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Abstract—In this paper, a sparse signal recovery algorithm
using Bayesian linear regression with Cauchy prior (BLRC)
is proposed. Utilizing an approximate expectation maximization
(AEM) scheme, a systematic hyper-parameter updating strategy
is developed to make BLRC practical in highly dynamic scenarios.
Remarkably, with a more compact latent space, BLRC not only
possesses essential features of the well-known sparse Bayesian
learning (SBL) and iterative reweighted l2 (IR-l2) algorithms but
also outperforms them. Using sparse array (SPA) and coprime array
(CPA), numerical analyses are first performed to show the superior
performance of BLRC under various noise levels, array sizes, and
sparsity levels. Applications of BLRC to sparse multiple-input and
multiple-output (MIMO) radar array signal processing are then
carried out to show that the proposed BLRC can efficiently produce
high-resolution images of the targets.
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I. INTRODUCTION

With the development of modern advanced driver-
assistance systems (ADAS) and autonomous driving (AD)
applications, accurate perception and interpretation of the
surrounding environment are highly desirable for auto-
motive radar systems. To satisfy the stringent perception
and interpretation requirement, high-resolution automo-
tive radar is being developed to provide point cloud of the
surrounding environment in four-dimensions (4D), i.e.,
range, Doppler, and azimuth and elevation angles [1].

In modern automotive radar system, the Size, Weight,
Power, and Cost (SWaP-C) requirement needs to be
satisfied. For instance, the size of automotive radar sensor
array has to be small enough to be placed behind the
vehicle bumper. Thus, it is obvious that the resolution of
automotive radar cannot increase easily due to the size
constraint. To break loose from this constraint, MIMO
technology [2]–[4] is used in the state-of-the-art high-
resolution automotive radar to increase the resolution of
the system when the number of physical antennas is fixed.
For a 3-transmitter/4-receiver MIMO radar system, one
may construct a virtual array of 12 elements using only
7 physical antennas. To further improve the resolution,
sparse array designs [5]–[7] are often coupled with MIMO
virtual array approach to increase the effective array
aperture while reducing the hardware cost and mutual
coupling among antennas [8]–[10]. Fig. 1 depicts a sparse
array of 12 virtual elements spanning an aperture of
the size of 28 elements. Sub-1◦ angular resolution has
been achieved in practical 4D imaging radar systems by
employing MIMO sparse array approach.

One main challenge in sparse array design is to deal
with angular ambiguity and sidelobes. Moreover, in highly
dynamic scenarios, angle estimation has to be conducted
based on single snapshot measurement [11]. Many con-
ventional angle estimation methods fail to operate under
such conditions [12]–[14]. In this paper, we focus on
high-resolution direction-of-arrival (DoA) estimation [15]
with MIMO sparse array using only a single snapshot in
automotive radar applications.

In a typical automotive frequency-modulated
continuous-wave (FMCW) radar processing chain,
the targets are first separated in range and Doppler
domains. Due to the wide bandwidth feature of current
automotive radars, the number of targets that falls in
the same range-Doppler bin is small [2]. Therefore,
high-resolution results in angle space can be obtained
by solving a sparse signal recovery (SSR) problem [16].
Note that sparse signal recovery provides a framework
to effectively handle sparse signals encountered in
many signal processing applications, such as spectral
analysis [17], sparse channel estimation [18], and
multiuser detection [19]. It is also a common problem
found in machine learning, such as feature selection [20],
subspace clustering [21], and sparse representation [22].
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Fig. 1. Forming a sparse array of 12 virtual elements spanning an aperture of the size of 28 elements using a 3-transmitter/4-receiver MIMO
radar system.

The general linear model for the sparse signal recovery
problem [23] can be presented as:

y = Ac+ ϵ (1)

where y represents the M observed measurements, c is
the N unknown parameters with N ≫ M , A is the
basis matrix, and ϵ is the noise vector. Equation (1) is
under-determined and generally has infinite numbers of
solutions. Various approaches have been proposed to find
the sparsest solution of (1), including but not limited to,
Greedy-based approaches [24]–[26], Convex relaxation
approaches [27]–[29], Iterative reweighted approaches
[30]–[33], and Bayesian linear regression approaches
[34]–[38].

Among the aforementioned approaches, Bayesian lin-
ear regression approaches are superior in scalability and
interpretability. There are different ways to classify these
approaches. Here, we consider two related frameworks:
the maximum a posteriori (MAP) and the hierarchical
frameworks. The main difference between these two
frameworks lies in how the sparsity-inducing prior is used.
In the latter, the prior is used in a hierarchical manner,
while in the former, it is used directly. Two particular ap-
proaches are of particular interest here. The first approach
is the Cauchy-Gaussian (CG) approach in [37], which
also belongs to the iterative reweighted algorithms from
the implementation perspective [39]. It uses the MAP
framework with the sparsity-inducing Cauchy prior

p(ci; γ) =
1

πγ(1 +
c2i
γ2 )

(2)

where γ in (2) is the scale parameter. CG is very effective
in suppressing spurious targets if its hyper-parameters are
chosen properly. However, the problem of solving the
posterior in CG is intractable, so systematic strategies for
updating the CG hyper-parameters are missing. Without
such strategies, the optimal hyper-parameters can only be
found by trial and error in a suboptimal way.

The second approach is the sparse Bayesian learning
(SBL) approach which has been widely used in radar
signal processing [40]–[42]. SBL uses the hierarchical
framework with the conditional Gaussian prior [38] of
the unknown vector c:

p(c|τττ) = 1√
(2π)N |Σ−1|

exp
(
− 1

2
cTΣc

)
(3)

where the diagonal matrix Σ ≡ diag(τττ) is the inverse of
the covariance matrix of prior c conditional on the N ×1
hyper-parameter τττ . Compared to the aforementioned algo-
rithms, SBL excels in sparse signal recovery performance
with uniform linear array and sufficient signal-to-noise
ratio (SNR), and its parameters are self-tuned. However,
recent studies have highlighted several areas in which
SBL can be improved, particularly when sparse array
measurement is used as input. Firstly, SBL involves N
hyper-parameters in τττ to define N Gaussian distributions
corresponding to the N elements of c. As elements of τττ
approach infinity at various speeds during the iterations,
the condition number of the matrix to be inverted in
SBL increases. Coupled with limited machine precision in
real-world applications (e.g., single-precision computing
environments in most automotive radar processors), this
results in numerical errors and instability [38]. Thus, the
iteration process has to be stopped before numerical error
takes place. Secondly, the noise parameter σn estimated
by SBL converges incorrectly resulting in suboptimal
solution [43]–[45] and negatively impacting the sparse
recovery performance in practice [46]. Lastly, because
of the above-mentioned reasons, SBL tends to produce
more spurious solutions [38], [47], [48], which impairs
its usefulness when high dynamic range is required. This
issue becomes increasingly pronounced as the sparse
array becomes sparser. It is essential to highlight that
the primary focus of this work is on applications that
employ sparse array measurements as input. Numerous
SBL applications also employ a uniform linear array
as input. For instance, reference [49] offers a valuable
example of the SBL application that utilizes a uniform
linear array.

In this paper, a sparse signal recovery algorithm,
Bayesian linear regression with Cauchy prior (BLRC), is
proposed to improve the performance of CG and SBL,
specifically when sparse array measurements serve as
input data. Like CG, BLRC has only one hyper-parameter
γ for all N prior distributions for the N elements of the
unknown c. Unlike CG, we use Laplace approximation
in BLRC to approximate the intractable posterior locally
so that the hyper-parameters can be learned from the ob-
served data through the proposed approximate expectation
maximization (AEM) scheme. In this sense, BLRC is a



significant improvement over the CG approach because
BLRC provides a systematic updating scheme for the
hyper-parameters which is absent from the CG approach.

BLRC can also be considered as a significant im-
provement over SBL in several aspects. Like SBL, BLRC
is a Bayesian linear regression approach. Both BLRC
and SBL have the same iterative updating steps for the
solution and hyper-parameters. However, there are some
key differences between BLRC and SBL. Primarily, only
two hyper-parameters need to be handled in BLRC, while
the number of hyper-parameters to be handled is large
for SBL. This is because BLRC uses a long-tailed but
proper Cauchy distribution that requires only one scale
parameter to characterize all N elements of the unknown
c. On the contrary, SBL uses the Gaussian distribution
as the intermediate conditional prior where its true prior
is improper [38]. Accordingly, SBL needs N variances
to characterize the N elements of the unknown c. As
the number of unknowns is typically large, the number
of hyper-parameters for SBL is usually large. Therefore,
BLRC is superior to SBL in latent space compactness,
which is a major advantage of BLRC over SBL.

Using randomly placed Sparse Array (SPA) and Co-
prime Array (CPA), it is shown in this paper by extensive
numerical simulations that BLRC has the following ad-
vantages over SBL: numerical robustness, spurious targets
suppression, target resolution, system flexibility, noise tol-
erance, and noise variance estimation. This is originated
from the fact that one scale parameter γ is sufficient
to describe the Cauchy prior of BLRC while N hyper-
parameters {τi} are required to describe the conditional
Gaussian priors of SBL. Furthermore, the performance of
BLRC and SBL are compared using sparse automotive
radar image recovery examples. Using physical optics
(PO) approximation, MIMO radar signals are generated
by our automotive imaging radar simulator. It is shown
that BLRC outperforms SBL by producing clearer radar
images with better resolution.

The rest of this paper is organized as follows. In
Section II, we give a summary of the Bayesian linear
regression model, CG approach, and SBL approach. In
Section III, we use AEM to develop the proposed BLRC
approach and discuss its computational efficiency. In
Section IV, comparisons under variational interpretation
are provided to explain the improvement of BLRC over
CG. In Section V, comparisons based on the iterative
reweighted l2 (IR-l2) interpretation are provided to ex-
plain the superior performance of BLRC over SBL. In
Section VI, numerical analyses including initial values of
hyper-parameters, numerical stability, convergent proper-
ties, spurious targets suppression, noise variance estima-
tion, resolution and sensitivities study are provided. In
Section VII, we introduce the automotive image radar
signal processing application and our automotive radar
signal simulator. The direction of arrival (DoA) estimation
result using coprime array is shown to demonstrate the
superiority of our proposed BLRC approach. At last, the
conclusion is made in Section VIII.

II. Sparse Bayesian Linear Regression Approaches

In this section, we introduce the MAP framework
and the hierarchical framework for sparse Bayesian linear
regression approaches. Then we briefly summarize the
Cauchy Gaussian (CG) algorithm, which uses the MAP
framework with Cauchy prior, and the well-known Sparse
Bayesian Learning (SBL), which uses the hierarchical
framework.

A. Sparse Bayesian Linear Regression

Using the general linear model for the sparse signal
recovery in (1) and assuming the M noise elements of
ϵ are independent zero-mean Gaussian random variables
with the same variance σ2

n, the likelihood function of the
observation y is:

p(y|c, σn) = (
1√
2πσ2

n

)Mexp
(
−||y −Ac||2

2σ2
n

)
(4)

Using the MAP framework, we are to find the mode
of the following posterior distribution:

c = argmax
c

p(c|y) = argmax
c

ln p(y|c)p(c) (5)

The prior distribution p(c) is a sparsity-inducing prior
which can typically be written in the following general
form:

p(c) ∝ exp
(
− 1

2

N∑

i=1

g(ci)
)

(6)

where g(ci) = h(c2i ), and it has been shown that the
choice of a concave and nondecreasing h(ci) in [0,∞)
could lead to a sparse solution of c [50]. Then (5) leads
to the canonical regularized optimization problem:

c = argmin
c
||y −Ac||2 + σ2

n

N∑

i=1

g(ci) (7)

For example, h(ci) =
√
ci results in the Laplacian prior

which is a well-known sparsity-inducing prior, and the
corresponding g(ci) = |ci| leads to the well-known
regularized optimization problem with l1 norm.

The hierarchical framework is proposed to form
the full Bayesian inference by introducing extra hyper-
parameters (e.g., τττ in SBL [38]). Then, not only c, but
also the hyper-parameter τττ and noise variance σ2

n are all
inferred from observation y:

{c̃, τ̃ττ , σ̃n} = arg max
c,τττ,σn

p(c, τττ , σn|y)

= arg max
c,τττ,σn

p(c|y, τττ , σn)p(τττ , σn|y)
(8)

To solve the above inference problem, several algorithms
are proposed, such as the evidence maximization (also
known as type-II maximum likelihood) [38], expectation
maximization (EM) [51], and variational Bayes (VB)
approximation [52].

Basically, (8) can be solved by the following iter-
ative approach. Firstly, the hyper-parameter τ̃ττ and σ̃n
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are learned based on observation y using the following
optimization:

{τ̃ττ , σ̃n} = argmax
τττ,σn

p(τττ , σn|y)

= argmax
τττ,σn

p(y|τττ , σn)

= argmax
τττ,σn

∫
p(y|c, σn)p(c|τττ)dc

(9)

with the assumption that τττ and σn are “improper” hyper-
parameters with flat distributions (p(τττ) ∝ 1 and p(σn) ∝
1) or non-informative Jeffreys distributions (uniform un-
der logarithmic scale).

Secondly, the estimation of c̃(k+1) of c for the (k +
1)th iteration is obtained from maximizing the posterior
distribution:

c̃(k+1) = argmax
c

p(c|y, τττ(c̃(k)), σ̃n(c
(k))) (10)

If the posterior distribution is Gaussian, the solution of
(10) is the mean of the posterior distribution. Using (9)
and (10), the c and {τττ , σn} are updated in an iterative
manner until a convergence criterion is satisfied.

Note that the “true” prior distribution p(c) can be
obtained from the parameterized prior p(c|τττ) in the hi-
erarchical framework:

p(c) =

∫
p(c|τττ)p(τττ)dτττ (11)

It is shown that the “true” prior p(c) is actually a sparsity-
inducing prior, and this kind of representation is also
known as scale mixtures [53].

B. Cauchy Gaussian (CG) Approach

The CG approach [37] uses the MAP framework
with the Cauchy prior given in (2). Assuming the scale
parameter γ and the noise standard deviation σn are given
(which are denoted as γ̂ and σ̂n, respectively), the MAP
estimator for c is to minimize the following cost function.

Jcg(c) = ||y −Ac||2 + hcg(c) (12)

with the log-sum regularized term

hcg(c) = σ̂2
n

N∑

i=1

2 ln(1 +
c2i
γ̂2

) (13)

Omitting the derivations, c is computed iteratively using
steps described in Algorithm 1.

C. Sparse Bayesian Learning (SBL)

In sparse Bayesian Learning (SBL), the prior is rep-
resented in a hierarchical framework. The conditional
prior distribution of the unknown vector c is Gaussian
as defined in (3). Although there are different explana-
tions and optimization algorithms for SBL (e.g., evidence
maximization, expectation maximization, and variational
Bayes), their updating strategies for the sparse vector c
are similar.

For convenience, let the ith element of τττ , τi = 1/σ2
i ,

where σ2
i is the variance of ci, the ith element of c. Ad-

ditionally, let Γ be the covariance matrix of the posterior

Algorithm 1: Cauchy Gaussian (CG) Approach
Input: y, A, σ̂n, γ̂, K
Output: ĉ

1 Initialization: ĉ(0)

2 for k = 1 : K do
3 Q̂(k) = diag

(
1 +

(ĉ
(k−1)
1 )2

γ̂2 , 1 +

(ĉ
(k−1)
2 )2

γ̂2 , · · · , 1 +
(ĉ

(k−1)
N )2

γ̂2

)−1

4 ĉ(k) = [
2σ̂2

n

γ̂2 Q̂(k) +ATA]−1ATy

5 if ĉ(k) converges, k = K and ĉ(K) = ĉ(k)

6 end
7 return ĉ = ĉ(K)

of c conditional on y. Denote the estimate of c, τττ , Σ, Γ
and σn as c̃, τ̃ττ , Σ̃, Γ̃ and σ̃n, respectively. The typical
implementation of SBL as shown in [35] and [38] for
finding c̃ is summarized in Algorithm 2.

Algorithm 2: Sparse Bayesian Learning (SBL)
Input: y, A, K, size(A)=[M, N]
Output: c̃

1 Initialization: σ̃
(0)
n ← 0.1, τ̃ττ (0) ← 1, k ← 0

2 for k = 1 : K do
3 Σ̃(k) = diag

(
τ̃
(k−1)
1 , τ̃

(k−1)
2 , · · · , τ̃

(k−1)
N

)

4 Γ̃(k) = ( 1

(σ̃
(k−1)
n )2

ATA+ Σ̃(k))−1

5 c̃(k) = 1

(σ̃
(k−1)
n )2

Γ̃(k)ATy

6 (σ̃
(k)
n )2 = ||y−Ac̃(k)||2

M−Tr(I−Γ̃(k)Σ̃(k))

7 for i = 1 : N do
8 τ̃

(k)
i =

1−τ̃
(k−1)
i Γ̃

(k)
ii

(c̃
(k)
i )2

9 end
10 if c̃(k) converges, k = K and c̃(K) = c̃(k)

11 end
12 return c̃ = c̃(K)

III. Bayesian Linear Regression with Cauchy Prior
(BLRC)

When the parameters σn and γ are given for the CG
approach, one can directly compute c and Q iteratively
as shown in Algorithm 1. However, σn and γ are usually
unknown for the CG approach and are typically found
by trial and error under practical conditions. In this
section, using the Laplace approximation to obtain a local
Gaussian approximation of the posterior distribution of
the random vector c, we present a novel Approximate
Expectation Maximization (AEM) algorithm to update
these parameters automatically. Benefiting from the gen-
eral convergence property of EM algorithm, the proposed
algorithm is to converge to a local minimum. The com-
bination of the CG approach for estimating c and Q and
the AEM approach for updating σn and γ is named as the



Bayesian Linear Regression with Cauchy Prior (BLRC)
approach.

A. Expectation Maximization (EM) Formulation

To obtain the maximum likelihood estimation of pa-
rameter {γ, σn}, we need to maximize ln{p(y; γ, σn)}:

{γ̂, σ̂n} = arg max
{γ,σn}

ln{p(y; γ, σn)} (14)

Since p(y; γ, σn) does not have a closed-form ex-
pression with the Cauchy prior model, we propose to
maximize its lower bound (i.e., the generalized EM for-
mulation [54]). Then the estimator for {γ, σn} in the kth

iteration can be expressed as

{γ̂(k), σ̂(k)
n } = argmax

γ,σn

Ec|y[ln p(y, c; γ, σn)] (15)

where Ec|y is the expectation with respect to the random
variable c given the obervation y and the parameters from
the previous iteration {γ(k−1), σ

(k−1)
n }

For convenience, the parameter γ in Cauchy prior
distribution is mapped to a new parameter τ with γ =
1√
τ

for further mathematical manipulations. Noting that
p(y, c; τ, σn) = p(y|c;σn)p(c; τ) and using the likelihood
distribution of observation p(y|c;σn) in (4) and the
Cauchy prior distribution p(c; τ) in (2), the expectation
in (15) can be expressed as

Ec|y[ln p(y, c; τ, σn)]

= −M

2
ln(2πσ2

n)−
1

2σ2
n

Ec|y[||y −Ac||2]

−N ln(
π√
τ
)−

N∑

i=1

Ec|y[ln(1 + τc2i )]

(16)

where the computation of the original expectation can be
carried out by computing the two new easier expectations.
Define the mean Ec|y[c] as ĉ and the covariance Ec|y[(c−
ĉ)(c − ĉ)T ] as Γ̂. The first expectation in (16) can be
further simplified following Appendix A:

Ec|y[||y −Ac||2] = ||y −Aĉ||2 + Tr(ATAΓ̂) (17)

Regarding the second expectation in (16), it is nec-
essary to simplify ln(1 + τc2i ) in order to get a closed-
form expression. Consider the second-order Taylor series
expansion of ln(1 + τc2i ) at τc2i = Ec|y[τc2i ]:

ln(1 + τc2i ) ≈ ln(1 + Ec|y[τc
2
i ]) +

τc2i − Ec|y[τc2i ]

(1 + Ec|y[τc2i ]) · 1!

− (τc2i − Ec|y[τc2i ])
2

(1 + Ec|y[τc2i ])
2 · 2!

(18)
Taking expectation on (18), we have:

Ec|y[ln(1+τc2i )] ≈ ln(1+τEc|y[c
2
i ])−

τ2V arc|y[c2i ]

2(1 + τEc|y[c2i ])
2

(19)
For convenience, define ηi = c2i , η̂i = Ec|y[ηi] and ξ̂i =
V arc|y[ηi]. Then (19) becomes

Ec|y[ln(1 + τηi)] ≈ ln(1 + τ η̂i)−
τ2ξ̂i

2(1 + τ η̂i)2
(20)

B. Approximate Expectation

Closed-form expressions of the mean and variance of
c (i.e., ĉ and Γ̂, respectively) in (17) and the mean and
variance of ηi (i.e., η̂i and ξ̂i, respectively) in (20) are
difficult to derive since there is no explicit expression of
the posterior distribution p(c|y; τ, σn).

Although Cauchy distribution is non-log-concave, the
Hessian matrix of the posterior can be shown to be
negative-definite everywhere when being solved in an
iterative reweighted manner. Thus, the iteratively solved
posterior p(c|y) is log-concave and unimodal. Then,
the Laplace approximation, a general methodology that
approximates a probability density function locally in
terms of a Gaussian distribution, can be employed to
approximate p(c|y; τ, σn).

Performing Taylor series expansion on the previously
defined cost function in (12) around the mode ĉ, we
obtain:

Jcg(c) ≈ Jcg(ĉ) +
1

2
(c− ĉ)T Γ̂−1(c− ĉ) (21)

where ĉ is given in line 4 of Algorithm 1 and

Γ̂−1 = ∇c∇cJcg(c)
∣∣∣
c=ĉ

(22)

Then, using the Laplace approximation, we obtain the
local Gaussian approximation of the posterior distribution
of the random vector c from (21):

p(c|y; τ, σn) ∝ p(y|c;σn)p(c; τ)

≃ 1

(2π)
N
2 |Γ̂| 12

exp(−1

2
(c− ĉ)T Γ̂−1(c− ĉ))

(23)
Note that the covariance matrix Γ̂ in (23) can be obtained
from (22). Since Q̂ in line 3 of Algorithm 1 is a function
of ĉ, we expressed Γ̂(k) of the kth iteration in terms of
the following iterative formula:

Γ̂(k) =

[
1

σ2
n

ATA+ 2τQ̂(k)

]−1

(24)

So we can rewrite the approximate posterior mean under
Cauchy prior in line 4 of Algorithm 1 as:

ĉ(k) =
1

σ2
n

Γ̂(k)ATy (25)

Regarding the mean and variance of ηi (i.e., η̂i and
ξ̂i) in (20), we can use the identity:

η̂i = Ec|y[c
2
i ] = V arc|y[ci] + (Ec|y[ci])

2

ξ̂i = V arc|y[c
2
i ] = Ec|y[c

4
i ]− (Ec|y[c

2
i ])

2

Note that V arc|y[ci] = Γ̂ii, (Ec|y[ci])2 = ĉ2i ,and E[c4i ] =

ĉ4i + 6ĉ2i Γ̂ii + 3Γ̂2
ii. Finally we obtain

η̂i = Γ̂ii + ĉ2i

ξ̂i = 4ĉ2i Γ̂ii + 2Γ̂2
ii

(26)
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C. Maximization

Setting the derivatives of (16) with respect to σ2
n and

τ to zeros, one can obtain the maximization results for
(15). Firstly, taking the derivative of (16) with respect to
σ2
n and utilizing (17), we have

∂Ec|y[ln p(y, c)]

∂(σ2
n)

= − M

2σ2
n

+
||y −Aĉ||2 + Tr(ATAΓ̂)

2(σ2
n)

2

(27)
From (27), the estimate of σ2

n, denoted as σ̂2
n, can be

obtained as shown in line 9 of Algorithm 3. Noting that
the ĉ and Γ̂ in (27) are functions of σ̂2

n, so σ̂2
n has to be

solved iteratively.
Secondly, taking derivative of (16) with respect to τ

and utilizing (19), we have

∂Ec|y[ln p(y, c)]

∂τ
=

N

2τ
−

N∑

i=1

η̂i
1 + τ η̂i

+

N∑

i=1

τ ξ̂i
(1 + τ η̂i)3

(28)
Thus, we can solve iteratively for the update of τ , denoted
as τ̂ , as shown in line 8 of Algorithm 3. In the proposed
BLRC algorithm, the update of {ĉ, Γ̂} and the update of
{σ̂2

n, τ̂} are carried out iteratively, which is summarized
in Algorithm 3.

Algorithm 3: Bayesian Linear Regression with
Cauchy Prior (BLRC)

Input: y, A, K, size(A)=[M,N]
Output: ĉ

1 Initialization: σ̂
(0)
n ← 0.1, γ̂(0) ← 1, ĉ(0)

2 for k = 1 : K do

3 Q̂(k) = diag
(
1 +

(ĉ
(k−1)
1 )2

(γ̂(k−1))2
, · · · , 1 + (ĉ

(k−1)
N )2

(γ̂(k−1))2

)−1

4 Γ̂(k) =

[
1

(σ̂2
n)

(k−1)A
TA+ 2

(γ̂(k−1))2
Q̂(k)

]−1

5 ĉ(k) = 1
(σ̂2

n)
(k−1) Γ̂

(k)ATy

6 η̂
(k)
i = Γ̂

(k)
ii + (ĉ

(k)
i )2

7 ξ̂
(k)
i = 4(ĉ

(k)
i )2Γ̂

(k)
ii + 2(Γ̂

(k)
ii )2

8 (γ̂(k))2 =

2
N

{∑N
i=1

[
η̂i

(k)

1+
η̂i

(k)

(γ̂(k−1))2

−
1

(γ̂(k−1))2
ξ̂
(k)
i

(1+ 1

(γ̂(k−1))2
η̂i

(k))3

]}

9 (σ̂2
n)

(k) = 1
M

{
||y −Aĉ(k)||2+Tr(ATAΓ̂(k))

}

10 if ĉ(k) converges, k = K and ĉ(K) = ĉ(k)

11 end
12 return ĉ = ĉ(K)

D. Computational Efficiency and Pruning

Computational complexities of the three Bayesian
regression approaches (BLRC, CG and SBL) are more or
less of the same order. This is because matrix inversion
is the most computationally intense step (see step 4 of
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Fig. 2. Computational Efficiency Enhancement via using Woodbury
Matrix Identity

Algorithms 1, 2 and 3) and the matrices to be inverted
are of the same size, N ×N . where N is usually large.

In order to be used in real-time processing applications
such as automotive radar, speed-up methods are required
for CG, SBL, and BLRC to improve their computational
efficiency. Outlined below are three standard strategies.
Firstly, the Woodbury matrix identity can be employed
to reduce the computational complexity of inverting the
N ×N matrices because Q̂ and Σ̃ are diagonal matrices
and the system matrix A is M ×N , M ≪ N . As shown
in Fig. 2, computation speed has been improved by one to
two orders of magnitude. Secondly, further increase of the
computational efficiency is to use pruning to reduce the
effective size of A in each iteration. If a pruning threshold
t
(k)
p for the kth iteration is determined, the elements of
c(k−1) with magnitudes smaller than t

(k)
p are marked.

These elements and their corresponding columns in A
are excluded. Consequently, the size of the matrix to be
inverted is reduced in the kth iteration. Thirdly, further
improvement on computational efficiency can be made
by using efficient matrix inversion algorithms such as
Cholesky decomposition for the matrix inversion.

In such a manner, the computation is not only more
efficient but also more robust against numerical issues.
However, pruning leads to sub-optimal results [38]. More-
over, selecting the pruning threshold t

(k)
p itself is not a

trivial problem. The larger the pruning threshold is, the
more numerically efficient the three Bayesian regression
approaches will be, but with an increased risk of discard-
ing weak targets. If the pruning threshold is too small, it
has little effect on the computation efficiency. Thus, for
fully understanding the convergent property of BLRC, we
do not use pruning in numerical analyses in this paper.

IV. Comparison under Variational Interpretation

In this section, we firstly compare the true prior used
in SBL and the Cauchy prior used in both CG and



BLRC. Secondly, in order to directly compare different
algorithms in the same c-space, the variational bounds
of the priors in SBL and BLRC are shown. Note that the
core of deriving variational bound is to represent a convex
function using its dual form [55], and the variational
bound of SBL has been derived in [50] which will be
omitted here. Finally, cost functions of lp, CG, SBL and
BLRC in c-space are compared. It is shown that, like
SBL, BLRC has the capability to reduce the number of
local minimums which explains the superior performance
of BLRC over CG.

A. True Prior Comparison

The intrinsic true prior used in SBL can be obtained
by integrating p(ci|τi)p(τi) with respect to the hyper-
parameter τi. Using (11), the integration result can be
represented as a special case of the Student-t distribution
St(ci; 0,

√
b
a , 2a) [38]:

p(ci; a, b) =

∫
p(ci|τi)p(τi)dτi

=

∫
N (ci|0, τ−1

i )Gamma(τi|a, b)dτi

=
baΓ (a+ 1

2 )

(2π)
1
2Γ (a)

(b+
c2i
2
)−(a+ 1

2 )

(29)

where a, b are the parameters of Gamma distribution.
Specifically, the parameters are set to a = 1 and b = 0
to get an improper uniform hyper-prior [56] or set to
a = b = 0 to get the Jeffreys prior [38]. Then the true prior
degenerates from the Student-t distribution to an improper
prior p(ci) ∝ 1

|ci|3 or p(ci) ∝ 1
|ci| , respectively. Note that

they are improper priors because the areas under these
probability density curves cannot be equal to one in the
absence of properly defined scaling factors. Although it
is hard to directly use these improper priors for Bayesian
inference, the MAP estimation adopting these improper
priors leads to the IR-l1 algorithm.

The non-standard Cauchy prior Cauchy(ci; 0, γ) in (2)
for both CG and BLRC is also a special case of non-
standard Student-t distribution St(ci; 0, γ, ν) with ν = 1:

St(ci; 0, γ, ν) =
Γ (ν+1

2 )

Γ (ν2 )
(

1

πνγ2
)

1
2 [1 +

c2i
νγ2

]−
ν+1
2 (30)

where γ is the scale parameter and ν is the degree of
freedom. Note that (30) becomes (29) if ν = 2a and γ2 =
b
a . And the Cauchy prior used in CG and BLRC can be
obtained by setting a = 1

2 which is between 0 and 1.
Unlike the improper prior for SBL, the obtained

Cauchy prior for BLRC is a proper distribution. Com-
pared with the Student-t distribution which has a pa-
rameter a embedded in the gamma function, Cauchy
distribution does not have the parameter a and is much
easier to be used for Bayesian inference. Moreover, since
the τττ has been integrated out in (29), there is no need to
estimate the large N × 1 vector τττ for Bayesian inference
as in the case of SBL. Instead, in the BLRC approach,

one needs to estimate only the scalar parameter γ which
is related to the parameter b in (29).

B. Conjugate Dual and Variational Bound

The cost functions of algorithms with MAP frame-
work (e.g., CG) lie in the c-space, whereas the cost
functions of algorithms with hierarchical framework (e.g.,
SBL and BLRC) are not directly represented in c-space.
Fortunately, as shown in [50], it provides a way to
derive the cost function of algorithms with hierarchical
framework in c-space using conjugate dual and variational
bound.

From the Student-t prior of a scalar ci in (29) and
omitting the subscript i for convenience, we have

ln p(c) = −(a+
1

2
) ln(b+

c2

2
) + ln

baΓ (a+ 1
2 )

(2π)
1
2Γ (a)

(31)

Define the function f(x):

f(x) = −(a+
1

2
) ln(b+

x

2
) + ln

baΓ (a+ 1
2 )

(2π)
1
2Γ (a)

(32)

where ln p(c) = f(c2) and f(x) is convex. Also define
the conjugate function of f(x) as:

f∗(ξ) = sup
x

{−ξ
2

x− f(x)
}
, ξ > 0 (33)

where we use −ξ
2 x instead of ξx for notational conve-

nience. Substituting (32) into (33), it can be shown that

x∗ =
2a+ 1

ξ
− 2b (34)

is the solution to f∗(ξ) in (33). Let x = x∗ in (34), the
conjugate function in (33) becomes

f∗(ξ) = −(a+
1

2
) + ξb+ (a+

1

2
) ln

2a+ 1

2ξ

− ln
baΓ (a+ 1

2 )

(2π)
1
2Γ (a)

, ξ > 0, a > 0, b > 0

(35)

Using (33) and (35), we then derive the lower bound of
f(x):

f(x) ≥ −ξ
2

x− f∗(ξ)

= −ξx

2
+ a+

1

2
− ξb− (a+

1

2
) ln

2a+ 1

2ξ

+ ln
baΓ (a+ 1

2 )

(2π)
1
2Γ (a)

(36)

Since p(c) = ef(c
2), we can use (36) to get the lower

bound of the Student-t prior p(c) as

p(c) ≥ 1√
2πξ−1

e
− c2

2ξ−1 · ϕ(ξ, a, b), ∀ξ > 0, a > 0, b > 0

(37)
where

ϕ(ξ, a, b) = ξae−bξ · b
aΓ (a+ 1

2 )

Γ (a)
· (2a+ 1

2e
)−(a+ 1

2 ) (38)

If a → 0 and b → 0, it is easy to see that a
Jeffrey’s non-informative prior is obtained. The evidence
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maximization can be applied and the cost function of SBL
in c-space can be derived as shown in [50] which is also
provided in Appendix B:

min
c

Jsbl(c), Jsbl(c) = ||y −Ac||2 + hsbl(c) (39)

where the minimization with respect to τττ and σn is done
as following (in deriving the regularization hsbl(c) to
encourage a sparse solution):

hsbl(c) = min
τττ,σn

σ2
n

(
cTΣc+ ln |σ2

nI+AΣ−1AT |
)

(40)

C. BLRC Cost Function in c-space

By setting a = 1
2 and b = γ2

2 in (37), a lower bound
of the Cauchy prior p(c) is shown to be:

p(c) ≥ 1√
2πξ−1

e
− c2

2ξ−1 · ϕ(ξ, γ) = N (0, ξ−1)ϕ(ξ, γ)

(41)
where ϕ(ξ, γ) = γe

√
ξ
2π e

− ξγ2

2 , ξ > 0, γ > 0. Note that
the bound in (41) is tight when

ξ =
2

c2 + γ2
. (42)

Replacing c and ξ by ci and ξi, respectively, in both
(41) and (42), we can find p(ci) from (41). Then, using
p(ci), ∀i, we can extend the lower bound in (41) of a
scalar c to a lower bound of a vector c:

p(c; γ) =

N∏

i=1

p(ci) ≥ N (0,Θ−1)

N∏

i=1

ϕ(ξi, γ) (43)

where
Θ = diag(ξ1, ξ2, ..., ξN ) (44)

In (43), the dependence on γ is explicitly shown. Given
that ξi and ci are related according to (42), the lower
bound in (43) is tight.

With the likelihood function in (4) and the lower
bound of Cauchy prior in (43) at hand, a lower bound
of the evidence distribution p(y; γ, σn) can be expressed
as the following integral:

p(y; γ, σn) =

∫
p(y|c;σn)p(c; γ)dc

≥
∫
N (Ac, σ2

nI)N (0,Θ−1)

N∏

i=1

ϕ(ξi, γ)dc

(45)
where the lower bound is tight. Unfortunately, we cannot
obtain a closed-form expression of the above integral.
In Section III, we have already used AEM to derive
an alternative lower bound of p(y; γ, σn) (see (15) and
subsequent equations).

Here, we will approximate the integral in (45) based
on the iterative procedure of BLRC. Note that the estimate
of ci for the (k−1)th iteration, c(k−1)

i , is a known constant,
so the following corresponding parameters

ξ
(k−1)
i =

2

(c
(k−1)
i )2 + γ2

Θ(k−1) = diag(ξ(k−1)
1 , ξ

(k−1)
2 , ..., ξ

(k−1)
N )

(46)

are also known constants. Then, ϕ(ξ(k−1)
i , γ)), ∀i, derived

from the (k − 1)th iteration are independent of the inte-
gration variable c and can be brought out of the integral
in (45). Thus, (45) becomes

p(y; γ, σn) ≥ N (0,Θ−1
y ) ·

N∏

i=1

ϕ(ξ
(k−1)
i , γ) (47)

with

N (0,Θ−1
y ) =

∫
N (Ac, σ2

nI)N (0, (Θ(k−1))−1)dc (48)

where

Θ−1
y = σ2

nI+A(Θ(k−1))−1AT (49)

In (47), the lower bound may not be tight because of the
iterative approximation.

Note that maximizing ln p(y; γ, σn) is equivalent to
minimizing the negative logarithm of the lower bound of
p(y; γ, σn). The cost function to be minimized for the kth

iteration for BLRC is then defined as

Lblrc = ln |Θ−1
y |+ yTΘyy −

N∑

i=1

lnϕ(ξ
(k−1)
i , γ) (50)

Recall that c(k−1)
i is defined by the previous iteration, so

Lblrc is not shown to be an explicit function of c in (50).
However, using the same procedure given in Appendix C,
it can be shown that

yTΘyy = min
c

( 1

σ2
n

||y −Ac||2 + cTΘ(k−1)c
)

(51)

Substituting (51) into (50), Lblrc can then be viewed as a
function of c as shown below:

Lblrc(c) = min
c

( 1

σ2
n

||y −Ac||2 + cTΘ(k−1)c
)

+ ln |Θ−1
y | −

N∑

i=1

lnϕ(ξ
(k−1)
i , γ)

(52)

Note that the last two terms in (52) do not depend on the
unknown c for the current iteration. Substituting (49) into
(52), minimizing Lblrc with respect to γ and σn can be
rewritten in c-space as:

min
c

Jblrc(c), Jblrc(c) = ||y −Ac||2 + hblrc(c) (53)

where the minimization with respect to γ and σn is carried
out in executing the regularization hblrc(c):

hblrc(c) = min
γ,σn

σ2
n

(
−

N∑

i=1

lnϕ(ξ
(k−1)
i , γ)

cTΘ(k−1)c+ ln |σ2
nI+A(Θ(k−1))−1AT |

)

(54)
Here, the regularization hblrc(c) is to encourage a sparse
solution.



D. Comparison in c-space

Consider the following maximally sparse signal recov-
ery problem:

min
c
||c||0, s.t. y = Ac (55)

Here, the l0 norm, ||c||0, represents the number of non-
zero elements in vector c. Although the cost function
in (55) is ideal for many applications, particularly when
exact reconstruction [57] is desired, finding its global
minimum is an NP-hard problem.

Given that ||c||0 ≡ limp→0

∑
i |ci|p, we employ the lp

norm (i.e., ||c||pp with 0 < p < 1) as a benchmark in this
section:

min
c
||c||pp, s.t. y = Ac (56)

We then compare optimization landscapes of the cost
functions in (56), (12), (39), and (53) corresponding
to lp, CG, SBL, and BLRC, respectively. An effective
optimization landscape is expected to possess the same
global minimum as (55), while exhibiting fewer local
minimums.

In order to visualize the differences of optimization
landscapes defined in (56), (12), (39), and (53), consider
the example shown in [50] where N = M + 1. Thus,
the null-space of A, denoted by anull, has only one
dimension. If cop is the optimum solution achieving the
global minimum of (55), cop shows maximum sparsity
and

y = Ac = Acop, c = cop + v · anull (57)

where v is an arbitrary constant. Choosing an A where
cop is known, we can then plot the regularization terms in
(56), (12), (39), and (53), with respect to c by changing
the scalar v, to view the optimization landscape (see
Fig. 3). Since the constraint y = Ac is always satisfied
with different v, the optimization landscape of regular-
ization term is also the optimization landscape of the
corresponding optimization problem. Note that we scale
the regularization terms such that all the regularization
terms equal to 1 at v = 0.

Since lp is close to the l0 if p is small. In Fig. 3,
the p = 0.01 curve is similar to that for the l0 norm,
where the large pit at v = 0 denotes the global minimum.
Unfortunately, there exist two other pits at v = −2 and
v = 0.71, which represent two local minimums. As ex-
pected, the large pit at v = 0 is widened while maintaining
its position as global minimum when p increases to 0.1.
The two other pits at v = −2 and v = 0.71 are also
widened with the increase in p. Nonetheless, the existence
of these local minimums persists with various p value
in (0, 1), which complicates the search for the global
minimum.

As shown in Fig. 3, it is remarkable that hcg in (13)
with a small γ̂ value for the CG approach behaves like
lp norm with a small p value. As γ̂ increases, all pits get
smoother. Thus, in order to get a more sparse solution, we
need to choose a smaller γ̂ for the CG approach. However,
the CG iteration is more likely to be trapped in one of
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Fig. 3. Normalized penalty values of (56), (12), (39), and (53) with
respect to the parameter v in (57).

the local minimums when γ̂ is small. On the other hand,
if we choose a large γ̂ for iteration, we may avoid being
trapped in a local minimum. However, the solution is no
longer accurate because the global minimum may shift
to a different location. For example, when γ̂ = 0.2, the
global minimum shifts from v = 0 to v = 0.52 as shown
in Fig. 3. Therefore, it is unclear how to choose γ̂ in
general for the CG approach.

To plot the penalty hsbl(c) in (40) for SBL, the c
is still controlled by the scalar v using (57). However,
the hyper-parameters τττ and σn within hsbl(c) cannot be
predetermined because they depend on the value of c.
Thus for a given v, we firstly compute c using (57). Then,
use line 6 and 8 in Algorithm 2 to compute σn and τττ
iteratively until minimum hsbl(c) is obtained. In Fig. 3,
the SBL curve shows the correct global minimum but no
local minimums. Note that the hsbl curve has been shown
in [50] to produce fewer local minimums than lp approach
as well.

Similar to SBL, the hyper-parameters γ and σn of
BLRC depend on the value of c. Thus, to plot the penalty
hblrc(c) in (54), we firstly compute c using (57) for a
given v. Then, noting that γ = 1√

τ
, use line 8 and 9

in Algorithm 3 to compute σn and τ iteratively until
minimum hblrc(c) is reached. In Fig. 3, BLRC presents
the correct global minimum without any local minimums,
which indicates that it has similar capability as SBL to
reduce the number of local minimums. This explains the
superior performance of BLRC over CG seen in numerical
examples in Section VI.

V. Comparisons under IR-l2 Interpretations

In this section, we will compare BLRC, SBL, and CG
based on the IR-l2 interpretation which will be used to
explain the superior performances of BLRC over SBL in
Section VI.
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A. IR-l2 Formulation of CG and BLRC

Since both CG and BLRC use the Cauchy prior in
the MAP framework, they have exactly the same steps for
updating c (see step 4 in Algorithm 1 and steps 4 and 5 of
Algorithm 3). These updating formulas are derived from
solving the log-sum regularized optimization problem

c = argmin
c
||y −Ac||2 + σ2

n

N∑

i=1

2 ln(c2i + γ̂2). (58)

It is well-known that the log-sum penalty encourages
a sparse solution. We typically use the following IR-l2
approach to minimize this objective function in (58):

c(k+1) = argmin
c
{||y −Ac||22 + σ2

n

N∑

i=1

w
(k)
i c2i } (59)

where the weight for the kth iteration is

w
(k)
i =

2

(γ̂(k))2 + (ĉ
(k)
i )2

(60)

Note that {ĉ(k)i } in (60) are obtained from the kth iter-
ation and are considered as constants in (59). The noise
variance σ2

n in (59) and the scale parameter γ̂(k) in (60)
are constants with respect to k in CG, but are updated at
each k in BLRC.

B. IR-l2 Formulation of SBL

For the c updating step in SBL, it is remarkable that
line 5 of Algorithm 2 coincides with the solution of the
following log-sum regularized optimization problem:

min
c
||y −Ac||22 + σ2

n

N∑

i=1

ln(c2i + Γ̃ii) (61)

The IR-l2 updating scheme for solving the above opti-
mization problem is given in (59) where the weight

w
(k)
i =

1

Γ̃
(k)
ii + (c̃

(k)
i )2

(62)

Let τ (k)i = w
(k)
i . It can be shown that (62) is equivalent to

the updated hyper-parameter τ̃ττ at the kth iteration in step
8 of Algorithm 2. Thus, in SBL, we actually “learn” the
hyper-parameter τ

(k)
i using the IR-l2 updating scheme.

C. The IR-l2 Point of View

From the IR-l2 point of view, SBL, BLRC and CG
solve the same equation (59) except the following differ-
ence. CG and BLRC use a common factor (γ̂(k))2 for all
weights in (60). However, SBL needs different factors Γ̃ii

for different weights in (62).
As shown in the left subplot of Fig. 4, Cauchy in

(2) is a long-tailed distribution. When the parameter
γ approaches zero, most of the probability mass will
concentrate at zero, which implies most ci’s will have
high probabilities to be zero. However, no matter how
small γ is, the mean and variance of Cauchy distribution
are still undefined. This implies that a small number of
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Distributions; (Right) Illustration of Regularization Functions for CG
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ci’s can be non-zeros. Thus, a single universal parameter
γ of Cauchy prior can be used to model all ci’s as seen
in (60).

This is not the case for the conditional Gaussian prior.
As shown in the left subplot of Fig. 4, Gaussian in (3)
is not a long-tailed distribution. When a particular ci is
near zero, the variance σ2

i (i.e., 1/τi) of the corresponding
zero-mean Gaussian distribution must approach zero, and
vice versa. Similarly, when a particular ci is non-zero,
the variance σ2

i of the corresponding zero-mean Gaussian
distribution must not be near zero, and vice versa. There-
fore, with Gaussian prior, N Γ̃ii’s are needed for the N
elements of c as seen in (62).

Recall that the log-sum penalty is equivalent to a
Cauchy prior. So, from the IR-l2 point of view, SBL’s
formulation in (61) uses ”Cauchy priors” with N param-
eters Γ̃ii’s, while CG and BLRC’s formulation in (58)
uses Cauchy priors with only one parameter γ̂. In other
words, we need to determine N hyper-parameters (i.e.,
τ̃i’s) for characterizing the N parameters Γ̃ii’s in SBL,
but only one hyper-parameter (i.e., γ̂) for characterizing
the Cauchy prior. Thus, BLRC leads to a more compact
latent space. This is a major advantage of BLRC over
SBL, which can be explained as follows.

Suppose both cj and cl in (1) are 0 and to be recovered
using SBL and BLRC. During the SBL iteration process,
one can see from (62) that both Γ̃

(k)
jj and Γ̃

(k)
ll need to

approach 0 in order to increase the penalties for non-zero
c
(k)
j and c

(k)
l as the iteration index k increases. However,

in practice, Γ̃
(k)
jj and Γ̃

(k)
ll are independently controlled

by hyper-parameters τ
(k)
j and τ

(k)
l . It is very likely that

Γ̃
(k)
jj and Γ̃

(k)
ll approaches zero with different speeds and

therefore the resulting c
(k)
j and c

(k)
l are not both near 0.

This is not the case with BLRC. In BLRC, as k increases,
the only hyper-parameter γ̂(k) decreases. It will cause the
penalties for non-zero c

(k)
j and c

(k)
l to increase with more

or less the same rate (see (60)). Thus, the resulting c
(k)
j

and c
(k)
l will both be near 0 when the BLRC iteration

process converges.
The implication of reducing γ̂(k) is shown in the right

subplot of Fig. 4 where ln(1+ |c|2
γ̂2 ) is plotted for various

values of γ̂. In addition, the l0 norm, l0.05 norm and l1
norm of c are also plotted. It can be seen that ln(1+ |c|2

γ̂2 )

approaches ||c||0 as γ̂(k) approaches zero [57]. This shows



TABLE I
SIMULATION EXAMPLE: SIX RAYS

ray indexes [1, 2, 3, 4, 5, 6]

Frequencies [0.1212, 0.1413, 0.3132, 0.331, 0.41, 0.465]

Amplitudes [1, 0.9254, 0.7331, 0.5678, 0.6, 0.8]

Phases [5.1191, 5.6913, 0.7979, 5.7389, 3.9732, 0.6129]

that BLRC approximately uses the l0 norm as γ̂(k) in the
regularization term approaches zero.

VI. Numerical Analyses

In this section, numerical analyses on numerical sta-
bility, convergent properties, spurious targets suppression,
noise variance estimation, sensitivities and resolutions of
CG, SBL and BLRC are provided. The OMP [24], which
is a popular greedy-based approach for the sparse signal
recovery problem, is used as a performance benchmark
here.

Consider a sum of K rays for numerical simulation:

y(i) =

K∑

l=1

al exp{j(2πfl
i

N
+ ϕl)}+ ϵ(i) (63)

where i ∈ S and S ⊂ {1, 2, ..., N}. The number of
elements in S is M which is smaller than N . Here. {fl},
{al} and {ϕl} are spatial frequencies, amplitudes, and
phases, respectively. The additive noise {ϵ(i)} are inde-
pendent identical distributed zero-mean Gaussian random
variables with variance σ2

n.

A. A Six-Ray Example

Without loss of generality, we choose N = 256. The
arbitrarily selected spatial frequencies fl, amplitudes al,
and phases ϕl for K = 6 are listed in Table I. The
standard deviation of the additive noise ϵ(i) is σn = 0.1.
Consider a large sparse antenna array (SPA) with M = 80
and a small coprime array (CPA) with M = 16. The
80 random samples observed by the large SPA, the 16
samples observed by the small CPA, and the 256 full
samples of {|y(i)|} are shown in the top subplot of Fig. 5.
Fourier spectra of SPA and CPA are shown in the bottom
left and right subplots, respectively, of Fig. 5 where the
six rays are marked as ground truth. It is seen that the
six rays are fully resolved by the large SPA. However,
many small noise-like side lobes are generated. For the
small CPA, two rays are missing (unresolved). In addition,
several large spurious rays appeared.

Using the large SPA and small CPA shown in Fig.
5, OMP, CG, SBL, and BLRC are employed to recover
the sparse signal defined in (63) and Table I. Note
that the Bayesian approaches (CG, SBL, and BLRC)
summarized in Section II have been formulated in terms
of real variables and parameters. The extension of these
approaches to deal with complex variables and parameters
is straightforward as shown in [44]. At first, the (·)2
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Fig. 5. Time samples and Spectra of sparse array (SPA) and coprime
array (CPA)

in Cauchy distribution (2) is replaced by |(·)|2, and
the likelihood distribution in (4) is changed to complex
Gaussian. Then, the derivations are the same as before
except that we need to change transpose (·)T to Hermitian
transpose (·)H and replace (·)2 by |(·)|2.

B. Initial Values of Hyper-parameters

SBL is robust with respect to the selection of initial
values. Here, the initial values are σ̃n = 1 and σ̃i =
0.1, ∀i for both SPA and CPA.

For CG, the selection of the optimal values of σ̂n

and γ̂ is crucial to the performance of CG. Based on the
knowledge of the targets in Table I, the optimal values
chosen by trial and error are σ̂n = 0.1 and γ̂ = 0.01 for
both SPA and CPA in our simulation. However, we are
not able to know the true targets in practice. Therefore, it
is impossible to find the optimal values for σ̂n and γ̂ for
CG in reality. The initial estimate of each element of c
for CG is a random number uniformly distributed in [0 1].

Like SBL, the selection of initial σ̂n and γ̂ for BLRC
is not critical since they will be updated robustly as
the iteration proceeds. The rule of thumb is that the
initial γ̂ needs to be large enough to emphasize the
data fitting term ||y −Ac||2 in (58) at the beginning of
the iteration process. As the iteration proceeds, γ̂ will
continue to decrease so as to emphasize the regularization
term σ̂2

n

∑N
i=1 2 ln(c

2
i + γ̂2) in (58) in order to promote

sparsity. However, γ̂ should not be too large, otherwise
it will require more iterations to converge. Since there
are fewer measurements with CPA (M = 16) compared
with SPA (M = 80), there exist more local minimums in
CPA [45]. Thus, we need to have a larger initial value of
γ̂ with CPA to avoid being trapped in a local minimum in
the early stage of iterations. In our simulations, the initial
values for BLRC are σ̂n = 1 and γ̂ = 0.1 for SPA and
σ̂n = 1 and γ̂ = 1 for CPA. Like CG, the initial estimate
of each element of c for BLRC is also a random number
uniformly distributed in [0 1].

Using SPA and CPA, respectively, Fig. 6 and Fig. 7
show the values of key parameters versus the iteration
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Fig. 6. Convergent Properties of OMP, SBL, CG, and BLRC using
SPA
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Fig. 7. Convergent Properties of OMP, SBL, CG, and BLRC using
CPA

number for OMP, CG, SBL, and BLRC. These results
will be used to discuss various numerical aspects of the
four considered approaches in the following subsections.
Here, in the top left subplots of both figures, the residue
in dB is defined as R

(k)
dB ≡ 20 log10 ||y −Ac(k)|| where

c(k) is the estimate of c using the corresponding approach
in the kth iteration.

To further demonstrate that BLRC is robust to the
initial values of hyper-parameters, numerical simulations
with different initial values of σ̂n and γ̂ are performed
for CPA. In the left subplot of Fig. 8, the residues for
BLRC with different initial σ̂n values are plotted against
the iteration number while the initial value of γ̂ is 1.
For these initial values, the updated σ̂n values are plotted
against the iteration number in the right subplot of Fig. 8.
Although different initial values are set for σ̂n, identical
final residue, final estimate of σ̂n, and the recovery result
for c are obtained.

In the left subplot of Fig. 9, the residues for BLRC
with different initial γ̂ values are plotted against the
iteration number while the initial value of σ̂n is 1. For
these initial values, the updated γ̂ values are plotted
against the iteration number in the right subplot of Fig. 9.
Similarly, although we have different initial values for γ̂,
identical final residue, final estimate of γ̂, and recovery
result for c are obtained.
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Fig. 8. Convergent Properties of BLRC for CPA with different
initial values of σ̂n
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Fig. 9. Convergent Properties of BLRC for CPA with different
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TABLE II
CONDITION NUMBERS WITH SPA - SBL AND BLRC

k 5 13 14 25

H
(k)
sbl 3.4× 106 8.1× 1014 N/A N/A

H
(k)
blrc 133 130 236 8.7× 105

TABLE III
CONDITION NUMBERS WITH CPA - SBL AND BLRC

k 5 8 9 25

H
(k)
sbl 5.4× 109 2.9× 1013 N/A N/A

H
(k)
blrc 1.6× 104 1.1× 103 734 8.5× 106

C. Numerical Stability

In Fig. 6 and Fig. 7, the iterative procedure of SBL
is terminated at k = 13 and k = 8 for SPA and
CPA, respectively. This is due to the fact that the matrix
H

(k)
sbl = 1

(σ̃
(k−1)
n )2

ATA + Σ̃(k) becomes ill-conditioned

for large k’s. Note that H
(k)
sbl needs to be inverted so as

to obtain the posterior covariance matrix Γ̃(k) in step 4
of Algorithm 2. Unlike SBL, the matrix H

(k)
blrc, defined

as 1
(σ̂2

n)
(k−1)A

TA + 2
(γ̂(k−1))2

Q̂(k), does not become ill-

conditioned for the same set of k’s. Note that H(k)
blrc is to

be inverted for obtaining the posterior covariance matrix
Γ̂(k) in step 4 of Algorithm 3. The condition numbers of
H

(k)
sbl and H

(k)
blrc for some k’s are also shown in Table II

and Table III for SPA and CPA, respectively.
To understand the reasons why BLRC is numerically

more stable than SBL, magnitudes of the IR-l2 weights
{w(k)

i } in (60) and (62) for BLRC and SBL, respectively,
are sorted in ascending order (see Fig. 10). Note that in
Fig. 10 the y-axis is represented in dB so as to emphasize
the small |w(k)

i | values. The x-axis is also presented in log
scale to emphasize the small i’s.

Recall that the IR-l2 weights {w(k)
i } in (60) are

the diagonal elements of 2Q̂(k)/(γ̂(k−1))2 in step 4 of
Algorithm 3. And the weights {w(k)

i } in (62) are equal
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Fig. 10. Sorted magnitudes in dB of the IR-l2 weights,
20log10|w

(k)
i |, derived from (60) for BLRC and (62) for SBL,

∀i = 1, ..., N . The dashed vertical line at i = 6 marks the number of
true targets

to the diagonal elements of Σ̃(k) in step 4 of Algorithm
2. Since ATA is singular, a well-conditioned diagonal
loading of Σ̃(k) is desirable so as to make H

(k)
sbl non-

singular. Similarly, a well-conditioned diagonal loading
of 2Q̂(k)/(γ̂(k−1))2 is desirable in order to make H

(k)
blrc

invertible.
From Fig. 10, one can see that the ratio between

maximum |w(k)
i | and minimum |w(k)

i | is near or over 1015

for SBL. Moreover, |w(k)
i | is more or less uniformly dis-

tributed between maximum |w(k)
i | and minimum |w(k)

i | for
SBL. This is due to the fact that each element of {ci} is
characterized by one hyper-parameter σ̃i in SBL. When a
particular ci is near zero, the variance σ2

i (i.e., 1
τi

or 1
wi

) of
the corresponding zero-mean Gaussian distribution must
approach zero. Thus, τi can be seen as the confidence
of “the corresponding ci is zero”. For different elements
of {ci}, we typically have different confidence levels on
whether they are zero or not. In addition, the confidence
levels change as iteration increases. Thus, the elements of
τ (i.e., the wi) approach infinity at various speeds during
iterations and the diagonal loading for H(k)

sbl (i.e., Σ̃(k) ) is
near singular. As a consequence, H(k)

sbl is also near singular
as shown in Table II and Table III, which is also noticed
by the SBL original paper [38]. Although we could use
σ2
i instead of the precision parameters (i.e., τi) as in [49],

this would not resolve the singularity issue of the matrix
H

(k)
sbl here. This is because σ2

i would still be inverted in
the subsequent step of SBL algorithm, leaving the core
problem unaddressed.

Unlike SBL, the ratio between maximum |w(k)
i | and

minimum |w(k)
i | is near or less than 1010 for BLRC. Most

importantly, |w(k)
i | is more or less constant for BLRC.

This is due to the fact that only one scale parameter
γ̂ is used for characterizing {ci}. Since most {ci} are
near zeros when BLRC converges, most {w(k)

i } are de-
termined only by γ̂ as shown in (60) and are therefore
almost constant. Now that, as the diagonal loading for
H

(k)
blrc (i.e., 2Q̂(k)/(γ̂(k−1))2) is almost constant, H

(k)
blrc

is not near singular as shown in Table II and Table III.
This demonstrates that BLRC is more numerically robust
and stable than SBL with sparse array input, making it
more suitable for automotive radar applications, which
commonly utilize sparse arrays and operate under single-
precision computing environments. Moreover, the almost
constant diagonal property of 2Q̂(k)/(γ̂(k−1))2 helps in
noise variance estimation (which will be discussed in
Section VI.F).

D. Residues and Convergent Criteria

In the top left subplots in Fig. 6 for SPA and Fig. 7
for CPA, we show the residues in dB, R(k)

dB , derived from
the kth iteration.

The residue for OMP decreases as the iteration num-
ber k increases. However, the decreasing rate reduces as
k > K = 6 since all six rays have been identified at
k = K. The new rays estimated by OMP after k = K
are false targets derived from matching the noises. Since
the further decrease of residue does not promote sparsity,
we should stop the OMP iteration when the residue
is less than an appropriate threshold tr for practical
implementations. Without knowing the number of targets
in advance, the OMP estimation will most likely either
miss true targets or show false targets. Note that the
OMP iteration stops at the 15th iteration in Fig. 7 since
the number of measurements M = 16 for CPA in our
example.

The residue for SBL decreases rapidly as the iteration
number k increases. Although the residue is very small
for large k’s, it does not mean the estimates of c obtained
for large k’s are better than those obtained for smaller k’s.
This is because the posterior covariance matrix Γ̃ in step
4 of Algorithm 2 becomes ill-conditioned when k > 13
for SPA (see Table II) and when k > 8 for CPA (see
Table III). Moreover, further decrease of the residue only
adjusts the estimated c to minimize the mismatch between
y and Ac, which is due to the additive noises. It does
not promote sparsity. This phenomenon is consistent with
the findings in [50] which shows that SBL will converge
to a l0 regularized optimization problem when there is
no noise. Thus, for practical implementations, we should
stop the SBL iteration when the residue is less than an
appropriate threshold tr. In addition, the SBL iteration
stops when the posterior covariance matrix Γ̃ in step 4
of Algorithm 2 becomes ill-conditioned (see Table II for
SPA and Table III for CPA).

Similar to CG, the residue for BLRC does not always
decrease as the iteration number k increases. At the
beginning of iterations, like SBL, the residue for BLRC
decreases as the iteration number k increases. This is
because γ̂ is large and the data fitting term ||y −Ac||2
in (58) is emphasized in this phase. As the iteration
proceeds, γ̂ continues to decreases (see the bottom left
subplots in Fig. 6 for SPA and Fig. 7 for CPA). Then,
the regularization term σ̂2

n

∑N
i=1 2 ln(c

2
i + γ̂2) in (58)

becomes more and more important in order to promote
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Fig. 11. Recovery of c at iteration 20 using SPA (Note that the SBL
stops at iteration 13) with σn = 0.1
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Fig. 12. Recovery of c at iteration 20 using SPA (Note that the SBL
stops at iteration 10) with σn = 1

sparsity. Although the residue could increase in this phase,
the rate of residue change commonly decreases as the
k increases and the residue gradually becomes nearly a
constant. This shows that BLRC not only minimizes the
residue but also promotes sparsity. Thus, like CG, we
should stop the BLRC iteration if the absolute value of
the residue change is less than an appropriate threshold
for practical implementations. Note that, unlike SBL, the
posterior covariance matrix Γ̂ in step 4 of Algorithm 3
does not become ill-conditioned for relatively large k’s
(see Table II for SPA and Table III for CPA).

E. Sparse Spectrum Reconstruction and Side Lobes

Note that the SPA with M = 80 has a much larger
aperture than the CPA with M = 16. As it has been shown
in [45] that larger N

M ratios imply more local minimums, it
will be much easier to reconstruct the original spectrum
using SPA than CPA. The CPA example puts the four
approaches under a severe test.

1. Sparse Array (SPA) with M = 80

Using the SPA samples in Fig. 5, Fig. 11 and Fig. 12
show the estimated c with σn = 0.1 and σn = 1,
respectively.

As shown in Fig. 11, OMP, SBL, BLRC, and CG
all recover six rays with high frequency accuracy. The
magnitudes of the six rays recovered by CG are the most
inaccurate among the four approaches. Regarding side
lobes, OMP suggests twenty rays at k = 20 and therefore
generates 14 distinct side lobes. Both SBL and CG have
many small side lobes where the side lobes for CG are
like white noises and the side lobes for SBL are like weak
rays. It is remarkable that most side lobes are suppressed
by BLRC.

The sparse signal recovery properties of SBL and
BLRC with SPA can be explained using the two bottom
subplots in Fig. 6. For SBL in the bottom right subplot,
the six top curves with σ̃i > 0.4 (after the 4th iteration)
represent the six true targets. The rest of the curves with
small but non-negligible σ̃i’s represent the false targets.
It can be seen that SBL has many spurious targets. For
BLRC in the bottom left subplot, γ̂ decreases drastically
to promote sparsity as k increases. This is due to the fact
that a smaller γ̂(k) makes the regularization term in (58)
closer to the l0 norm, as shown in the right subplot of
Fig. 4.

The sparse signal recovery properties of SBL and
BLRC with SPA can also be seen from the two top
subplots in Fig. 10. For both SBL and BLRC, the leftmost
six points (i = 1, 2..., 6) with the six smallest weights
represent the six true targets. Those points in the middle
and the right side of the two top subplots are with very
large weights and will generate essentially zero ci’s. The
rest of the points with moderate weights (which are not
large enough to generate negligible ci’s) will be consid-
ered as false targets. It can be seen that SBL has many
more spurious targets than BLRC because many weights
of SBL are not large enough to generate negligible ci’s.

When σn increases from 0.1 to 1, the magnitudes of
false targets derived from OMP, SBL, and CG increase
drastically (comparing Fig. 11 with Fig. 12). However, the
spurious targets are suppressed by BLRC for both σn =
0.1 and σn = 1. Since the largest ray magnitude is 1 as
shown in Table I, it is concluded that BLRC can suppress
spurious targets in low signal-to-noise ratio (SNR).

2. Coprime Arrays (CPA) with M = 16

Using the CPA samples in Fig. 5, Fig. 13 and Fig. 14
show the estimated c with σn = 0.01 and σn = 0.1,
respectively.

From Fig. 13 and Fig. 14, we observe that OMP
cannot resolve the third and fourth rays. OMP also misses
the fifth ray when σn = 0.1. In addition, there are quite a
few side lobes that will be interpreted as targets in radar
applications. Note that the iteration of OMP stops at 15
in this simulation because the number of measurements
M = 16. Both CG and SBL can resolve the six rays but
have large side lobes. The side lobes of CG are larger than
those of SBL. Remarkably, BLRC suppresses spurious
targets well.

Similar to SPA, the sparse signal recovery properties
of SBL and BLRC using CPA can be seen from the two
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Fig. 13. Recovery of c at iteration 20 using CPA (Note that the OMP
stops at iteration 15 and SBL stops at iteration 10) with σn = 0.01
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Fig. 14. Recovery of c at iteration 20 using CPA (Note that the
OMP stops at iteration 15 and SBL stops at iteration 8) with σn = 0.1

bottom subplots in Fig. 7. For SBL in the bottom right
subplot, the six top curves corresponding to the six largest
σ̃i represent the six true targets. The rest of the curves
with smaller σ̃i’s represent the false targets. However, as
the σ̃i’s representing some of the false targets are only
slightly smaller than the σ̃i’s representing the true targets,
the false targets are almost as strong as the true targets.
For BLRC in the bottom left subplot, γ̂ decreases so as
to promote sparsity as k increases. The implication of
reducing γ̂(k) is shown in Fig. 4, which has been discussed
previously for SPA and will not be repeated here.

The sparse signal recovery properties of SBL and
BLRC using CPA can also be seen from the two bottom
subplots in Fig. 10. The first six points with i = 1, 2, ..., 6
with the six smallest weights represent the six true targets.
The discussions are the same as those for SPA and are
omitted here. Again, SBL has many more spurious targets
than BLRC.

When σn increases from 0.01 to 0.1, the magnitudes
of false targets derived from OMP, SBL, and CG increase
(comparing Fig. 13 with Fig. 14). However, the spurious
targets are still suppressed by BLRC. It is concluded that
BLRC can suppress spurious targets in moderate SNR’s
even with a small array (M = 16).

In summary, BLRC provides sparser solution than
SBL with sparse array input. This outcome can be at-
tributed to BLRC’s ability to generate a more accurate
estimation of the noise standard deviation, σn, while SBL
tends to produce a much smaller value for σn estimation.
(Further details can be found in the subsequent section.)
This issue is exacerbated when sparse array input is
utilized, as non-uniform random sampling further worsens
the ambiguity problem. From (58) and (61), we know that
σ2
n is the weight on the penalty term. When σ2

n converges
to a reasonable non-zero value, further decrement of γ̂(k)

in BLRC will make ln(1 + |c|2
γ̂2 ) in (58) approach ||c||0,

i.e., the sparest solution.

F. Noise Standard Deviation Estimation

In the top right subplots in Fig. 6 and Fig. 7 for
SPA and CPA, respectively, we show the noise standard
deviations in dB (20 log10 σ̃

(k)
n for SBL and 20 log10 σ̂

(k)
n

for BLRC) as functions of the iteration index k. As the
iteration number k increases, σ̃(k)

n for SBL decreases to
very small values. However, unlike SBL, BLRC provides
a reasonable estimate of the noise standard deviation.
Note that the estimated σ̂n is the combined effect of the
original additive white Gaussian noise (AWGN) and the
insufficient-sampling noise [58]. Thus, σ̂n estimated by
BLRC is greater than the AWGN σn. When σn is large,
it will be shown in the next section that the estimated
σ̂n ≈ σn because the sampling noise now is negligible
compared to AWGN (see the right subplot in Fig. 15).

From (61), one can see that SBL with a very small
σ̃
(k)
n de-emphasizes the regularization term and therefore

does not promotes sparsity at the end of the iterative
process (see the top right subplots in Fig. 6 and Fig. 7).
However, from (58), one can see that BLRC promotes
sparsity since the regularization term remains effective in
the entire iteration process as σ̂n ≥ σn.

To understand why BLRC has a superior performance
over SBL in estimating σn, rewrite the σ2

n updating
strategy of BLRC in step 9 of Algorithm 3 as:

σ̂2
n =

||y −Aĉ||2
M − Tr(I− 2

γ̂2 Q̂Γ̂)
(64)

As shown in Fig. 10, 2
γ̂2 Q̂ in (64) is approximately a

constant diagonal loading matrix of Hblrc where Γ̂ =
H−1

blrc. Since there are N−K very large constant diagonal
terms in 2

γ̂2 Q̂, Hblrc is approximately equal to 2
γ̂2 Q̂. Thus,

2
γ̂2 Q̂Γ̂ in (64) is approximately a diagonal matrix with
(N −K) 1’s and (K) 0’s. Then, the denominator in (64)
is approximately equal to M − K. As the numerator in
(64) is approximately equal to Mσ2

n if ĉ ≈ c, we have
σ̂2
n ≈ M

M−Kσ2
n.

Even though the σ2
n updating strategy of SBL in step

6 of Algorithm 2:

σ̃2
n =

||y −Ac̃||2
M − Tr(I− Γ̃Σ̃)

(65)
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TABLE IV
Parameter Settings

10

ln(1 + |c|2
γ̂2 ) in (27) approach ||c||0, i.e., the sparest solution.

E. Noise Standard Deviation Estimation

In the top right subplots in Fig. 3 and Fig. 4 for SPA and
CPA, respectively, we show the noise standard deviations in
dB (20 log10 σ̃

(k)
n for SBL and 20 log10 σ̂

(k)
n for BLRC) as

functions of the iteration index k. As the iteration number
k increases, σ̃

(k)
n for SBL decreases to very small values.

However, unlike SBL, BLRC provides a reasonable estimate of
the noise standard deviation. Note that the estimated σ̂n is the
combined effect of the original additive white Gaussian noise
(AWGN) and the insufficient-sampling noise [37]. Thus, σ̂n

estimated by BLRC is greater than the AWGN σn. When σn

is large, it will be shown in the next section that the estimated
σ̂n ≈ σn because the sampling noise now is negligible
compared to AWGN (see the right subplot in Fig. 10).

From (30), one can see that SBL with a very small σ̃
(k)
n

de-emphasizes the regularization term and therefore does not
promotes sparsity at the end of the iterative process (see the top
right subplots in Fig. 3 and Fig. 4). However, from (27), one
can see that BLRC promotes sparsity since the regularization
term remains effective in the entire iteration process as σ̂n ≥
σn.

To understand why BLRC has a superior performance over
SBL in estimating σn, rewrite the σ2

n updating strategy of
BLRC in step 9 of Algorithm 3 as:

σ̂2
n =

||y −Aĉ||2
M − Tr(I− 2

γ̂2 Q̂Γ̂)
(33)

As shown in Fig. 5, 2
γ̂2 Q̂ in (33) is approximately a constant

diagonal loading matrix of Hblrc where Γ̂ = H−1
blrc. Since

there are N −K very large constant diagonal terms in 2
γ̂2 Q̂,

Hblrc is approximately equal to 2
γ̂2 Q̂. Thus, 2

γ̂2 Q̂Γ̂ in (33) is
approximately a diagonal matrix with (N −K) 1’s and (K)
0’s. Then, the denominator in (33) is approximately equal to
M −K. As the numerator in (33) is approximately equal to
Mσ2

n if ĉ ≈ c, we have σ̂2
n ≈ M

M−Kσ2
n.

Even though the σ2
n updating strategy of SBL in step 6 of

Algorithm 2:

σ̃2
n =

||y −Ac̃||2
M − Tr(I− Γ̃Σ̃)

(34)

is of the same form as (33), Σ̃ is nearly singular and its
diagonal terms are far from constant. Thus, SBL does not
estimate σ2

n accurately. In fact, as σ̃
(k)
n becomes smaller, the

penalty term for non-sparsity in (30) becomes smaller as
well. Then, as the iteration proceeds, the data fitting term
||y −Ac||2 in (30) becomes more and more important and
the estimated σ̃

(k)
n becomes disproportionately small.

F. Sensitivity with respect to σn, K and M

Sensitivities of the four spectrum reconstruction results
(derived by OMP, SBL, CG, and BLRC) with respect to the
noise standard deviation σn, number of targets K, and number
of samples M are shown in Fig. 10 and Fig. 11. In these

TABLE IV
PARAMETER SETTINGS

Fig. 10
MSE vs. σn

Fig. 11
MSE vs. K

Fig. 11
MSE vs. M

SBL σ̃n = 1, σ̃i = 0.1, ∀i

BLRC σ̂n = 1, γ̂ = 0.1

CG σ̂n = 5× 10−2

γ̂ = 5× 10−3
σ̂n = 5× 10−2

γ̂ = 5× 10−4
σ̂n = 5× 10−2

γ̂ = 5× 10−3

Noises σn = .05 ∼ 1.0 σn = 0.1 σn = 0.1

Signal
K rays

K = 6 rays
listed in Table I

K = 1 ∼ 12
random rays

K = 6 rays
listed in Table I

SPA
M samples

M = 80
random samples

M = 80
random samples

M = 32 ∼ 192
random samples

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Noise Standard Deviation

-36

-34

-32

-30

-28

-26

-24

-22

-20

-18

N
or

m
al

iz
ed

 M
SE

(d
B)

OMP
SBL
BLRC
CG

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Fig. 10. (Left) The normalized MSE as noise standard deviation increases;
(Right) The estimated σn by BLRC and SBL

figures, the normalized mean squared error (MSE) is defined
as

MSE (dB) = 10 log10

[ 1

N
|| c

maxi{|ci|}
− c̄

maxi{|c̄i|}
||22

]

(35)
where N = 256 and c is the true complex spectrum of
the receive signal and c̄ represents the recovered spectrum
using OMP, SBL, CG, or BLRC. Note that MSE may not
reflect the spectrum reconstruction well when the estimated
ray frequencies are slightly off from the corresponding true
ray frequencies. In addition, MSE does not show sparsity
characteristics. Thus, this simulation is conducted only for
SPA with large M where sparse signal recovery can be done
relatively easily.

The MSE at each point plotted in Fig. 10 and Fig. 11 is the
average of 100 realizations of random noises, random rays and
random samples, respectively. The parameters for the three
Bayesian approaches (SBL, CG, and BLRC) are outlined in
Table IV. The number of samples, ray parameters, and noise
standard deviations are also shown in Table IV.

The average MSE’s of 100 realizations obtained by OMP,
SBL, CG, and BLRC as noise standard deviation increases
from 0.05 to 1 are shown in the left subplot of Fig. 10.
BLRC shows the best performance, which is followed by SBL.
CG performs better than OMP when noise is small. But CG
performs worse than OMP with large noises, which is due to
the fact that the parameters of CG are not adjusted as noise
increases.

The right subplot in Fig. 10 shows the average estimated
noise standard deviations of 100 realizations obtained by

is of the same form as (64), Σ̃ is nearly singular and its
diagonal terms are far from constant. Thus, SBL does not
estimate σ2

n accurately. In fact, as σ̃
(k)
n becomes smaller,

the penalty term for non-sparsity in (61) becomes smaller
as well. Then, as the iteration proceeds, the data fitting
term ||y −Ac||2 in (61) becomes more and more impor-
tant and the estimated σ̃

(k)
n becomes disproportionately

small.

G. Sensitivity with respect to σn, K and M

Sensitivities of the four spectrum reconstruction re-
sults (derived by OMP, SBL, CG, and BLRC) with respect
to the noise standard deviation σn, number of targets K,
and number of samples M are shown in Fig. 15 and Fig.
16. In these figures, the normalized mean squared error
(MSE) is defined as

MSE (dB) = 10 log10

[ 1

N
|| c

maxi{|ci|}
− c̄

maxi{|c̄i|}
||22

]

(66)
where N = 256 and c is the true complex spectrum
of the receive signal and c̄ represents the recovered
spectrum using OMP, SBL, CG, or BLRC. Note that MSE
may not reflect the spectrum reconstruction well when
the estimated ray frequencies are slightly off from the
corresponding true ray frequencies. In addition, MSE does
not show sparsity characteristics. Thus, this simulation is
conducted only for SPA with large M where sparse signal
recovery can be done relatively easily.

The MSE at each point plotted in Fig. 15 and Fig. 16 is
the average of 100 realizations of random noises, random
rays and random samples, respectively. The parameters
for the three Bayesian approaches (SBL, CG, and BLRC)
are outlined in Table I. The number of samples, ray
parameters, and noise standard deviations are also shown
in Table I.

The average MSE’s of 100 realizations obtained by
OMP, SBL, CG, and BLRC as noise standard deviation
increases from 0.05 to 1 are shown in the left subplot
of Fig. 15. BLRC shows the best performance, which is
followed by SBL. CG performs better than OMP when
noise is small. But CG performs worse than OMP with
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Fig. 15. (Left) The normalized MSE as noise standard deviation
increases; (Right) The estimated σn by BLRC and SBL
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Fig. 16. (Left) The normalized MSE as the number of targets K

changes; (Right) The normalized MSE as the number of
measurements M changes

large noises, which is due to the fact that the parameters
of CG are not adjusted as noise increases.

The right subplot in Fig. 15 shows the average
estimated noise standard deviations of 100 realizations
obtained by BLRC and SBL for several different noise
levels. It can be seen that the SBL estimates are inaccu-
rate. On the other hand, BLRC estimates are larger than,
but very close to, the true noise values. The higher the
noise level is, the more accurate the BLRC estimate is.
This is because, as mentioned before, there are mainly
two kinds of noise in sparse signal recovery problems
[58]: additive white Gaussian noise (AWGN) and random
sampling noise. What BLRC estimate is the combined
effect of these two kinds of noise. When AWGN is large,
AWGN becomes dominant and the random sampling
noise becomes negligible.

The average MSE’s of 100 realizations obtained by
OMP, SBL, CG and BLRC as the number of rays, K,
increases from 1 to 12 are shown in the left subplot
in Fig. 16. Table I shows the parameters used for the
simulations. Similarly, BLRC shows the best performance
followed by SBL. CG performs better than OMP when
K = 1. But CG performs worse than OMP for all other
K’s, which is due to the fact that optimum CG parameters
used for simulation need to be found by trial and error in
order to get good performances. Here, the parameters are
chosen for K = 1 and not adjusted further as K increases.

The average MSE’s of 100 realizations obtained by
OMP, SBL, CG, and BLRC as the number of SPA
elements, M , increases from 32 to 192 are shown in the
right subplot in Fig. 16. Table I shows the parameters used
for simulations. BLRC has the best performance and SBL
is the second-best. CG performs better than OMP when
M is large. But CG performs worse than OMP for small
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Fig. 17. Resolution of Two Rays of Same Magnitude

M ’s. Again, the parameters of CG are not adjusted as M
changes.

H. Resolution

Using SPA with M = 80, OMP, CG, SBL, and
BLRC have very similar resolution performances. Their
estimated results are all accurate because the aperture
of SPA with M = 80 is large enough and sufficient
measurements are obtained. Here, the CPA with M = 16
is used to test the resolution of the proposed BLRC
approach, as high resolution cannot be achieved easily
with such a small aperture. It will be shown that BLRC
outperforms OMP, CG, and SBL.

In the first example, consider two rays with equal
amplitudes. Their normalized frequencies are 500

N and 505
N

where N = 1000. Fig. 17 shows that OMP, SBL and CG
all fail to resolve the two rays while BLRC can distinguish
them. Note that SBL stops at iteration 6 in this example
because the matrix to be inverted becomes singular at
iteration 7 (see numerical stability in Section VI.C).

In the second example, consider two rays with dif-
ferent magnitudes: 1 and 0.2. Let their normalized fre-
quencies be 500

N and 510
N , respectively, where N = 1000.

Again, Fig. 18 shows that OMP, SBL and CG all fail to
resolve the two rays while BLRC can distinguish them.
Similarly, SBL stops at iteration 6 due to the near singular
issue.

Although the two rays can be distinguished by BLRC
in both examples, the estimated frequencies and mag-
nitudes are slightly off because the targets are so close
to each other. Even worse when one is weaker than
the other, the weak target estimation is biased toward
the strong target. Fortunately, for current autonomous
driving applications, these results are satisfactory because
the ability to separate targets is more crucial (e.g., early
detection of crossing pedestrians [59]).

Note that in both Fig. 17 and Fig. 18, SBL has
spurious targets while BLRC does not. This is not shown
in these two zoom-in figures. The better performances of
BLRC over SBL on resolution and sparsity are due to
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Fig. 18. Resolution of Two Rays with Different Magnitudes
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Fig. 19. Simulation scenario for range-azimuth angle estimation (top
view and side view)

the fact that BLRC provides a reasonable estimation of
the noise standard deviation σ2

n, but SBL does not (as
discussed in Sections VI.F and VI.G).

VII. Automotive Radar Applications

In this section, simulated automotive radar signals are
processed to demonstrate the performance of the proposed
BLRC method.

A. Image Radar Signal Processing

In order to locate targets in 2D, we need to receive
the back scattered electromagnetic signal in two distinct
dimensions [60]–[62]. Consider the following frequency-
modulated continuous-wave (FMCW) transmitted pulse:

s(t) = ej2π(fc+
αt
2 )t, 0 ≤ t ≤ Tc (67)

where fc is the carrier frequency, α is the chirp slope,
and Tc is the duration of one chirp.

Consider Fig. 19 as an example where the first antenna
array element is set as the origin. Since the targets
are in the far zone, plane wave approximation is valid.
Define P (rl, θl) as the position of lth target in the polar
coordinates, then the round-trip propagation time between
the lth target and the ith array element is given by

tl =
2rl − id sin θl

v
(68)

where d is the antenna spacing and v is the speed of light.
To estimate the range {rl} and angle {θl}, the tl-

delayed received signal at the ith antenna element is
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mixed with s∗(t) by the mixer, filtered by low-pass filter
(LPF), and sampled at the sampling rate fs by analog-to-
digital converter (ADC). Then, the nth ADC samples at
the ith antenna element is:

y̌(n, i) ≈
K∑

l=1

ǎl exp
{
j2π

[2rl
v

αn∆t− d sin θl
λ

i+
2rl
λ

]}

+ ϵ̌(n, i), n = 1, 2, ..., Ns

(69)
where K is the number of targets, ∆t = 1/fs is the
sampling interval, Ns is the number of ADC samples,
ϵ̌ is the additive noise and ǎl is the lth target strength.
Note that the received target strength |ǎl| is proportional
to the antenna gain, RCS of the target and 1/rl.

To obtain the range estimation, performs FFT on the
Ns ADC samples in (69):

y(p, i) = Fn{y̌(n, i)} =
Ns−1∑

n=0

y̌(n, i)e−j2π p
Ns

n (70)

Representing (70) in the same form as (63) with full
samples, we have

y(p, i) =

K∑

l=1

al(p) exp{j(2πfl
i

N
+ ϕl)}+ ϵ(p, i) (71)

where al(p) = Fn

{
ǎle

j2π
[

2rl
v αn∆t

]}
, fl = −L sin θl

λ , ϕl =
4πrl
λ and ϵ(p, i) = Fn{ϵ̌(n, i)}. Note that the d in (69) is

the minimum element spacing in antenna array and d = L
N

where L is the full antenna aperture if none of the N array
elements is missing. Therefore, the SPA and CPA used
in previous sections can be obtained by selecting array
elements based on the corresponding pattern as shown in
Fig. 5.

Note that, when p = 2rl
v αNs∆t, |al(p)| gets its

maximum value: Ns|ǎl|. Usually, if the maximum of
|al(p)| occurs at p = p∗, a local maximum of |y(p, i)| also
occurs at p = p∗. Thus, the indexes of local maximums
of |y(p, i)| offer the range information { 2rlv αNs∆t}.

To find the angle information, we can apply sparse
spectrum reconstruction approaches (with respect to i) to
y(p∗, i) in (71). For automotive radar applications, the
number of samples M which is usually much less than
N . Since the number of dominant targets for a given
range is small, there will be no problem to find the
spatial frequency fl corresponding to p∗ in (71). From
fl and p∗, we can then find the angle and range of target,
respectively. Note that, without loss of generality, the
Doppler processing is omitted for simplicity.

B. Automotive Radar Signal Simulator

A physical optics (PO) based electromagnetic sim-
ulator inspired by [63] is developed to generate typi-
cal FMCW automotive radar signals. In our simulator,
targets are composed of many small triangular facets.
To generate the received radar signal, the simulator at
first computes the induced currents on each facet of all
targets illuminated by the incident radar signal based

TABLE V
RADAR SETTING

Parameter Setting

Carrier Frequency fc 79GHz

Wavelength λ 3.797 mm

Chirp Slope α 10MHz/µsec

Sampling Frequency fs 20MHz

ADC Samples Ns 1024

Antenna Number M 16

Antenna Element Spacing d λ/2

Target Surface Resistivity 0.1

Car1 Position [12,70,0] in meters

Car2 Position [-4.1,75,0] in meters

Car3 Position [-0.1,80.1,0] in meters

Car4 Position [4.21,86,0] in meters

Car5 Position [4.15,74,0] in meters

Fixed Target Ranges 65,95,105 in meters

Fixed Target Angles -21,-14,-7,0,7,14,21 in degrees

on the principle of PO. Then, the simulator sums up,
at the radar receive antenna, all back-scattered electro-
magnetic fields radiated from these induced currents on
all facets of all targets. Using this simulator, scattered
electromagnetic fields and radar cross section (RCS) of
each target in realistic target scenes can be generated.
Compared to the computationally intensive and resource
consuming full-wave simulation, the PO based simulator
is able to highlight dominant wave features and provide
computational efficiency without compromising much on
numerical accuracy if the high frequency approximation
for electromagnetic wave propagation and scattering is
valid.

C. Numerical Example

An automotive radar with a 16-element coprime array
(as marked in the top subplot of Fig. 5) is considered.
A scene with five cars and twenty-one fixed point targets
(corner reflectors) is shown in the left subfigure of Fig. 19.
The first element of the coprime array is located at the
origin as shown in the right subfigure of Fig. 19. Specific
parameters for all these targets and the radar are shown
in Table V.

Then FMCW signal in (67) with a chirp rate
10MHz/µsec is transmitted. In our simulator, all targets
are composed of many small facets. For example, the
automobile in isometric view in Fig. 19 is composed of
7226 facets. Then we use our proposed automotive radar
signal simulator to generate the received signals at the
16 coprime array elements. The additive white Gaussian
noise (AWGN) ϵ̌ in (69) is generated with two different
standard deviations, σ = 0.03 and σ = 0.3.

After mixer, LPF, and ADC, the signal received by
the ith array element becomes the ADC sample y̌(n, i) in
(69). Perform FFT on y̌(n, i) with respect to n to obtain



y(p, i) = Fn{y̌(n, i)} as shown in (70). Then, perform
OMP, CG, SBL, and BLRC on y(p, i) with respect to i
to obtain the 2D radar spectrum ȳ(p, f) for each of these
four approaches. Using r = pv

2αNs∆t to convert p to the
range variable r and using θ = arcsin −λf

L to map f to
the angle θ, the 2D radar image plot |ȳ(r, θ)| recovered
by the four approaches mentioned in Section VI with two
different AWGN strengths are shown in Fig. 20.

As shown in Fig. 20, with pruning, SBL results still
exhibit spurious targets. Moreover, the number of spurious
targets increases with noise strength. CG results also show
spurious targets at range equal to 65 m, even though the
CG parameters have been optimized by trial and error.
Note that optimizing parameters by trial and error is not
possible in practice, since the targets are supposed to
be unknown. For OMP, we set the iteration number to
be 8, which is slightly larger than the maximum target
number at each range. This is not possible in practical
applications either because the targets are unknown. It is
remarkable that, BLRC robustly delivers the least spurious
solution and provides optimal resolution of the target
images for both AWGN strengths. This is consistent with
our previous analyses.

VIII. Conclusion

In this paper, we propose a Bayesian linear regression
algorithm, BLRC, which uses the non-conjugate Cauchy
prior. Then we focus on the comparisons among three
Bayesian linear regression approaches (i.e., BLRC, CG,
and SBL) when sparse array measurement is used as
input.

Firstly, BLRC can be considered as a significant im-
provement over the CG approach because BLRC provides
a systematic updating scheme for the hyper-parameters
which is absent from the CG approach. This makes BLRC
more feasible than CG as CG is sensitive to the selection
of the hyper-parameters. Furthermore, the systematic up-
dating scheme empowers BLRC the capability to reduce
the number of local minimums as shown in Section IV.
This greatly reduces the chances of BLRC being trapped
in a local minimum at the early stage of the iteration
process. As is shown in Section VI and Section VII,
BLRC outperforms CG in various scenarios even when
CG has the best choice of its hyper-parameters. This
makes BLRC more practical than CG, especially when
it is used in the highly dynamic automotive scenarios.

Secondly, BLRC can also be considered as a signif-
icant improvement over the well-known SBL approach.
Both BLRC and SBL are Bayesian linear regression
approaches and have the same iterative updating steps
for the solution and hyper-parameters. The formulas for
updating the solutions in BLRC and SBL are also similar
to each other. However, there are key differences between
BLRC and SBL. Only two hyper-parameters need to be
handled in BLRC due to the use of Cauchy prior, while
the number of hyper-parameters to be handled is large

for SBL. Thus, compared with SBL, BLRC has a more
compact latent space.

Thirdy, comprehensive numerical analyses are con-
ducted to demonstrate the superior performances of
BLRC when sparse array measurement is used as input.
Special attention has been paid to the comparisons be-
tween BLRC and the well-known SBL approach. It is
shown that BLRC is more numerically robust than SBL
and provides a more accurate estimate of the noise vari-
ance. Since BLRC provides a more accurate estimation of
the noise variance, it tends to yield the sparsest solution,
whereas SBL is susceptible to generating spurious targets.
The issue of spurious targets becomes more pronounced
in scenarios involving sparse array or low-SNR input,
as both factors contribute to exacerbating the ambiguity
problem. From the resolution point of view, the sparest
solution tends to separate targets even though they are
very close to each other. Thus, BLRC provides a higher
resolution result. Based on the IR-l2 interpretations, it is
remarkable to see that all advantages of BLRC over SBL
are originated from the simple fact that BLRC uses the
long-tailed Cauchy prior which leads to a more compact
latent space.

Finally, the application of BLRC to sparse MIMO
radar array signal processing is presented. Compared with
the reconstructed radar images of other sparse signal re-
covery algorithms, the performance of BLRC successfully
demonstrates its efficiency in producing high-resolution
radar images with the least false targets, which is critical
to the development of advanced driver-assistance systems
(ADAS) and autonomous driving (AD) applications.

Appendix A

The first expectation in (16) is further simplified
below:

Ec|y[||y −Ac||2] = |y|2 − ĉTATy − yTAĉ

+ Ec|y[c
TATAc]

(72)

As cTATAc is a scalar,

cTATAc = Tr(cTATAc) = Tr(AccTAT )

Then,
Ec|y[c

TATAc] = Tr(AEc|y[cc
T ]AT )

= Tr(AΓ̂AT ) + Tr(AĉĉTAT )

= Tr(ATAΓ̂) + ĉTATAĉ.

(73)

Substituting the above equation into (72), we have

Ec|y[||y −Ac||2] = ||y −Aĉ||2 + Tr(ATAΓ̂) (74)

Appendix B

Set a→ 0 and b→ 0, then we extend the lower bound
in (37) of a scalar c to a lower bound of a vector c, and
use the notation τi instead of ξi:

p(c|τττ) =
N∏

i=1

p(ci) ≥ N (0,Σ−1) (75)
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Fig. 20. Radar Imaging Performances for OMP, CG, SBL, and BLRC based on Realistic Target Scene Simulation (Image Dynamic Range:
70dB). Upper Row: σ = 0.03. Lower Row: σ = 0.3.

where Σ has been defined as diag(τττ) in (3). In (75),
the dependence on τττ is explicitly shown. Recall the
optimization problem for hyper-parameters in (9):

{τ̃ττ , σ̃n} = argmax
τττ,σn

ln{p(y|τττ , σn)}

= argmax
τττ,σn

ln{
∫

p(y|c, σn)p(c|τττ)dc}
(76)

Substituting (4) and (75) into the integral in (76), the
lower bound of the evidence distribution p(y|τττ , σn) is
derived as follows:

p(y|τττ , σn) ≥
∫
N (Ac, σ2

nI)N (0,Σ−1)dc = N (0,Σ−1
y )

(77)
with

Σ−1
y = σ2

nI+AΣ−1AT (78)

According the equation (36) in [38], the following is
the negative logarithm of the lower bound of p(y|τττ , σn):

Lsbl = ln |Σ−1
y |+ yTΣyy + C (79)

where C is a constant. Thus, optimization problem in (76)
is equivalent to minimizing the cost function Lsbl in (79).

As shown in Appendix C,

yTΣy = min
c

( 1

σ2
n

||y −Ac||2 + cTΣc
)

(80)

Thus, minimizing the cost function Lsbl with respect to
τττ and σn can be rewritten in c-space as [50]:

min
c

Jsbl(c), Jsbl(c) = ||y −Ac||2 + hsbl(c) (81)

where the minimization with respect to τττ and σn is
done in deriving the regularization hsbl(c) to encourage
a sparse solution:

hsbl(c) = min
τττ,σn

σ2
n

(
cTΣc+ ln |σ2

nI+AΣ−1AT |
)

(82)

Appendix C

To find the solution to

min
c

( 1

σ2
n

||y −Ac||2 + cTΣc
)
, (83)

set the derivative with respect to c to be 0:

∂

∂c

[ 1

σ2
n

||y −Ac||2 + cTΣc
]
c=co

= 0 (84)

so we can get the optimal co:

co = (σ2
nΣ+ATA)−1ATy (85)

Substitute co back to the original objective function in
(83), we have

1

σ2
n

||y −Aco||2 + cTo Σco

=
1

σ2
n

yT
[
I−A(σ2

nΣ+ATA)−1AT
]
y.

(86)

Applying the Woodbury’s identity

E−1−E−1B(D+CE−1B)−1CE−1 = (E+BD−1C)−1,
(87)

to simplify
[
I−A(σ2

nΣ+ATA)−1AT
]

in (86), we get

1

σ2
n

yT
[
I−A(σ2

nΣ+ATA)−1AT
]
y

=yT (σ2
nI+AΣ−1AT )−1y

(88)

Thus, we have

yT (σ2
nI+AΣ−1AT )−1y = min

c

( 1

σ2
n

||y −Ac||2 + cTΣc
)
.

(89)
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