy(αi, βj)‖2. (16)
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• the criterion of Eq. (16) is satisfied by using the Singular Value Decomposition (SVD) of the target

matrix Yp
xy:

Yp
xy = Up

Y xyΣ
p
Y xyV

p†
Y xy (17)

where Up
Y xy ∈ CNK×min (NK,QR) and Vp

Y xy ∈ Cmin (NK,QR)×QR are the left and right singular

matrices, and Σp
Y xy ∈ Rmin (NK,QR),min (NK,QR) is a diagonal matrix containing the singular values.

• the basis Hp
xy corresponds to the first Dp

H singular vectors of Up
Y xy associated to the Dp

H highest

singular values in Σp
Y xy.

The high computational cost of the basis generation makes it almost impossible to be used on real data.

Nevertheless, techniques to reduce the computation time of the basis generation have been proposed and

discussed in [7]. We sum up the important points of the implementation of the subspace basis:

• choose large step size when sampling orientation angles. A criterion as a function of the rank-

reduction error is used for this choice.

• reduction of the size of the target and interference matrices by suppressing null elements.

• computation of only one single basis for a position reference (x0, y0).

More details on processing complexity and computational times of subspace SAR algorithms can be

found in [8], [27]. Moreover, accuracy of the subspace models with respect to angular sampling and rank

reduction is studied in [7].

E. Discussion on the subspace models

We propose to discuss here on the subspace models. It is evident that the canonical elements have to

present similarities with the scatterer to detect. Nevertheless, generating exact models is neither possible,

as the target and the interferences are not a priori exactly known, nor desired. We look for:

• Simplicity of the derivation and fast computation. Indeed, the computation of the subspace basis

requires SVD as discussed previously. Moreover, our objective is to develop simple SAR imaging

processing close to classical SAR algorithms to be able to apply it on real data.

• Robustness. We aim at detecting a large range of MMT types and assume limited prior-knowledge

on the target. In the same way, we assume limited information on the forest.

• Subspace model. Different parameters like size and orientation influence the scattering properties

of the target and the interference. As these parameters are unknown, a single canonical element is

not able to properly capture scattering features of the target and the interference. In order to take
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into account these variations, subspace models are generated from canonical element responses with

different parameters.

For all these reasons, we decided to favour approximated models, both for the target and the tree scattering

features.

1) Target subspace: The MMT scattering depends of the several parameters. We discuss below the

approximations of our model.

• Shape. A MMT can easily be assumed as a faceted object standing over the ground. Three scattering

mechanisms are involved in the MMT response: trihedral type from the faces, dihedral type from

the interaction of the target and the ground and scattering from the edges. We assume that the target

subspace generated from plates can describe the two first mechanisms. Indeed, we have shown good

detection performances in [7] using this subspace model and the edge scattering is assumed to be

negligible. The choice of the plate model is motivated for its simple derivation, its fast computation

and its robustness to MMT scattering. Of course, others shapes can be used as dihedral corner

reflector as proposed in [12] and the model can be refined by taking into account the edge effect;

however one can generate more accurate target subspace but there is a loss in robustness regarding

the type of MMT.

• Permittivity. A MMT is generally metallic and then it is reasonable to use the PC approximation.

For known target permittivity, it is possible to include it in the target model.

• Size. It is difficult to precisely know the size of any MMT. Moreover, the size of the canonical element

influences the resolution of the SAR image. We propose to use one fixed size which corresponds

to the size of a pixel for the resolution obtained with classical SAR processing. We could consider

different sizes (lower than the classical SAR image resolution) of the plate to generate the target

subspace but it would increase the subspace rank and then increase the noise intensity.

• Orientation. The orientation of the target is taken into account in our model.

The way we include polarimetric information is based on existing methods. Several polarimetric de-

compositions have been proposed such the H/α decomposition [20] which can be interesting for FoPen

detection. However the H/α decomposition and many of others are difficult to include in our subspace

models and SAR image processing scheme so we only consider simple polarimetric decompositions. We

include polarimetric information by following the Pauli decomposition approach [25]. We have previously

shown for classical SAR imaging that the Pauli decomposition can be seen as using polarimetric models

with the matrices P± defined in Equations (6) and (7). We use the same polarimetric matrices and apply
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them to the target subspace models in HH and VV. In that way, we do not need to change our canonical

element model for single and dual polarizations. Moreover, the use of the matrices P± allows us to select

polarimetric mechanism we want to detect. We have previously shown in [18] the effectiveness of this

polarimetric model for MMT detection in white Gaussian noise.

2) Interference subspace: For FoPen application, the interference is the forest. In our study, we only

consider the trees of the forest as they are the main cause of false alarms. We only take into account the

direct scattering from the trunk and the scattering from the interaction of the trunk with the ground. The

interference model is an approximation of the true trunk scattering. Considering true tree scattering, we

have to consider several parameters. We then discuss on the approximations of our interference model.

• Size and permittivity. The size of the trees of a forest can be different from tree to tree. The size

mainly changes the magnitude and the polarimetric properties of the tree scattering. We propose to

use a fixed size and permittivity of the cylinder according to the type of forest. Average height of

the trees can be estimated using interferometry to have a more accurate model. Permittivity of the

ground influences the scattering interaction of the trunk with the ground and can be highly variable

with the meteorological conditions (for example scattering interaction with dry ground is negligible).

As we want to include this scattering interaction feature in our model, permittivity of the ground is

chosen to be PC.

• Branches and foliage. We do not consider in our interference model the branches and foliage which

is reasonable assumption at low frequencies. Their scattering is assumed to be a zero mean complex

Gaussian noise. Nevertheless, for highly dense forest this approximation may not be valid any more

and induces some loss of interference rejection. It would be then interested to assume that the

branches and foliage scattering is a heterogeneous noise with a given distribution and to adaptively

estimate it. This method has been proposed in [28] for sea clutter using Doppler diversity and we

can apply in a future work it to SSDSAR algorithm using directivity and polarimetry diversity.

• Orientation. Our interference model takes into account the orientation of the trees.

• Multiple reflections between trunks. The interactions between close objects have been shown to be

negligible when the distance between these objects is superior to 2λ0 (wavelength of the emitted

signal) [29]. Then our model does not take into account multiple reflections between trunks.

The interference subspaces in HH and VV already include all the polarimetric mechanisms of a trunk

over the ground. The polarimetric subspace model for the interference is then just the concatenation of

the susbspace models in HH and VV.
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3) Subspace model summary: To summarize, the orthonormal bases of the target subspaces are denoted

by HH
xy and HV

xy for single polarizations and by H+
xy and H−xy for dual polarization. The orthonormal bases

of the interference subspaces are denoted by JH
xy and JV

xy for single polarizations; for dual polarization,

only one interference subspace is generated and its orthonormal basis is denoted by Jxy. To evaluate the

accuracy of the subspace model, we propose in Section IV-C to compute the ratio between the target

(or the interference) signal energy projected in the target (or interference) subspace model and the total

target (or interference) signal energy.

III. SAR ALGORITHMS

This section is dedicated to the development of our new SAR algorithms by using both the target

and the interference subspaces. As the derivations of these algorithms are the same for single or dual

polarization, we consider only the dual polarization case.

To form SAR images, conventional techniques are based on the Fourier transform; nevertheless these

techniques do not allow to easily integrate SAR subspace models in the image processing. To overcome

this issue, SAR images in this paper are generated using estimation techniques. More details on the use

of estimation methods for SAR image formation can be found in [30], [31].

A. Classical SAR (CSAR)

In classical SAR algorithms such as the TDCA (Time Domain Correlation Algorithm) or the RMA

(Range Migration Algorithm) [19], any scatterer is modeled by the isotropic point presented in Eq. (4).

We consider a target located at the position (x, y) whose scattering is corrupted by n = CN (0, σ2Id2NK)

which is a zero mean complex Gaussian noise with known variance σ2 (the derivation of subspace SAR

algorithms in the case of unknown variance is shown in [7]). The SAR received signal z is written as:

z = dxyrxy + n (18)

where dxy is an unknown complex amplitude and rxy is the dual polarization SAR response of an isotropic

point located at (x, y) defined in Eq (5).

The unknown complex amplitude dxy can be estimated using the least square method [32]. This estimation

is done for each position (x, y). Denoting the estimate of the unknown complex amplitude for the position

(x, y) as d̂xy, the intensity of the CSAR image is then defined as follows:

ICS(x, y) =
‖d̂xy‖2

σ2
=

z†Prxy
z

σ2
=
‖r†xyz‖2

σ2
(19)
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where Prxy
= rxyr

†
xy is the orthogonal projector into the subspace of rank 1 spanned by rxy. From

Eq. (19), we see that the classical approach is the matched filter of the received signal z. It has been

shown in [7] that the CSAR image is totally equivalent to those obtained by conventional SAR algorithms

(TDCA, BackProjection, RMA). Besides, we can easily show that the CSAR images for dual polarizations

are equivalent to the polarimetric images classically generated using the Pauli decompositions with H

and V channels.

B. Signal Subspace Detector SAR (SSDSAR)

The Signal Subspace Detector SAR (SSDSAR) has been developed previously in [7] for single

polarization and in [18] for dual polarization. The SSDSAR image is generated by including prior

knowledge on the scattering of the MMT. We consider that a target whose scattering is modeled as

in Eq. (9) is located at the position (x, y) and its signal is corrupted by n. The SAR received signal z

is written as:

z = Hxyλ
SSD
xy + n (20)

where λSSD
xy is an unknown coordinate vector and Hxy is equal to H+

xy or H−xy.

As in the case of CSAR, the unknown coordinate vector λSSD
xy is estimated using least square method

[32], [33]. For each position (x, y), we compute the estimate λ̂SSD
xy of the unknown coordinate vector.

The intensity of the SSDSAR image is then defined as follows:

ISSD(x, y) =
‖λ̂SSD

xy ‖2

σ2
=

z†PHxy
z

σ2
=
‖H†xyz‖2

σ2
(21)

where PHxy
= HxyH

†
xy is the orthogonal projector into the subspace 〈Hxy〉. We clearly see that the

intensity is the square norm of the projection of the received signal z along the direction orthogonal to

〈Hxy〉 onto 〈Hxy〉 .

We study the property of the SSDSAR according to a scatterer located in the pixel (x, y):

• target: as PHxy
Hxyλxy = Hxyλxy, the signal from a MMT whose scattering belongs to 〈Hxy〉 is

then unchanged by the projection PHxy
.

• interference: as PHxy
Jxyµxy = HxyH

†
xyJxyµxy, the orthogonal projection of an interference whose

scattering belongs to 〈Jxy〉 actually depends on the product H†xyJxy. As it is almost certain that

the interference and the target subspaces are not orthogonal, the response of an interference by the

SSDSAR will not be null and will be the principal cause of false alarms.
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• random noise: as 〈Hxy〉 is a low rank subspace, the projection of the random noise is low. Thereby

the SSDSAR increases significantly the detection of MMT in the presence of white Gaussian noise

as shown in [7], [18].

C. Oblique SAR (OBSAR)

The Oblique SAR (OBSAR) image is generated by including prior knowledge on the scattering of

the MMT and the interferences. The scattering properties of the target are taken into account by using

the target subspace and those of the interferences by using the interference subspace. We consider that a

target whose scattering is modeled as in Eq. (9), is located at the position (x, y) and its signal is corrupted

by an interference modeled as in Eq. (10) and random noise. The SAR received signal z is written as:

z = Hxyλ
OB
xy + Jxyµxy + n (22)

where λOB
xy and µxy are unknown coordinate vectors.

Once again, we estimate λOB
xy using the least squares [15]. The estimate λ̂OB

xy is derived by resolving

the following equation:

λ̂OB
xy = argmin

λOB
xy

(
‖z−Hxyλ

OB
xy − Jxyµxy‖2

)
= H†xyz−H†xyJxyµ̂xy

(23)

where µ̂xy is obtained by solving the following equation:

µ̂xy = argmin
µxy

(
‖z−Hxyλ

OB
xy − Jxyµxy‖2

)
= J†xyz− J†xyHxyλ̂

OB
xy

. (24)

Finally, the estimate λ̂OB
xy is written as:

λ̂OB
xy = H†xy(Id2NK − Jxy(J

†
xyP⊥Hxy

Jxy)
−1J†xyP⊥Hxy

)z

= H†xyEHxyJxy
z

(25)

where P⊥Hxy
= Id2NK −PHxy

and EHxyJxy
is the oblique projector along 〈Jxy〉 onto 〈Hxy〉 [15].

The estimation of λ̂OB
xy is done for all positions (x, y). The intensity of the OBSAR image for the

position (x, y) is then defined as:

IOB(x, y) =
‖λ̂OB

xy ‖2

σ2
=
‖H†xyEHxyJxy

z‖2

σ2
. (26)

March 25, 2013 DRAFT



18

It is clear from Eq. (26) that the OBSAR image is the square norm of the oblique projection of z along

the interference subspace 〈Jxy〉 onto the target subspace 〈Hxy〉.

We study the property of the OBSAR according to a scatterer located in the pixel (x, y):

• target: as EHxyJxy
Hxyλxy = Hxyλxy, the signal from a MMT whose scattering belongs to 〈Hxy〉

is then unchanged by the oblique projection EHxyJxy
. In terms of the response of the MMT, we

obtain the same result as for the SSDSAR.

• interference: since EHxyJxy
Jxyµxy = 02NK×1, the signal from an interference whose scattering

belongs to 〈Jxy〉 is totally suppressed.

• random noise: as 〈Hxy〉 and 〈Jxy〉 are low-rank subspaces, the oblique projection of the random

noise is low.

The main advantage of OBSAR is its ability to reduce false alarms causing by both random noise and

deterministic interference without affecting the detection of MMT.

D. Discussion on robustness of the OBSAR

The target detection performance and false alarm reduction of the OBSAR depend greatly on the

modeling accuracy of the MMT and of the interferences.

In [7], the SSDSAR using the target subspace shows good performance and robustness with respect to

the size of the target model both for simulated data and real data, where faceted targets were considered.

Therefore, the MMT modeling errors are assumed to be negligible in this paper.

However, this assumption does not hold anymore for the interference modeling. In reality, the inter-

ference environment is not exactly known (height and radius of trunks, permittivity, ground not PC, . . .).

To study the robustness of the OBSAR to interference modeling errors, we consider two cases: the ideal

case in which the interference scattering belongs totally to the interference subspace and the realistic

case. For the latter, we suppose that a part δJxy of the interference scattering does not belong to 〈Jxy〉. As

shown in Fig. 5, the OBSAR intensity of the pixel (x, y) is no longer null compared to the ideal case:

IOB(x, y) =
‖H†xyEHxyJxy

δJxy‖2

σ2
. (27)

However, we notice that the intensity for the OBSAR is still lower than that of the SSDSAR. In

subsections IV-B and IV-D, we investigate the impact of the interference modeling errors on the OBSAR

performances.
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Another possible error in OBSAR results could be caused by some elements of the forest which are

not taken into account in the interference subspace or the random noise (the branch and leave scattering,

foliage attenuation, . . .). OBSAR is applied to real data in Section V to study its robustness to this kind

of errors.

E. Statistical performances

The probabilities of detection and false alarms associated to the SSDSAR and the OBSAR are derived

in this section. To evaluate the robustness of the algorithms to the interference modeling, we consider

the ideal and realistic cases.

1) Probability of detection Pd: We suppose that a MMT is located at the position (x1, y1). We also

assume that the MMT scattering lies totally in the target subspace 〈Hxy〉. The SAR received signal and

its distribution are written as:

z1 = Hx1y1
λx1y1

+ n, z1 ∼ CN (Hx1y1
λx1y1

, σ2Id2NK). (28)

The probability of detection is the probability that the intensity of the pixel (x1, y1) is higher than a

certain threshold η. From the definition of the intensity for SSDSAR and OBSAR, we can derive the

distribution as follows:

• PSSD
d = P (ISSD(x1, y1) > η)

From Eq. (21), the distribution of ISSD(x1, y1) is non-central chi-square χ2 [34]:

ISSD(x1, y1) ∼
1

2
χ2

(
2DH , 2

‖λ̂SSD
x1y1
‖2

σ2

)
(29)

where χ2(a, b) denotes the chi-square distribution with degrees of freedom a and non-centrality

parameter b.

• POB
d = P (IOB(x1, y1) > η)

By using the Eq. (26) of the OBSAR intensity, the distribution of IOB(x1, y1) is also non-central

χ2 [15]:

IOB(x1, y1) ∼
1

2
χ2

(
2DH , 2

‖λ̂OB
x1y1
‖2

σ2

)
. (30)

For the signal z1, the intensities of the SSDSAR and OBSAR are equal. Hence the detection performances

for a target whose scattering belongs totally to the target subspace, are the same for the SSDSAR and

the OBSAR.
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2) Probability of false alarm Pfa:

• Ideal Case: we suppose that an interference whose scattering belongs totally to the interference

subspace 〈Jxy〉 is located at the position (x0, y0). The SAR received signal and its distribution are

written as:

z0 = Jx0y0
µx0y0

+ n, z0 ∼ CN (Jx0y0
µx0y0

, σ2Id2NK). (31)

The probability of false alarm is the probability that the intensity of the pixel (x0, y0) is higher than

the threshold η.

– PSSD
fa = P (ISSD(x0, y0) > η)

The distribution of ISSD(x0, y0) is non-central χ2 [34]:

ISSD(x0, y0) ∼
1

2
χ2

(
2DJ , 2

‖H†x0y0Jx0y0
µx0y0

‖2

σ2

)
. (32)

– POB
fa = P (IOB(x0, y0) > η)

For an interference whose scattering lies totally in 〈Jx0y0
〉, the OBSAR gives a null intensity.

Hence, the distribution of IOB(x0, y0) is central χ2:

IOB(x0, y0) ∼
1

2
χ2(2DJ , 0). (33)

• Realistic Case: we consider an interference such that part of its scattering δx0y0
does not belong to

〈Jxy〉:
z = Jx0y0

µx0y0
+ δJx0y0

+ n,

z ∼ CN (Jx0y0
µx0y0

+ δJx0y0
, σ2Id2NK) .

(34)

We have then the following probabilities of false alarm:

– PSSD
fa = P (ISSD(x0, y0) > η)

The distribution of ISSD(x0, y0) is non-central χ2 [34]:

ISSD(x0, y0) ∼
1

2
χ2

(
2DJ , 2

‖H†x0y0
(Jx0y0

µx0y0
+ δJx0y0

)‖2

σ2

)
. (35)

– POB
fa = P (IOB(x0, y0) > η)

The distribution of IOB(x0, y0) is also non-central χ2:

IOB(x0, y0) ∼ 1
2χ

2

(
2DJ , 2

‖H†x0y0
EHx0y0

Jx0y0
δJx0y0

‖2

σ2

)
. (36)

IV. SIMULATED DATA

This section is dedicated to the application of the SAR algorithms to simulated data. We first present

the statistical performances with ROC (Receiving Operating Characteristic) curves. Then, we show and

comment on the images given by the SAR algorithms.
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A. Configuration

1) SAR Geometry: We consider a flight between the first position u1 = −50m and the last position

u200 = 50m with δu = 0.5m between each position and an altitude of 100m. The polarimetric transmitted

signal is a chirp with a bandwidth B = 100MHz and a center frequency f0 = 400MHz; its pulsewidth

is Te = 2.10−7s. Finally, the radar scene is a 50m× 45m rectangle as illustrated in Fig 6. The antenna

transmits and receives the signal in H and V polarizations. For this study, we consider single HH or VV

polarization and dual polarization (HH and VV).

2) Subspaces: The target subspaces for single or dual polarization are generated using 2m× 1m PC

plates; their scattering are computed with PO [22]. The sampling step for the orientation angles is 9◦ and

(α, β) ∈ [0, 180◦]× [0, 180◦] [7]. Moreover, the subspaces spanned by the PC plates need to be low-rank.

Fig. 7 shows the curves of the singular values of the signal matrix Yxy defined in Eq. (12) for a single

polarization and Y±xy defined in Eq. (13) and in Eq. (14) for dual polarization3. As the singular values do

not exhibit clear cut-off, the choice of the subspace ranks is a trade-off between the description of MMT

scattering with unknown orientation and the rejection of random noise. In addition, it has been shown

in [7] that choosing a too low rank yields robustness loss. On the contrary, a too high rank degrades

detection performances. From these curves, the ranks of the target subspaces are chosen to be equal to

DH
H = DV

H = 10 for single polarization [7] and D+
H = D−H = 10 for dual polarization [18].

The interference subspaces for single and dual polarization are generated using a dielectric cylinder with

a permittivity of (22.96,-11.7), a height of 11m and a radius of 20cm standing on a PC ground; their

scattering is computed using the approximation of the truncated infinite cylinder [22]. The sampling step

for the orientation angles is 2◦ and (γ, δ) ∈ [0, 10◦]× [0, 360◦] [8]. As for the target subspaces, we plot

the curves of the singular values of the interference matrices to determine their ranks. Fig. 8 show the

singular values of the interference matrices IHH
xy and IV V

xy for single polarization. The singular values

of the interference matrix Ixy for dual polarization have also been plotted in Fig. 8. The ranks of the

interference subspaces are chosen to be equal to DH
J = DV

J = 10 for single polarization and DJ = 10

for dual polarization.

3) Target and interferences: The MMT is a PC box with a size of (2m× 1.5m× 1m) over a flat PC

ground located approximately at the center of the scene and its scattering is simulated using Feko [35]

which employs the method of moment (MoM) to compute the electromagnetic scattering. The target is

oriented such that its larger dimension is parallel to the flight path. The target is placed in a simulated

3The matrices Y+
xy and Y−xy have the same singular values [18].
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forest (see Fig. 6). Since the principal cause of false alarms at the frequencies used in our simulations

(f0 = 400MHz, B = 100MHz) is the scattering of the trunks [21], we simulate mainly the scattering of

the trunks.

For the ideal case, trunk scattering belongs totally to the interference subspaces: their scattering is

computed with the same dielectric cylinder lying over a PC ground used to generate the interference

subspaces.

For the realistic case, the computation of the forest scattering is done using COSMO [36], [37], a

software dedicated to the study of electromagnetic scattering by forests and based on asymptotic methods.

More information on this modeling tool and additional references to other existing tools to simulate forest

scattering are given in [36], [37]. We choose the trunks to be dielectric cylinders with a height of 11m and

a radius of 20cm. Their orientations (γ, δ) are randomly distributed with γ ∈ [0, 10◦] and δ ∈ [0, 360◦].

Compared to the ideal case, the ground is not PC but dielectric with a permittivity of (43.55,-0.3) and

the trunk scattering is attenuated by the canopy.

B. Receiver Operating Characteristic (ROC)

To evaluate the performances of the SSDSAR and the OBSAR, we plot the ROC, Pd against Pfa.

We consider the interferences for ideal and realistic cases described in Section IV-A.3. In both cases, a

high Signal to Noise Ratio (SNR) of 35dB is chosen in order to better study the contributions of the

interferences to the performances and the robustness of both algorithms. In both ideal and realistic cases,

Signal to Interference Ratios (SIR) are equal to −8dB in HH polarization, 3dB in VV polarization and

−6dB in dual polarization.

1) Single polarization: The ROC curves are plotted in Fig. 9 for the ideal case and in Fig. 10 for the

realistic case. In both cases and for both polarizations (HH or VV), we obtain the same performances for

the SSDSAR and the OBSAR. The target and the interference subspaces are too similar to differentiate

the target from the interferences. In single polarization, the reduction of false alarm due to interference

is therefore not possible. We notice that in both cases the SAR algorithms in VV polarization outperform

the SAR algorithms in HH polarization; this result is due to the polarimetric properties of the the tree

trunk which are different in HH and VV polarizations.

2) Dual polarization (dihedral type): We use the polarimetric target subspace 〈H−xy〉 as the box over

the ground has a dihedral type scattering [18]. The ROC curves are plotted in Fig. 11 for the ideal case

and in Fig. 12 for the realistic case. For the ideal case, we obtain Pd higher than 0.9 for Pfa higher than

2.10−4 with the OBSAR and for Pfa higher than 0.8 with the SSDSAR. This result shows the greatly
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Model rHxy rVxy 〈HH
xy〉 〈HV

xy〉
Energy ratio 23% 25% 94% 94%

TABLE II

Accuracy of the target subspace model for single polarization.

Model r+xy r−xy 〈H+
xy〉 〈H−xy〉

Energy ratio 1% 46% 2% 92%

TABLE III

Accuracy of the target subspace model for dual polarization.

improved performances of the OBSAR compared to the SSDSAR. Therefore, the oblique projection of

the OBSAR algorithm is needed for a complete removal of the interferences. For the realistic case, we

obtain Pd higher than 0.9 for Pfa higher than 8.10−2 with the OBSAR and for Pfa higher than 0.1

with the SSDSAR. The performances of both algorithms are degraded compared to those obtained in the

ideal case. This may be explained by the fact that foliage attenuation and the non PC ground are not

taken into account in the interference subspace. However, we notice that the OBSAR still outperforms

the SSDSAR.

C. Accuracy of subspace models

We propose to evaluate the accuracy of the subspace models. We compute the ratio between the energy

of the projected signal of MMT onto the target subspace and the total energy of the MMT signal energy.

Table II and III show these ratios for single and dual polarizations using white and isotropic point models

and target subspaces. We see first that the white and isotropic point model just captures a quarter of the

energy of the MMT signal. In the other hand, the target subspaces capture almost the entire energy of

the MMT signal for both HH and VV channels. The loss of MMT signal energy can be explained by

the truncation of the target subspaces and by the approximation of the target modeling. We draw the

same comments on the accuracy of the target subspace for dual polarizations compared to the white and

isotropic point model. As the main scattering mechanism for the box over the ground is dihedral type,

the MMT scattering is mainly describe by the target subspace 〈H−xy〉. The same comparison can be done

with the trunks and the interference subspaces. Around 92% of trunk signals are described on average
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by the interference subspaces for single polarizations and around 80% for dual polarization.

D. Images

In this subsection, we only consider the realistic case for the interferences. We propose to compare the

SAR images obtained using the CSAR, the SSDSAR and the OBSAR algorithms. In order to quantify

and compare the performances of these SAR algorithms, we compute for each image the ratio ρ between

the intensity of the target and the maximum intensity of the interferences defined by:

ρ = 10 log10

(
I(xt, yt)

I(xi, yi)

)
(37)

where I(x, y) is the intensity of the pixel (x, y) on the image processed by a given SAR processor.

(xt, yt) is the pixel containing the target and (xi, yi) is the pixel containing the interference with the

maximum intensity.

We specify that all the SAR images are shown in intensity (square modulus) normalized by the

maximum value; the scale of the intensity values is linear.

1) Single polarization: The images in the HH polarization are presented in Fig. 13(a) for the CSAR,

in Fig. 13(b) for the SSDSAR and in Fig. 13(c) for the OBSAR. First of all, we clearly see that the CSAR

image does not allow any detection of the target because its response is very low and there are a lot of false

alarms due to the trunks. The SSDSAR image shows that the target response is increased significantly;

nevertheless, the tree trunks responses remain high and still lead to a lot of false alarms. Unfortunately,

this problem is not solved in the OBSAR image: the target and the trunks responses are unchanged from

those in the SSDSAR. The ratio ρCSAR is equal to −3.7dB and we have ρSSDSAR = ρOBSAR = −0.5dB.

The images in the VV polarization are presented in Fig. 14(a) for the CSAR, in Fig. 14(b) for the

SSDSAR and in Fig. 14(c) for the OBSAR. We can draw the same conclusions as for the HH polarization,

except that the forest has a lower response in general while the target response does not vary much:

therefore, it is easier to distinguish the target from the interferences in the SSDSAR and the OBSAR

images. The ratio ρCSAR is equal to −1.8dB and we have ρSSDSAR = ρOBSAR = 2.8dB.

These SAR images clearly illustrate that the rejection of interferences is not possible using single

polarization. The scattering of MMT and interferences cannot be discriminated as the two subspaces

〈Hp
xy〉 and 〈Jp

xy〉 are too close. Nevertheless, the SSDSAR and the OBSAR algorithms enhance the

detection of the target compared to the CSAR algorithm. Finally, the OBSAR does not degrade the

response of the MMT even if the target and interference subspaces are close.
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2) Dual polarization (dihedral type): We present now the images of the CSAR in Fig. 15(a), of the

SSDSAR in Fig. 15(b) and of the OBSAR in Fig. 15(c) for dual polarization. Similarly to the single

polarization case, the target intensity in the CSAR image is low and false alarms due to the trunks are

numerous. The ratio ρCSAR is equal to −3.5dB. The SSDSAR image in dual polarization is similar to that

obtained in single polarization: the target appears clearly with a ratio ρSSDSAR of 1.8dB but the responses

of the trunks are still high. In the OBSAR image, the responses of the trunks are reduced compared to the

SSDSAR image with a ratio ρOBSAR of 3.6dB. Compared to the SSDSAR, the interference intensities

are greatly reduced while the target intensity is unchanged.

Therefore, these results confirm conclusions obtained in Section IV-B: the reduction of the false alarms

with the OBSAR algorithm is only possible using dual polarization. In this case, the signal and the

interference subspaces are sufficiently far apart.

V. REAL DATA

A. Configuration

The real SAR data presented in this section has been acquired during the PYLA’2004 campaign over

the Nezer forest in the Landes (France), using the SAR system RAMSES from ONERA (the French

Aerospace Lab) at frequencies between 400MHz and 470MHz and with an incidence angle of 59.8◦. For

more details on the Nezer forest, see [37]. Two targets, a truck and a trihedral corner reflector, with an

orientation parallel to the flight path were placed in the forest of pines as shown in Fig. 16.

We use 4m × 2m PC plates to generate the signal subspaces and PO to compute their scattering.

The sampling step for the orientation angles which cover ([0◦180◦] × [0◦180◦]) is 9◦. The ranks of the

subspaces are determined from the singular values of the signal matrices shown in Fig. 17 for single and

for dual polarizations. The ranks are chosen to be DH
H = DV

H = 10 and D+
H = D−H = 10.

The interference subspaces are generated using dielectric cylinders with a height of 11m and a radius

of 20cm standing on a PC ground. The sampling step for the orientation angles is 2◦ and (γ, δ) ∈

[0, 10◦]× [0, 360◦]. The singular values of the interference matrices are shown in Fig. 18 for HH and VV

polarizations as well ad for dual polarization. We choose DH
J = DV

J = 10 and DJ = 10.

B. Images

1) Single polarization: As the response of the forest is too high in HH polarization making it impossible

to detect the target, results of the three SAR algorithms for HH polarization are not presented in this

paper.
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We present the images of the CSAR, SSDSAR and OBSAR for VV polarization in Fig. 19(a), Fig. 19(b)

and Fig. 19(c), respectively. We clearly distinguish the truck and the trihedral in the SSDSAR image

compared to the CSAR. As in the case of simulated data, the OBSAR image does not show significant

improvement compared to the SSDSAR image. For the trihedral, the ratios are ρSSDSAR = ρOBSAR =

1.5dB. For the truck, the ratios are ρSSDSAR = ρOBSAR = 0.8dB.

2) Dual polarization: We present the SAR images for dual polarization. We first consider the polari-

metric target subspace 〈H+
xy〉 to detect target whose scattering is of trihedral type. The CSAR, SSDSAR

and OBSAR images are presented in Fig. 20(a), Fig. 20(b) and Fig. 20(c), respectively. Only the trihedral

corner reflector is detected as the truck scattering is of dihedral type. We clearly distinguish the corner

reflector in the SSDSAR and the OBSAR images compared to the CSAR one. Moreover, the interferences

are slightly reduced. The ratio ρSSDSAR is equal to 1.5dB while for the OBSAR, ρOBSAR = 2dB.

We present now the SAR images for dual polarization using the target subspace 〈H−xy〉 for the dihedral-

type target. The CSAR, SSDSAR and OBSAR images are shown in Fig. 21(a), Fig. 21(b) and Fig. 21(c),

respectively. Contrary to the previous results, only the truck is detected. Once again, we clearly distinguish

the truck from the environment in the SSDSAR and OBSAR images compared to that for CSAR. Finally,

the interferences are slightly reduced with ρSSDSAR = 1.7dB for the SSDSAR and ρOBSAR = 2.3dB

for the OBSAR.

As we have limited information about the Nezer forest to build an accurate interference subspace,

interference rejection is not optimal. Better performance could be obtained with a better modeling of the

interferences. But, this accuracy is possible only if information about the forest is available. Nevertheless

in dual polarization, these results show the robustness of the OBSAR algorithm which always outperforms

the SSDSAR algorithm in this case.

VI. CONCLUSION

We have proposed a new algorithm OBSAR to form SAR image for FoPen application. The aim

of the OBSAR is to improve target detection and interference rejection compared to conventional SAR

processors or to the SSDSAR. OBSAR intensity for each pixel of the SAR image to generate is computed

by solving an estimation problem with subspace models for the target and the interferences. The estimated

intensity of the target in each pixel of the OBSAR image is then the oblique projection along the

interference subspace onto the target subspace. We computed the statistical performances of the OBSAR

and demonstrated the importance of the polarimetric information for interference rejection. Different

results showed that the OBSAR outperforms the SSDSAR. In order to use the OBSAR in realistic cases,
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we also studied its robustness to interference modeling errors. Even if the performances are then degraded,

false alarms due to the interferences are still reduced. Finally, we validated these results using real data.

For future work, interference modeling needs to be improved to obtain better false alarm reduction. For

example, principal branch responses and foliage attenuation effects could be included in our interference

model [36], [37]. It would also be interesting to use cross-polarized channels to generate target and

interference subspaces that are further apart, leading improved target detection and false alarm reduction.

Concerning the case of the MMT, it has to be noted that the choice of the model for the subspace

generation may have an impact on the detection performances. Indeed a more accurate representation

leads to a more realistic simulation and probably to a better detection when the MMT is perfectly

known. However, it decreases the robustness in most of cases, for unknown MMT. Distributed background

scattering and correlation between pixels of the forest area [38] could be also another solution to improve

interference modeling. At last the use of classical polarimetric post-processing tools may be investigated.
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(a) First step of oblique projection for ideal and realistic cases.

The signal is projected in the subspace orthogonal to the

random noise direction.

(b) Ideal Case. The orthogonal projection of the interference

response on the target subspace is not null while the oblique

projection of the interference response on the target subspace

is null.

(c) Realistic Case. Compared to the ideal case, the oblique

projection of the interference response on the target subspace

is not null but is still lower than the orthogonal projection of

the interference response on the target subspace.

Fig. 5. Interference projections for the ideal and the realistic cases. The orthogonal projection PHxy projects the interference

response along the direction orthogonal to 〈Hxy〉 onto the target subspace 〈Hxy〉 . The oblique projection EHxyJxy projects

the interference response along the direction parallel to 〈Jxy〉 onto 〈Hxy〉.
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Fig. 6. Scene configuration for the simulated data. A PC box of size (2m× 1.5m× 1m) over a PC flat ground and located at

position (108,−1)m is placed in a forest of dielectric trunks, for an transmitted signal with center frequency of 400MHz and

with bandwidth of 100MHz. The attenuation due to the canopy is also taken into account.

Fig. 7. Singular values of the target matrices for single polarization (HH or VV) and dual polarization for simulated data. As

the target matrices are the same for HH polarization and VV polarization, their singular values are the same for single and dual

polarization. The ranks of the target subspaces are chosen to be DH
H = DV

H = 10 for single polarization and D+
H = D−H = 10

for dual polarization.
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Fig. 8. Singular values of the interference matrices for single polarization (HH and VV) and dual polarization for simulated

data. The ranks of the interference subspaces are chosen to be DH
J = DV

J = 10 for single polarization and DJ = 10 for dual

polarization.

Fig. 9. ROC of SSDSAR and OBSAR for the ideal case in single polarization (HH and VV) and for simulated data. The

SSDSAR and the OBSAR give the same performance for single polarization.
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Fig. 10. ROC of SSDSAR and OBSAR for the realistic case in single polarization (HH and VV) and for simulated data. The

SSDSAR and the OBSAR give the same performance for single polarization.

Fig. 11. ROC of SSDSAR and OBSAR for the ideal case in dual polarization and for simulated data. The OBSAR algorithm

gives good performances compared to the SSDSAR algorithm.
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Fig. 12. ROC of SSDSAR and OBSAR for the realistic case in dual polarization and for simulated data. Compared to the ideal

case, the performances of the OBSAR algorithm are degraded. Nevertheless, the OBSAR still outperforms the SSDSAR.
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(a) CSAR. (b) SSDSAR.

(c) OBSAR.

Fig. 13. SAR images for HH polarization using simulated FoPen data with a MMT located at position (108,−1)m. (a) The

detection of the MMT in the CSAR image is not possible (ρCSAR = −3.7dB) and the false alarms due to the tree trunks

are numerous. (b) Compared to CSAR, the MMT response in the SSDSAR image is increased but false alarms due to tree

trunks are numerous and have high intensities (ρSSDSAR = −0.5dB). (c) The OBSAR gives the same image as the SSDSAR

(ρOBSAR = −0.5dB).
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(a) CSAR. (b) SSDSAR.

(c) OBSAR.

Fig. 14. SAR images for VV polarization using simulated FoPen data with a MMT located at position (108,−1)m. (a) The

detection of the MMT in the CSAR image is not possible (ρCSAR = −1.8dB) and the false alarms due to the tree trunks are

numerous. (b) Compared to CSAR, the MMT response in the SSDSAR image is increased. The false alarms due to tree trunks

remain numerous but have intensities lower than the MMT (ρSSDSAR = 2.8dB). (c) The OBSAR gives the same image as the

SSDSAR (ρOBSAR = 2.8dB).
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(a) CSAR. (b) SSDSAR.

(c) OBSAR.

Fig. 15. SAR images for dual polarization (dihedral) using simulated FoPen data with a MMT located at position (108,−1)m.

(a) The detection of the MMT in the CSAR image is not possible (ρCSAR = −3.5dB) and the false alarms due to the tree trunks

are numerous. (b) Compared to CSAR, the MMT response in the SSDSAR image is increased but false alarms due to tree trunks

are numerous and have high intensities (ρSSDSAR = 1.8dB). (c) Compared to the SSDSAR, the MMT response in the OBSAR

image is unchanged but the intensities of false alarms due to tree trunks are significantly decreased and much lower than the

MMT intensity (ρOBSAR = 3.6dB).
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Fig. 16. Radar scene of the real data provided by ONERA. A truck located at (5520, 150)m and a trihedral corner reflector

located at (5584, 126) are placed in the Nezer forest.

Fig. 17. Singular values for the target matrices in single and dual polarizations (real data). The ranks are chosen to be

DH
H = DV

H = 10 and D+
H = D−H = 10.

Fig. 18. Singular values for the interference matrices in single and dual polarizations (real data). The ranks are chosen to be

DH
J = DV

J = 10 and DJ = 10.

March 25, 2013 DRAFT



39

(a) CSAR. (b) SSDSAR.

(c) OBSAR.

Fig. 19. SAR images for VV polarization using real FoPen data. (a) The detection of the two targets in the CSAR image is

difficult because there are many false alarms due to the forest. (b) In the SSDSAR image, the two targets are easily detected

but false alarms still remain (for the truck ρSSDSAR = 0.8dB and for the trihedral corner reflector ρSSDSAR = 1.5dB).

(c) The OBSAR gives the same image as the SSDSAR (for the truck ρOBSAR = 0.8dB and for the trihedral corner reflector

ρOBSAR = 1.5dB).
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(a) CSAR. (b) SSDSAR.

(c) OBSAR.

Fig. 20. SAR images for dual polarization (trihedral) using real FoPen data. As we use the polarimetric target subspace 〈H+
xy〉,

only the trihedral corner reflector is detected. (a) In the CSAR image, the detection of the target is difficult because there are

many false alarms due to the forest. (b) The trihedral corner reflector is easily detected in the SSDSAR image but false alarms

due to the forest still remain (ρSSDSAR = 1.5dB). (c) The trihedral corner reflector response is unchanged compared to the

SSDSAR and false alarms due to the forest are slightly reduced (ρOBSAR = 2dB).
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(a) CSAR. (b) SSDSAR.

(c) OBSAR.

Fig. 21. SAR images for dual polarization (dihedral) real FoPen data. As we use the polarimetric target subspace 〈H−xy〉, only

the truck is detected. (a) The detection of the target in the CSAR image is difficult because there are many false alarms due to the

forest. (b) In the SSDSAR image, the truck is easily detected but false alarms due to the forest still remain (ρSSDSAR = 1.7dB).

(c) In the OBSAR image, the truck response is unchanged compared to the SSDSAR and false alarms due to the forest are reduced

(ρOBSAR = 2.3dB).
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