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Abstract
Neural oscillations are important features in a working central nervous system, facilitating
efficient communication across large networks of neurons. They are implicated in a diverse range
of processes such as synchronization and synaptic plasticity, and can be seen in a variety of
cognitive processes. For example, hippocampal theta oscillations are thought to be a crucial
component of memory encoding and retrieval. To better study the role of these oscillations in
various cognitive processes, and to be able to build clinical applications around them, accurate and
precise estimations of the instantaneous frequency and phase are required. Here, we present
methodology based on autoregressive modeling to accomplish this in real time. This allows the
targeting of stimulation to a specific phase of a detected oscillation. We first assess performance
of the algorithm on two signals where the exact phase and frequency are known. Then, using
intracranial EEG recorded from two patients performing a Sternberg memory task, we characterize
our algorithm’s phase-locking performance on physiologic theta oscillations: optimizing algorithm
parameters on the first patient using a genetic algorithm, we carried out cross-validation
procedures on subsequent trials and electrodes within the same patient, as well as on data recorded
from the second patient.
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I. INTRODUCTION
Neural oscillations are fundamental to the normal functioning of a working central nervous
system. They can be observed in single neurons as rhythmic changes of either the
subthreshold membrane potential or in cellular spiking behavior. Large populations of such
neurons can give rise to synchronous activity, which may correspond to rhythmic
oscillations in the local field potential (LFP). These oscillations can in turn modulate the
excitability of other individual neurons. Therefore, a key function of these oscillations is to
facilitate efficient communication across large neuronal networks, as the synchronous
excitation of groups of neurons allow them to form functional networks [1]. Additionally,
network oscillations bias input selection, temporally link neurons into assemblies, and
facilitate synaptic plasticity, mechanisms that all support the long-term consolidation of
information [2].

There are distinct oscillators in various brain regions that are governed by different
physiological mechanisms. We are only beginning to uncover the various roles these
oscillators play in different aspects of cognition. Numerous EEG, MEG, ECoG, and single
unit recording studies have shown that oscillations at certain frequencies can be elicited or
modulated by specific task demands, and that their amplitude or power have correlations to
the outcome of those tasks [3], [4]. For example, prominent oscillations in the theta
frequency range can be detected in the hippocampus and entorhinal cortex of rats during
locomotion, orienting, conditioning, or while they are performing learning or memory tasks
[5], as well as in humans performing various memory and spatial navigation tasks [6], [7],
[8], [9], [10], [11], [12], [13], [14]. Because of the role of hippocampal theta oscillations in
modulating long-term potentiation (LTP), they are thought to be an important component of
memory encoding [15], [16], [17], [18], [19], [20]. Synchronization and coherence of theta
oscillations between the hippocampus and other brain regions such as the prefrontal cortex
have also been shown to be an important factor in successful learning and memory [21],
[22], [23], [24].

The phase of these neural oscillations can possibly be used to store and carry information
[25], [2], as well as to modulate physiological activity such as LTP. For example,
stimulation applied to the perforant pathway at the peak of hippocampal theta rhythms
induced LTP while stimulation applied at the trough induced long-term depression [17].
Theta also serves to temporally organize the firing activity of single neurons involved in
memory encoding [26], [27], such that the degree to which single spikes are phase-locked to
the theta-frequency field oscillations is predictive of how well the corresponding memory
item is transferred to long-term memory [14]. Such temporal patterns of neural activity are
potentially important considerations in the design of future neural interface systems.

Phase relationships are typically characterized through post hoc analysis in most studies, as
accurate measures of frequency and phase and their complex relationships with other
phenomena require analysis in the time-frequency domain. Real-time systems that could
potentially utilize oscillation phase information, for example brain-computer interfaces [28],
or responsive closed-loop stimulator devices that combine neural ensemble decoding with
simultaneous electrical stimulation feedback [29], [30], [31], would require precise and
accurate measurements of the instantaneous phase. Phase-specific stimulation could also aid
in experimental research on the temporal patterns of neural ensemble activity and their
correlations with cognitive processes and behavior. A few studies have performed such
phase-specific electrical stimulation on animals. Pavlides et al. [15] and Hölscher et al. [16]
built analog circuits that triggered stimulation pulses at the peak, zero-crossing, and troughs
of the hippocampal LFP signal. This approach assumes a sufficiently narrow bandwidth
such that the peak, zero-crossing, and troughs of the input signal approximates these values
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of the actual underlying oscillation. Hyman et al. used a dual-window discrimination method
for peak detection, whereby two windows of variable-time widths and heights were
manually created to fit each individual animals typical theta frequency and amplitude, and
the stimulator set to be delay-triggered if the input waveform successfully passed through
both windows [17]. Because this approach requires manual calibration to a specific setting,
real-time operation in the face of dynamic amplitude or frequency changes would not be
possible. These systems would not be sufficient for neural interfaces operating in real time
or experiments requiring higher-resolution phase detection. As such, an alternative approach
is needed.

Here, we present methods to accurately estimate the instantaneous frequency and phase of
an intracranial EEG oscillation signal in real time. At the core of our methodology is an
autoregressive model of the EEG signal, which we use to both optimize the bandwidth of the
narrow-band signal using estimations of the power spectral density, as well as to perform
time-series forward-predictions. These two steps in conjunction allows us to make precise
and accurate estimates of the instantaneous frequency and phase of an oscillation, which we
then use to target output stimulation pulses to a specific phase of the oscillation.

II. METHODS
A. Algorithm Overview

The ultimate goal of our algorithm is to be able to calculate the instantaneous frequency and
phase of a neurophysiological signal at a specific point in time with the necessary accuracy
and precision to be able to deliver phase-locked stimulation pulses in real time. The
algorithm is comprised of several sequential steps: 1. Frequency band optimization within a
predefined frequency band (for theta, we use 4–9 Hz), utilizing autoregressive spectral
estimation, 2. Zero-phase bandpass filtering, based on the results of the frequency band
optimization procedure, 3. Estimating the future signal by autoregressive time-series
prediction, 4. Calculating the instantaneous frequency and phase via the Hilbert-transform
analytic signal, and 5. Calculating the time lag until the desired phase for the output
stimulation pulse. A graphical representation of these steps is depicted in Fig. 1. It must be
noted, however, that there are several parameters used by the algorithm that are optimized
offline prior to its online operation. The procedure for the offline optimization of these
parameters using a genetic algorithm is discussed in section 2I.

B. Autoregressive Model
Autoregressive (AR) modeling has been successfully applied to EEG signal analysis for
diverse applications such as data compression, segmentation, classification, sharp transient
detection, and rejection or canceling of artifacts [32], [33]. Although the processes
underlying EEG signals may be nonlinear, traditional linear AR modeling has been shown to
be as good as, or even slightly better than, non-linear models in at least one study [34], in
terms of the correlation coefficient between forecasted and real time series. It was found that
processes with spectra limited to certain frequencies plus white noise can be well described
by an AR model, while processes with power spectra characterized by multiple very narrow
peaks are described poorly by an AR model. Therefore, for brain oscillation detection, AR
modeling is a natural choice. Furthermore, parameters can be updated in an adaptive manner
using the Kalman filtering algorithm or chosen to give the best fit to a segment of data
samples, using either the Levinson-Durbin algorithm or the Burg algorithm [33]. Particularly
with strong, coherent oscillations, small segments of the EEG are presumed to be locally-
stationary, and thus a non-adaptive model is suitable. Autoregressive modeling provides a
robust method of estimating the power spectrum for short (1–2 s) EEG segments, and is less
susceptible to spurious results [33].
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An autoregressive model AR(p) of order p is a random process defined as:

(1)

where α1, …, αp are the parameters of the model, c is a constant, and εt is white noise. If a
is the vector of model parameters, for a given time-series sequence x(t) and model output x̂
(t, a), the forward prediction error is given by:

(2)

where a is found by minimizing the mean squared error

(3)

where N is the segment length of x(t). The autoregressive model can be constructed using
one of several algorithms to calculate model coefficients. They include the least-squares
approach, which minimizes the prediction error in the least squares sense (either forward
prediction error or both forward and backward prediction errors), the Burg lattice method,
which solves the lattice filter equations using the mean (either harmonic or geometric) of
forward and backward squared prediction errors, and the Yule-Walker method, which solves
the Yule-Walker equations formed from sample covariances, minimizing the forward
prediction error. The Burg and Yule-Walker methods always produce stable models, but
because we are only interested in forward prediction, we use the Yule-Walker method here.

One issue that is of critical importance in the successful application of AR modeling is the
selection of the model order [33], [32], [35], [36], [37], [38]. There have been many criteria
formulated over the years for determining the optimal model order. The most well-known of
these is Akaike’s Information Criterion (AIC) [39]. Other criteria that have been developed,
such as the Bayesian Information Criterion, Final Prediction Error, Minimal Description
Length differ essentially in the degree of the penalty applied to higher orders [40]. These are
useful guides that can serve as useful starting points, but because estimated optimal order
varies by the criterion, the sampling rate, and the characteristics of the input data, order
selection ultimately depends upon the resulting performance of the system [36], [37]. Thus,
it is empirically determined.

C. Frequency Band Optimization
An AR model can also be formulated in the frequency domain as a spectral matching
problem. For EEG applications, AR spectral estimation has been demonstrated to be
superior to traditional nonparametric methods such as the periodogram–due to the clear,
higher-resolution spectra that it generates [41], [33]. The estimated AR spectrum of a data
sequence is a continuous function of frequency and can be evaluated at any given frequency.
This is why AR spectral estimation is much more powerful in discriminating narrow-band
peaks, such as those produced by brain oscillations. Here, the AR model order becomes
important in that a low model order will give an overly smoothed spectrum while an overly
high order will result in spurious peaks. Two poles are needed to resolve each sinusoidal
peak, and thus 2 is the minimum model order required [33]. Depending on the spectral band
of interest, much higher orders may be necessary, as greater power is concentrated in the
lower frequencies. The power spectrum is estimated by the following equation [42]:
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(4)

where σ2 is the noise variance and αk are AR the model coefficients. The coefficients αk are
the same as the time-domain parameters in Equation 1.

To isolate a particular brain oscillation and accurately determine its instantaneous phase, we
must perform bandpass filtering around its central frequency. Instantaneous phase only
becomes accurate and meaningful if the filter bandwidth is sufficiently narrow [43]. Using
predetermined cutoff frequencies may lead to either an insufficiently narrow band, where
noise and extraneous signals will interfere with the brain oscillation signal, or an overly
narrow band, in which frequency components of the brain oscillation are lost due to crossing
over the range of the passband. Therefore, we developed an adaptive method that optimizes
the cutoff frequencies using the AR power spectrum estimate, where the power contained in
the optimized band does not fall below a specified threshold level. First, for the raw EEG
signal, we calculate the total power contained in a particular frequency band of interest:

(5)

We then iteratively increase fL or decrease fH by a specified step-size δf until

(6)

where f̂L and f̂H are the optimized passband cutoff frequencies, and λ is a fractional
multiplier. For every iteration:

(7)

The selection of a value for λ defines the tradeoff between an insufficiently narrow band (λ
close to 1) and an overly narrow band (λ close to 0). Here, we set λ to be greater than 0.5,
with the justification that we are ensuring the majority of the power contained within the
frequency band of interest is contained within the bounds of f ̂L and f̂H. It is important to note
that the optimal value of λ may be context-dependent. We are using the assumption that for
a particular brain oscillation, there is a certain characteristic frequency, and some amount of
variance about that central frequency, rather than the assumption that the oscillation is
comprised of many component frequencies. Using this relative measure λ, we are able to
ensure that the filter passband is locally optimized within each time segment. A bandpass
filter with cutoff bands f ̂L and f̂H is then applied to the original EEG segment. To prevent
phase distortion, we use a zero-phase digital filter that processes input signals in both the
forward and reverse directions.

D. Time-Series Forward Prediction
Once we have filtered a signal through the optimized bandpass filter, we can calculate the
instantaneous frequency and phase. However, when operating in real time, the relevant f(t)
and ϕ(t) are its values at the current time, which we will define as t0. Using a zero-phase
filter, distortions will occur near t0 as only the signal in the reverse direction is available. To
make more accurate estimates of f(t0) and ϕ(t0), we make use of an autoregressive model.
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The autoregressive model as formulated in equation 1 provides a basis for linear forward
prediction. For a given EEG segment, we use the bandpass filtered signal from Xtstart to
Xtstop to predict a signal of length 2(t0−tstop) from tstop (see Fig. 1). Therefore, the midpoint
of this predicted signal corresponds to t0. We predict a signal of length 2(t0 − tstop) to ensure
a smooth and continuous instantaneous phase function at t0, so that the calculation of the
instantaneous frequency and phase at t0 will not be affected by the edge effects of the
Hilbert transform. The Hilbert transform will be used to calculate the instantaneous phase
and frequency (see section 2E). An example of its edge effect can be seen in the ripples in
Fig. 1e.

Because filter distortions occur at both ends of the signal segment, we set the length from
tstart to tstop symmetric about the signal segment midpoint, such that tstart = (t0−T)+(t0−tstop),
where T is the length of the original signal segment (here, T is 1 second). If the length
between tstart and tstop is set too small, then the amount of data used as the basis for the AR
model will be insufficient, whereas if tstop is set too close to t0, then too much distortion will
remain present in the predicted signal. In our genetic algorithm for optimizing the algorithm
parameters offline (see section 2I), we have set the bounds of t0 − tstop to be between 0.05
and 0.45 seconds. In other words, the fraction of the signal segment used as input to the
autoregressive model can range from the middle 0.1 to 0.9 seconds. An additional point of
consideration is that both the filter type and filter order will influence the amount of
distortion in the filtered signal, and thus it will be necessary to optimize the filter in relation
to both t0−tstop and the input data.

E. Instantaneous Phase and Frequency
The instantaneous phase is calculated by first constructing the analytic signal, a combination
of the original data and its Hilbert transform [44]. For the real signal x(t), the complex
analytic signal zx(t) can be formulated as:

(8)

where H{x(t)} is the Hilbert transform of x(t), and is defined as:

(9)

where p.v. denotes Cauchy’s principal value.

The instantaneous phase of x(t) can be calculated from the complex analytic signal zx(t) as:

The instantaneous frequency fx(t) can then be calculated in terms of the instantaneous phase:

(10)

where  is the unwrapped instantaneous phase. Because the domain of ϕx(t) is (−π, π],
discontinuities are present in the form of 2πn jumps, where n is an integer. The unwrapping
procedure chooses the appropriate n at each discontinuity such that ϕx(t) becomes
continuous.
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In our algorithm, the two steps that are based on autoregressive modeling, frequency band
optimization and time-series forward prediction, are strategies to attempt to maximize the
accuracy of instantaneous phase and frequency estimations.

F. Implementation
Our algorithm was implemented in the LabView 9.0 environment (National Instruments,
Austin, TX) as well as in MATLAB 7.11 (MathWorks, Natick, MA). The LabView
implementation is used for real-time operation and the MATLAB implementation is used for
offline analysis. The analyses carried out in this paper were performed in MATLAB with
simulated input data.

The maximum signal segment analysis rate (which translates to the maximum stimulation
rate) for the determination of stimulation timing should be greater than the frequency of the
oscillation of interest. However, if this frequency is set too high, then spurious outputs will
be generated. For theta oscillations, we have set this frequency to be 10 Hz, corresponding
to a time window shift every 100 ms. For every period of this analysis cycle, f(t0) and ϕ(t0)
are calculated, and the time delay until the output stimulation is delivered is calculated by
the following formula:

(11)

where φ is the desired phase of the output stimulation (φ = 0 corresponds to the waveform
peak, while φ = π corresponds to the trough). Note that 2π is added as the output of ϕ lies in
the interval (−π, π].

G. Patients and Data
For the first part of our performance studies, we used signals where the exact phase and
frequency are known–first, a simple 6 Hz cosine waveform and second, a 10-second
intracranial EEG signal recorded from a single subdural contact electrode over the
parahippocampal gyrus of a patient with temporal lobe epilepsy exhibiting epileptiform theta
discharges.

For the second part of our performance studies, we assessed phase-locking accuracy on
physiologic theta oscillations from two epilepsy patients performing a memory task, who
had been surgically implanted with subdural electrodes. The clinical team determined the
placement of these electrodes to best localize epileptogenic regions. All subjects had
normal-range intelligence and were able to perform the task within normal limits. Our
research protocol was approved by the institutional review board at the Brigham and
Women’s Hospital. Informed consent was obtained from the subjects prior to the surgical
implantation. Subject 1 had electrodes covering the frontal, parietal and subtemporal areas
(73 channels). Subject 2 had electrodes covering the middle, inferior and subtemporal
regions (38 channels). The experimental protocol was a version of the Sternberg task
adapted from [10]. Four list items (consonant letters) were presented sequentially on the
computer screen. Each item was presented for 1.2–2 seconds, with 0.2–1 second intervals
between items. The termination of the last item in the list was followed by a 2–4 second
delay and the presentation of a probe, a single consonant that may or may not have been in
the list. The subject was instructed to press the ’y’ key on the keyboard if the probe item was
in the list and ’n’ key if the item was not. After each response, the subject was given
feedback on accuracy, and another trial could be initiated by key press. After this key press,
a subsequent trial began in 1–2 seconds. TTL pulses marked the presentation of the four
items and the probe item in the iEEG recordings. We obtained 40 trials from subject 1 and
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11 trials from subject 2. Both the correct and incorrect trials were pooled for this analysis.
Intracranial (iEEG) signals were recorded from grids and strips electrode arrays containing
multiple platinum electrodes (3 mm diameter), with an inter-electrode spacing of 1 cm. The
locations of the electrodes were determined by post-operative co-registered computed
tomography (CT) scans. The signal was amplified, sampled at 500 Hz, and bandpass filtered
between 0.1 and 70 Hz.

For the cosine waveform and the epileptiform theta discharges waveform, we optimized the
algorithm parameters on the data and ran simulations with these parameters on the same
data. For the Sternberg task patient datasets, we optimized the algorithm parameters on the
first trial for subject 1 with the single electrode with the largest average theta power. We
then used these parameters to perform simulation runs on all electrode channels in subject 1
for all subsequent trials (trials 2–40). Phase-locking performance was assessed at each
electrode channel (1–73) collectively over trials 2– 40. These same parameters were then
tested on subject 2 at each electrode channel (1–38) and assessed collectively over all trials
(1–11).

H. Assessment of Phase-Locking Performance
We are interested in two measures of phase-locking accuracy. The first is the difference
between the mean stimulation phase ϕ̄ and the desired phase φ. The second is the variance of
stimulation phases. Perfect accuracy would be a value of 0 for both measures. We calculated
the spread of ϕ several ways, including the circular variance:

(12)

which ranges from 0 to 1 [45]. We also calculated the 95% confidence interval of the mean
phase ϕ̄ and applied Rayleigh’s test for circular non-uniformity.

Not every channel may provide a suitable input signal, perhaps due to the properties of the
underlying physiological processes. Therefore, we looked at phase-locking performance in
the context of the electrode channel’s theta power level and theta temporal coherence. The
temporal coherence τc is calculated by determining the length of time it takes for the
amplitude of the autocorrelation function of the theta-bandpassed signal to decrease to half
the maximal value at t = 0. As an example, for a 1-second truncated sine wave segment, τc =
0.5 seconds. We placed electrode channels into four bins: high theta power/high theta
coherence, high theta power/low theta coherence, low theta power/high theta coherence, and
low theta power/low theta coherence. Electrode channels that did not produce stimulation
output were discarded. High theta power was defined as being greater than the median theta
power across all remaining electrodes, whereas high theta coherence was defined as being
greater than the midpoint of the range of τc values. The theta power for each electrode was
averaged over trials 2–40 for subject 1 and trials 1–11 for subject 2.

I. Optimizing Parameters Using a Genetic Algorithm
There are multiple parameters in our algorithm that require selection and optimization.
Because these variables interact in non-obvious ways, depending on, most of all, the
characteristics of the input data, we sought to optimize these parameters simultaneously
through a multi-dimensional search. However, the search space is extremely large and
complex. An exhaustive search is a practical impossibility. Therefore, we used a genetic
algorithm to arrive at an optimal parameter combination for a particular input signal. A
genetic algorithm is a stochastic global search and optimization method that mimics
biological evolution through its natural selection of a population of potential solutions
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according to some measure of fitness. The population undergoes selection, crossover, and
mutation to simultaneously generate diversity while converging towards an optimal solution.
Though it is possible that the solution arrived at is only a local optimum for any given run,
we are constrained by computational resources and time.

The five parameters to be optimized include the AR order p, λ for frequency band
optimization, the bandpass filter order and type, and the length t0 − tstop for time-series
forward prediction. The ranges of acceptable values for these parameters are listed in Table
II. Phase-locking performance is characterized by both accuracy (stimulation phases should
be close to the target phase) and precision (stimulation phases should be within a narrow
range). In addition, similar to the basis for Akaike’s Information Criterion and similar order
estimation methods, we want to find the minimum AR order that yields good performance.
The fitness function we use is a sum of terms reflecting these three objectives:

(13)

The first term captures the difference between the mean stimulation phase and the target
phase. The second term captures the spread of the stimulation phases. One could also use the
circular variance for this term, but unlike the confidence interval, the circular variance does
not take into account the number of stimulation pulses. The third and last term is the AR
model order. The weighting of these terms is to ensure that each term has a range of 0 to 1
so that each term has roughly an equal contribution to the overall fitness.

We implemented the genetic algorithm in MATLAB 7.11 with the Global Optimization
Toolbox 3.1 (Mathworks, Natick, MA). We used a population size of 200, an elite count of
20, crossover fraction of 0.7, the heuristic crossover function, the roulette selection function,
and the adaptive feasible mutation function. The initial population was generated randomly
within the bounds listed in Table I. We set the stopping criterion to be a cumulative change
in fitness of less than 0.0001 between generations.

III. Results
A. Cosine Waveform

For the simple cosine function, it is reassuring that the phase-locking performance is
excellent, as shown in Fig. 2. The parameters used are listed in Table II. While these
parameters were optimized using the genetic algorithm, in reality many more parameter
combinations yield similarly excellent results. The same parameters were also used to target
stimulation at the trough of the waveform. The measures of phase-locking accuracy are also
listed in Table III.

B. Epileptiform Theta Discharges
As illustrated in Fig. 3a, the advantage of using an AR model comes from its ability to
accurately discern single peaks. Fig. 3 shows the results for the epileptiform theta discharges
data. The parameters used–optimized based on targeting the peak–are listed in Table II. The
same parameters were then used to test the algorithm for stimulation targeting the trough.
For stimulation targeting the peak, the mean resulting phase ϕ̄ was −2.49° degrees (95%
confidence interval: −17.64°–12.65°, circular variance: 0.2651). For stimulation targeting
the trough, the mean resulting phase ϕ̄ was −178.42° (95% confidence interval: −162.64°–
165.79°, circular variance: 0.2867).
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C. Sternberg Task
For subject 1, in the first trial, electrode 45 had the largest average theta power (2300 µV2),
and thus the algorithm parameters were optimized on this data. The resulting optimized
parameters are listed in Table II. Results of simulation runs on trials 2–40 are shown in Fig.
4a. Not all electrode channels had equal phase-locking performance. Channels with both
high theta power and high theta temporal coherence resulted in the best performance. The
median theta power averaged across trials 2–40 was 570 µV2, and the theta temporal
coherence τc averaged across trials 2–40 ranged from 0.0812 to 0.1308 seconds. A rose plot
of stimulation phases for the electrode with the overall best performance is shown in Fig. 5a,
and the performance measures are listed in Table III. For this channel (68), the theta power
averaged across the trials was 1576 µV2 and the theta coherence averaged across the trials,
τ̄c, was 0.1205 seconds. Results for the channel with the highest theta power, channel 45, are
shown in Fig. 5c. The average theta power was 2533 µV2 and the average theta temporal
coherence τc for this channel was 0.0907 seconds. Results for the channel with the highest
theta temporal coherence as well as the highest combined metric (both high theta power and
theta temporal coherence), channel 57, are shown in Fig. 5e and Fig. 5g. The average theta
power was 1610 µV2 and the average theta temporal coherence τ̄c for this channel was
0.1308 seconds.

The same parameters from subject 1 were tested on subject 2. Out of 38 electrodes, 26
generated output stimulation, and for these electrodes, the median theta power averaged
across trials 1–11 was 1500 µV2 and the theta coherence averaged across trials 1–11 ranged
from 0.0690 to 0.1087 seconds. Results are shown in Fig. 4b. Here, electrode channels with
both high theta power and high theta temporal coherence resulted in the best performance.
Furthermore, it appears that high theta temporal coherence is more important than high theta
power. A rose plot of stimulation phases for the electrode with the overall best performance
in subject 2 is shown in Fig. 5b, and the performance measures are listed in Table III. For
this channel (20), the theta power averaged across the trials was 1508 µV2 and the theta
coherence averaged across the trials, τ̄c, was 0.1087 seconds. Results for the channel with
the highest theta power, channel 18, are shown in Fig. 5d. The average theta power was
5740 µV2 and the average theta temporal coherence τ̄c for this channel was 0.0806 seconds.
Channel 20, the best-performing channel, happened to also have the highest theta temporal
coherence (Fig. 5f). Channel 6 had the highest combined metric (both high theta power and
theta temporal coherence), and results for this channel are shown in Fig. 5h. The average
theta power for this channel was 2117 µV2 and the average theta temporal coherence τ̄c was
0.0959 seconds.

These results show that while both high theta power and high theta temporal coherence are
important in determining performance, high theta temporal coherence is the more important
factor. For example, while channel 18 in subject 2 exhibited very large theta power (5740
µV2), it exhibited relatively low theta temporal coherence (0.0806 seconds), and thus
performed very poorly (Fig. 5d). On the other hand, channel 20 exhibited lower theta power
(1508 µV2), but had higher theta temporal coherence (0.1087 seconds), which explains its
better performance (Fig. 5f)

IV. Discussion
We have presented here a system for brain oscillation detection and phase-locked
stimulation. Though we have tested our system only on theta oscillations, this system can
conceivably be used to also study oscillations in other frequency bands. Autoregressive
modeling provides an excellent method to estimate the instantaneous frequency and phase,
from which we can accurately deliver phase-locked stimulation in real time.
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Optimal selection of the AR model order and other algorithm parameters are important
considerations. Because these parameters interact with each other and the input data, we
used a genetic algorithm method to optimize these parameters simultaneously. This
optimization procedure requires intensive computational resources, and thus cannot be done
in real time. It must be manually performed on a separate experimental trial (or set of trials)
before the algorithm can be deployed. Here, in subject 1 performing the Sternberg task, we
performed this optimization on the first trial and used the parameters derived from this
optimization on subsequent trials. In subject 2, we used the parameters that were optimized
on subject 1. In reality, it may be more appropriate to optimize the parameters on a patient-
by-patient basis, as there will be subtle differences in the physiology between patients, such
as in the dominant theta frequencies, timing, and spatial characteristics. For example,
hippocampi will differ between patients, especially in the presence of underlying pathology
such as mesial temporal sclerosis. In addition, our system may further be improved upon in
the future by adopting an online adaptive strategy in selecting algorithm parameters, rather
than performing an offline optimization procedure prior to online operation.

Our approach for accurately estimating instantaneous phase and frequency relies on
optimizing the narrow passband. Alternate methods have been proposed for estimating the
instantaneous phase, such as using wavelet ridge extraction [46]. One advantage of this
method is that it is robust even when multiple oscillatory regimes are simultaneously present
and are highly variable in time. However, such a time-frequency based method may be too
computationally intensive to implement in real time. Another method that has been proposed
for oscillation detection is to use an adaptive filter that dynamically tracks the central
frequency of the oscillation by adjusting its transfer function coefficients [47]. While this
method allows for accurate frequency tracking, the bandwidth of the adaptive filter must still
be set manually, and thus remains susceptible to suboptimal bandwidth selection. In these
methods, real-time operation would also be limited by edge effects, as only data in the
reverse direction is available.

How accurate and precise in phase-locking to an oscillation does one have to be for
neurostimulation applications such as memory augmentation? While our method performs
relatively well, it remains to be seen if meaningful clinical effects can be elicited by the
phase-locking performance demonstrated here. An important consideration is that while we
demonstrated our algorithm on subdural electrodes located over widely-distributed spatial
areas, in reality our algorithm would be applied to depth electrodes targeting deep mesial
temporal lobe structures. Continuous theta oscillations have been recorded from within the
hippocampus in humans performing a memory task [14], exhibiting what appears to be a
high degree of theta temporal coherence. Because our results show that the performance of
our algorithm is correlated with the temporal coherence of detected oscillations, it is
reasonable to assume that our algorithm will result in even better performance on depth
electrodes targeting the hippocampus directly.

In our implementation of the system, stimulation can be triggered to occur within specified
time intervals, for example in synchrony with novel external stimuli or memory task items,
or it can be triggered to occur when oscillations above a certain power threshold are
detected. The former setup may be useful for experimental paradigms, and the latter setup
may be useful in a therapeutic setting. For potential clinical applications, it may be
worthwhile to consider further extensions to multi-electrode arrays. This may simply be a
matter of setting up multiple parallel channels of analysis and output stimulation delivery, or
it could be more sophisticated and use a distributed approach. Because the phase of an
underlying brain oscillation may vary across time and anatomical space, more advanced
algorithms may be needed to phase-lock to a specific traveling oscillation [48], or a
superposition of oscillations from multiple sources. Even with a single channel, the system
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described here will provide a useful tool for studying the properties of brain oscillation and
their interactions with cognitive processes, as well as allow the development of future
therapeutic devices that utilize phase-specific information. However, as demonstrated here,
the relative success of phase-locked stimulation is a function of both the power and the
coherence of the underlying oscillation. Oscillations generated by neural ensembles may be
inherently transient in nature [49], and thus future improvements would need to take this
into account.
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Fig. 1.
Overview of algorithm. (a) Raw iEEG signal, where t0 represents the current time in a real-
time acquisition process. (b) Analyze the last 1-second segment of iEEG signal. (c) Use
autoregressive spectral estimation to calculate the power spectral density in the 1-second
segment. The frequency band optimization procedure is carried out. (d) The 1-second
segment is bandpass filtered in both the forward and backward directions, based on the
optimized passband. (e) Using the bandpass-filtered signal from tstart to tstop, time-series
forward predictions (shown in red) are made using the autoregressive model. (f) The
instantaneous phase and frequency of this forward-predicted segment are calculated. (g)
Using the instantaneous phase and frequency of the forward-predicted segment at t0, a time
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delay from t0 is calculated. Output stimulation is triggered after this time delay (shown in
red). Overlaid is the raw iEEG signal from (b) plus some additional time.
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Fig. 2.
Results for 6 Hz cosine function. (a) Stimulation at the peak. (b) Rose plot of phases at
which stimulation occurred, targeting the peak. (c) Stimulation at the trough. (d) Rose plot
of phases at which stimulation occurred, targeting the trough.
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Fig. 3.
Results for epileptiform theta discharges data (data is 10-second iEEG signal recorded from
a single subdural contact electrode over the parahippocampal gyrus of a patient with
temporal lobe epilepsy exhibiting epileptiform theta discharges). (a) Power spectral density
over time, using autoregressive estimation. The model order here is 13. (b) Total power in
the theta (4–9 Hz) frequency band over time (top curve), and power within the optimized
frequency band (bottom curve). (c) The optimized frequency band limits f̂L (bottom curve)
and f̂H (top curve) over time. Note that as the theta power increases due to the appearance of
a theta oscillation, the optimized frequency band becomes narrower. (d) Times at which
stimulation output were generated, over the entire 10-second segment. (e) Signal during 6–7
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seconds, bandpass filtered between 4 and 5 Hz using a first-order Butterworth filter.
Overlaid are times at which stimulation output were generated from 6–7 seconds. (f) Rose
plot of stimulation phases, where target phase was 0 degrees, or at the peak. (g) Rose plot of
stimulation phases, where target phase was 180 degrees, or at the trough.
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Fig. 4.
Phase-locking performance on signals recorded during the Sternberg task (ϕ̄, error bars
represent the 95% confidence interval for ϕ̄). Electrodes are sorted by high theta power/high
theta coherence (blue squares), high theta power/low theta coherence (red triangles), low
theta power/high theta coherence (green circles), and low theta power/low theta coherence
(yellow crosses). (a) For subject 1, signals from 73 out of 73 electrodes generated output
stimulation cumulatively over 39 trials (2–40). (b) For subject 2, signals from 26 out of 38
electrodes generated output stimulation cumulatively over 11 trials (1–11).
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Fig. 5.
Rose plots for (a) the best performing electrode channel in subject 1 (68), (b) the best
performing electrode channel in subject 2 (20), (c) the channel with the highest theta power
in subject 1 (45), (d) the channel with the highest theta power in subject 2 (18), (e) the
channel with the highest theta temporal coherence in subject 1 (57), (f) the channel with the
highest theta temporal coherence in subject 2 (20), (g) the channel with the highest
combined metric (both theta power and theta temporal coherence) in subject 1 (57), and (h)
the channel with the highest combined metric (both theta power and theta temporal
coherence) in subject 2 (6).
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TABLE I

Genetic Algorithm Search Space

Parameter Values

AR order (p) 2–100

λ 0.5–1

Filter order 1–5

Filter type 1–5

t0 − tstop 0.05–0.45

The filter type corresponds to: 1=Butterworth, 2=Chebyshev (0.1 dB of peak-to-peak ripple in the passband), 3=Inverse Chebyshev (stopband
attenuation of 60 dB), 4=Elliptic (1 dB of ripple in the passband, and a stopband 60 dB down from the peak value in the passband), 5=Bessel.
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re

 is
 in

 d
eg

re
es

. F
or

 s
ub

je
ct

 1
, c

ha
nn

el
 6

8 
w

as
 th

e 
be

st
-p

er
fo

rm
in

g,
 c

ha
nn

el
 4

5 
ha

d 
th

e 
hi

gh
es

t t
he

ta
po

w
er

, a
nd

 c
ha

nn
el

 5
7 

ha
d 

bo
th

 th
e 

hi
gh

es
t t

he
ta

 te
m

po
ra

l c
oh

er
en

ce
 a

nd
 h

ig
he

st
 c

om
bi

ne
d 

m
et

ri
c 

(t
he

ta
 p

ow
er

 a
nd

 th
et

a 
te

m
po

ra
l c

oh
er

en
ce

).
 F

or
 s

ub
je

ct
 2

, c
ha

nn
el

 2
0 

w
as

 th
e 

be
st

-p
er

fo
rm

in
g,

 c
ha

nn
el

18
 h

ad
 th

e 
hi

gh
es

t t
he

ta
 p

ow
er

, c
ha

nn
el

 2
0 

ha
d 

th
e 

hi
gh

es
t t

he
ta

 te
m

po
ra

l c
oh

er
en

ce
, a

nd
 c

ha
nn

el
 6

 h
ad

 th
e 

hi
gh

es
t c

om
bi

ne
d 

m
et

ri
c 

(t
he

ta
 p

ow
er

 a
nd

 th
et

a 
te

m
po

ra
l c

oh
er

en
ce

).
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