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Abstract

An extraordinary amount of electrophysiological data has been collected from various brain nuclei 

to help us understand how neural activity in one region influences another region. In this paper, 

we exploit the point process modeling (PPM) framework and describe a method for constructing 

aggregate input-output (IO) stochastic models that predict spiking activity of a population of 

neurons in the “output” region as a function of the spiking activity of a population of neurons in 

the “input” region. We first build PPMs of each output neuron as a function of all input neurons, 

and then cluster the output neurons using the model parameters. Output neurons that lie within the 

same cluster have the same functional dependence on the input neurons. We first applied our 

method to simulated data, and successfully uncovered the predetermined relationship between the 

two regions. We then applied our method to experimental data to understand the input-output 

relationship between motor cortical neurons and (i) somatosensory and (ii) premotor cortical 

neurons during a behavioral task. Our aggregate IO models highlighted interesting physiological 

dependencies including relative effects of inhibition/excitation from input neurons and extrinsic 

factors on output neurons.

I. INTRODUCTION

THE communication between any two sites of the brain is a complicated process involving 

many synapses. In order to uncover the underlying structure of this communication, it is 

important to have a tractable input-output (IO) model that predicts spiking activity of 

neurons in one region, henceforth referred to as output neurons, as a function of the spiking 

activity of neurons in another region, henceforth referred to as input neurons.

A vast amount of data is being recorded simultaneously from neurons located in different 

brain structures [1], [2]. Second order statistics such as cross-correlation and coherence 

measures are often used to gauge the relationship between the spiking activity of pairs of 
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neurons [3], [4]. However, these are limited measures that provide snapshots of interactions 

between individual neurons from different regions. They shed insight into neural 

communication but do not explicitly provide a model that predicts how one region’s activity 

impacts another.

Different models have been proposed over the years to gauge the effect of neurons in one 

site on neurons in another. Many are biophysical-based models, which characterize the 

nonlinear dynamics of ionic conductances and synapses between neurons [5], [6]. Although 

useful in understanding underlying physiology and mechanisms of spike generation, these 

models become intractable for analysis of populations of neurons. Furthermore, they require 

the estimation of a large number of parameters that cannot be easily fit via extracellular 

recordings.

Point process models (PPMs) of neural spike train data are well-suited to characterize 

dynamics of individual neurons as a function of environmental and intrinsic factors and have 

been used to study a wide range of neural systems [7]–[12]. These models are predictive, i.e. 

one can feed any set of spike train inputs into them, and obtain a set of spike train outputs 

that obey the stochastic distribution. The PPM model parameters provide us direct 

information on the effect of the input neurons on the output neurons, and are thus simple to 

analyze. However, with the recent advance in the ability to simultaneously record a large 

number of single units in different brain structures, we need a systematic method to be able 

to parse through this data. Instead of studying a large number of individual IO models, we 

would like to to analyze a tractable reduced-order representation of the effects of spiking 

activity in one region on the spiking activity in another region.

We propose a method to construct data-driven aggregate IO models (Fig. 1B), that 

characterize the probability distribution of the spiking activity of a population of output 

neurons conditioned on the spiking activity of input neurons, i.e. Pr(y|u). Specifically, we 

construct the aggregate models in three steps: (i) build individual IO models for each output 

neuron as a function of all input neurons, (ii) cluster the output neurons using the individual 

model parameters, and (iii) build aggregate IO models for each cluster of output neurons. 

Note that though we use the term ‘neurons’ in this study, we can also perform the same 

analysis with multi-unit activity, as we show in Section IV-C.

Fig. 1A shows an original system of n inputs and m outputs, which is reduced to an 

aggregated system of n inputs and K ≤ m outputs in Fig. 1B. A transfer matrix representation 

of an example is shown in Fig 1C and D. We see that this method helps us reduce the 

number of IO models of all the output neurons receiving inputs from all the input neurons 

from m to K.

We applied our method to simulated data, as well as data sets from sensory motor, premotor, 

and motor cortex. For the simulated data, we defined physical and physiological connections 

between 3 input neurons and 45 output neurons in such a manner that gave rise to 3 clusters 

with unique IO relationships. Our method successfully uncovered both the physical structure 

and the spiking dynamics.

Saxena et al. Page 2

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2014 November 13.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



We then applied our method to groups of neurons in the Somatosensory Cortex (S1) 

simultaneously recorded with neurons in the Primary Motor Cortex (M1) neurons in a 

primate performing a set of four different behavioral tasks. We obtained 2 clusters of M1 

neurons which had different dependencies on the S1 input neurons. In particular, all M1 

neurons experienced a significant excitatory effect from one S1 neuron with a short latency. 

A subset of the M1 neurons exhibit an inhibition from another S1 neuron with a longer 

latency, which may arise in order to balance the previous excitation.

Finally, we applied our method to analyse the activity of the M1 neurons as a function of the 

activity of ventral Premotor Cortex (PMv) during the same experiment. We uncovered 4 

different clusters of M1 neurons with a different set of PMv input neurons; 2 of these 

clusters showed M1 activity which was task specific, while the other 2 did not show any task 

specificity. The task-specific M1 clusters received a combination of significant inhibitory as 

well as excitatory inputs from the PMv neurons. This suggests a non-trivial relationship 

between the M1 and PMv neurons, resulting in a planned task-specific movement.

II. METHODS

A. Point Process Estimation

A point process is a series of 0-1 random events that occur on a continuum such as space or 

time. For a neural spike train, the 1s are individual spike times and the 0s are the times at 

which no spikes occur. To define a point process model of neural spiking activity, we 

consider an observation interval (0; T] and let N(t) be the number of spikes counted in 

interval (0; t] for t ∈ (0; T]: A point process model of a neural spike train can then be 

completely characterized by its conditional intensity function (CIF), defined as

(1)

where Ht denotes the spiking history up to time t. It follows from (1) that the probability of a 

single spike in a small interval (t; t + Δ] is approximately

(2)

Details can be found in [13], [14]. The CIF generalizes the rate function of a Poisson process 

to a rate function that is history dependent. Because the CIF completely characterizes a spike 

train, defining a model for the CIF defines a model for the spike train [13], [15].

For our analyses, we use the generalized linear model (GLM) to define our CIF models by 

expressing for each neuron, the log of its CIF in terms of the neuron’s spiking history and 

the relevant input neurons’ spiking history. The GLM is an extension of the multiple linear 

regression model in which the variable being predicted, in this case spike times, need not be 

Gaussian [16]. GLM also provides an efficient computational scheme for model parameter 

estimation and a likelihood framework for conducting statistical inferences. Therefore, we 

compute model parameters from the data via maximum likleihood estimation [15].

Saxena et al. Page 3

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2014 November 13.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



B. Individual Input Output Models

To obtain a aggregate IO models between two populations of neurons, we first build 

individual IO models by estimating the CIF of each output neuron as a function of all the 

input neurons. These individual models take the multiplicative structure shown in (3) for a 

given output neuron, j for j ∈ [1, … , m], and all of the input neurons i = 1, 2, …, n. We 

denote the spike train time series for output neuron j as yj (t) and input neuron i as ui(t).

(3)

Here, λO represents the contribution of the output neuron’s own spiking history, , since 

neurons are known to be affected by their own spiking history (e.g. refractory periods, 

bursts, oscillations). λI represents the contribution due to the input neurons' spiking histories, 

 and eαj is a history-independent term that captures the background firing rate. The 

parameter vector Θj is to be estimated from data individually for each output neuron yj.

Expressing the rate as a product of the different components allows one to assess how much 

each component contributes to the spiking propensity of the neuron [9], [11]. If, for 

example, the spiking history of both the input neurons,  and the output neuron, , are 

not associated with the output neurons’ response, then λI and λO will be very close to 1, and 

(3) reduces to  a standard Poisson process.

These functions are modeled using the GLM framework, i.e.,

(4)

where  and  denote the number of spikes generated by output neuron j and input 

neuron i, respectively, in [t – rΔ, t – (r – 1)Δ) ms with Δ chosen differently for each case 

study. Each summation is taken over DO and DI steps, where DOΔ and DIΔ are the extent of 

history of the output spike train and input spike trains respectively, as considered as having 

an effect on each output neuron. The parameter vector 

is estimated from data via maximum likelihood estimation [15].

C. Clustering

We use the K-means clustering algorithm [17] to group the parameter vectors Θ1, Θ2, …, Θm 

of the individual models to see if an underlying structure between the input and output 

neurons can be uncovered. In K-means clustering, the sum of the squared Euclidean 

distances of all the parameter vector points to their respective cluster centroids is minimized. 

The initial cluster centroids are chosen at random, but we iterate at least 20 times with a new 

set of initial centroids in order to avoid stopping in local minima. Silhouette coefficients [18] 
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are then computed for each Θj to measure the intra-cluster homogeneity and cluster-to-

cluster heterogeneity according to the formula:

(5)

where cj is the average distance from Θj to the other parameter vectors in its own cluster, 

and dj (k) is the average distance from Θj to parameter vectors in another cluster k. The 

optimal number of clusters K is chosen after computing the silhouette coefficients for 

different values of K, and taking that which yields the maximum average silhouette value 

[18].

D. Aggregate Input Output Models

After clustering, we construct aggregate IO models for each cluster for k = 1, 2, … , K 

separately. We take all the output neurons whose individual models belong to cluster k and 

treat their spike trains as different trial sessions of a single neuron or a single “unit”. 

Specifically, we concatenate all the spike trains of the output neurons in cluster k, and define 

the concatenated spike train as yk. We then estimate one parameter vector of the aggregate 

model  using the input neurons’ spike trains u, and the output neuron’s spike train yk, i.e. 

with the CIF detailed in (6)

(6)

The components in (6) are each a GLM with the following functions:

(7)

where the  no longer depend on specific output neuron j. We note that the  depend on 

the cluster k, but we omit this in our notation for a simpler read.

Finally, we analyze the parameter vectors for each aggregate model, , to 

infer the effect of groups of input neurons on groups of output neurons in each cluster [11], 

[19], [20]. The clustering reduces the number of possible connections and the number of 

models to consider in order to characterize the input-output dynamics of the two populations 

of neurons in consideration. We also calculate the order of model reduction that we 

achieved:

(8)
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III. APPLICATION TO SIMULATED DATA

Before analyzing real data sets, we apply and validate our methodology on simulated data. 

We define specific physical connections and physiological dependencies for three 

populations of neurons and use our method to uncover these IO relationships.

A. Physical and Physiological Connections

We simulated the activity of 3 input neurons and 45 output neurons with physical 

connections shown in Figure 2A. Note that input neurons 1 and 2 simultaneously affect 

output neurons 1 – 30, though input neuron 1 has separate effects on output neurons 1 – 15 

as compared to output neurons 16 – 30. Input neuron 3 is the only neuron that affects output 

neurons 31 – 45. The physiological dependencies between these neurons are described by 

equations (9) and (10) where t is discretized into 1 millisecond bins.

(9)

(10)

(11)

where

(12)

We assumed that the input neurons' spiking activity are mutually independent, and generated 

their spike trains in a Poisson manner with a refractory period of R = 1 ms, and average 

firing rates of λ1 = λ2 = λ3 = 20 Hz. The refractory period ensures that there is no spike 1 ms 

immediately after a spike by allowing a 1 in an activity bin only if the previous bin is empty.

We modeled the output neurons to have either a predominantly excitatory  or 

inhibitory  response to the input neurons’ spiking activity, as described by the 

parameters , i = 1a, 1b, 2, 3 in equation (12) and as depicted in Fig. 2B. For example, the 

shape of  indicates that at some time bin t, if input neuron 1 spikes in the time interval [t 
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– 1; t – 15]ms, then the probability that an output neuron j (for j = 1; 2; …, 15) will spike at 

time t modulates up by a factor of almost 2. On the other hand, the shape of  indicates 

that at some time bin t, if input neuron 1 spikes in the time interval [t – 1, t – 15]ms, then the 

probability that an output neuron j (for j = 1, 2, …, 15) will spike at time t modulates up by a 

factor of almost 2.

The output neurons were also modeled to have a refractory period of 1 ms which is enforced 

by the the parameter  In particular, if at some time t neuron j has a spike at time t 

– 1, then the probability that neuron j will spike again in time bin t is effectively 0. The 

history independent firing rate was modeled to be .

Finally, we added noise to the output spike trains by removing 15% of the spikes from each 

spike train and inserting these spikes at random times during the entire simulated time 

interval [21]. We simulated 45 output neurons for 15 seconds each. Spike trains of each 

output neuron were generated using inverse time rescaling as described in [22], [23].

B. Analysis of Simulated Data

We first built individual IO models of the output neurons assuming that the CIFs were a 

function of all the inputs, as in (3). Each component was modeled as a GLM (4) which took 

the following form.

(13)

Here,  We obtained 45 different PPMs, as shown in 

Fig. 3A.

We then clustered the parameter vectors for all the PPMs using k-means clustering as 

described in section II-C, and obtained silhouette values for values of K = 2; …, 9. We 

computed the mean silhouette values for each value of K, and found that the mean silhouette 

value is maximized for K = 3. The first two principal components of the clustered parameter 

vectors are shown in Fig. 3B, and a schematic of the results is shown in Fig. 3C. Note that 

the Θj’s cluster as in the original groups of neurons, i.e. Θ1, …, Θ15, are in a different cluster 

than Θ16, … Θ30, which are themselves in a different cluster than Θ31, … Θ45.

Finally, we built aggregate IO models based on these results by concatenating all the output 

spike trains in each cluster k = 1; 2, and building one model per cluster, as in (6), with 

 (Fig. 4). These two aggregate IO models show the 

simultaneous effect of the output neurons’ own history as well as the history of the input 

neurons u1; u2; u3 on the output neurons y1, … y15 (Fig. 4A), and on the output neurons 

y16, … , y30 (Fig. 4B). In this simulated example, there was a reduction of the number of 

input-output models from 45 to 3, i.e., σ = 15. Note that 
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. Also note that 

 are not statistically significantly different from 0. Thus we 

uncovered both the physical and physiological connections detailed in Section III-A.

IV. APPLICATION TO PRIMATE DATA FROM THE MOTOR, SOMATOSENSORY, AND PREMOTOR CORTEX

Primary Motor Cortex (M1) neurons are known to receive inputs from various structures. 

Here, we examine the individual influence of Somatosensory Cortex (S1) and the ventral 

Premotor Cortex (PMv) neurons on the M1 neurons during a behavioral task.

A. Experimental Methods

A male non-human primate (macaca mulatta) was visuallycued to reach towards, grasp, and 

manipulate different objects at different spatial locations. The experimental procedures were 

performed primarily by Dr. Marc Schieber with Dr. Nitish Thakor; details are in [24] and 

[2]. Single-unit activity was recorded from multiple floating microelectrode arrays (FMAs, 

MicroProbes, Gaithersburg, MD) that were implanted in cortical motor areas contralateral to 

the trained hand. Each FMA consisted of 16 Platinum/Iridium electrodes with tip impedance 

of 0:5 M, arranged in a 4×4 grid with electrode spacing of 500 m. A total of fourteen FMAs 

were implanted in the monkey ('monkey X’ in [2]), with one array in S1, one in PMv, four 

in M1. Upper-limb kinematics were simultaneously tracked using a Vicon (Oxford, UK) 

motion capture system. The task involved reaching towards different objects located in 

different positions in space after the cue was given, manipulation of these objects for a 1000 

ms hold period, and then releasing these objects (Fig. 5). Manipulations involved depressing 

a pushbutton, pulling a coaxial cylinder, pulling a perpendicularly mounted cylinder 

(mallet), or rotating a sphere 45°.

We first analyzed the effect of single-unit S1 activity (n=8 neurons) on single-unit M1 

neurons (n=58 neurons) during the hold period, where the sensory information may play a 

large role in M1 activity. We then analyzed the effect of multi-unit PMv activity (39 

neurons; n=13 channels) on single-unit M1 neurons during the period from the start of the 

cue to reach for the objects until the end of movement, where accurate motor planning and 

consequent movement generation occurs. We consider multi-unit PMv activity as a primary 

reduction in input space, due to the large number of input PMv neurons. Only spike trains 

with an average discharge rate ≥ 10 spikes/s during the period considered were included in 

this study.

B. S1 to M1

We considered the 8 S1 neurons as inputs and 58 M1 neurons as outputs, with 2 S1 neurons 

and 15 M1 neurons having firing rates ≥ 10 spikes/s during the the hold period. All the trials 

during the four different tasks were pooled together.

1) Individual Input Output Models—We estimated PPMs of the form (14) using 

recordings of the S1 and M1 to obtain a parameter vector associated with each output 

neuron. The models were constructed to capture the effects due to the spiking activity of the 
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output neuron’s own history (λO ), and the single-unit spiking activity of the S1 neurons 

(λI ). We chose the multiplicative model structure [9], [11], λy = eα · λO · λI , where

(14)

Here,  corresponds to the output neuron’s own history, and ui, the input, corresponds to 

the single-unit spiking activity of the i-th S1 neuron.  or  is the number of spikes 

fired by the j-th M1 neuron or i-th S1 neuron in [t – rΔr, t – (r – 1)Δr) (in ms) respectively 

(Δr varied from 1 to 20 ms), and .

We arrived at the above choice of covariates and the model structure given in (14) through 

an iterative procedure of testing and refining GLM models until the models' cross-validated 

KS plots displayed a high goodness-of-fit for each model [25]. In this analysis, m = 13 

neurons had a PPM with cross-validated KS statistic < 0:2.

2) Clustering—We clustered the PPM parameter vectors for each M1 neuron using K-

means clustering, as described in section II-C. The average silhouette values were computed 

for K = 2, …, 12. We examined the silhouette values for these clustering attempts, and 

obtained K = 2 clusters with the maximum average silhouette value, 0:74. The resulting 

clusters defined a simple set of physiological connections between the S1 and M1 neurons. 

The first cluster contained the inputoutput model parameters of M1 neurons n1, n2, while 

the second cluster contained those of M1 neurons n3, …, n13. In this study, there was a 

reduction of the number of inputoutput models from 13 to 2, i.e., ρ = 6.5.

3) Aggregate Input Output Models—Once the clusters were determined, we estimated 

new aggregate point process models for each S1-M1 cluster by taking as inputs and outputs 

several trials from the S1 and M1, respectively. PPMs of the form (6) and (7) were 

constructed (Fig. 6).

The PPM for the first cluster of M1 neurons (Fig. 6A) shows that the neurons in this cluster 

are strongly inhibited by a spike in the previous 30ms, but the propensity to spike increases 

up to more than 4 times with a spike in the previous 40 – 90ms. The PPM for the second 

cluster of M1 neurons (Fig. 6B), however, shows that the neurons are only inhibited by a 

spike in the previous 10ms, while the propensity to spike increases less than 1.5 times with a 

spike in the previous 20 – 90ms.

The effect of the two S1 neurons on each of the clusters is varied. S1 neuron n1 is seen to 

have an excitatory effect on both the clusters of M1 neurons with a delay of 1 to 3 ms, but 

the excitation is more significant in the first cluster than in the second cluster. S1 neuron n2 

has a slightly inhibitory effect on the M1 neurons in the first cluster, whereas it has a slightly 

excitatory effect on the neurons in the second cluster.
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In this study, S1 neuron n1 is seen to have a predominantly excitatory effect on all the M1 

neurons with a latency of a couple of milliseconds. This may be a result of direct 

connections from this S1 neuron to the M1 neurons, with a stronger influence on neurons in 

cluster 1 as compared to those in cluster 2. Direct activation of the motor cortex by the 

somatosensory neurons has been noted in rats and mice [26], [27].

Cluster 1 also displays a slight inhibition due to the spiking of S1 neuron n2, which may be 

present in order to balance the large excitatory influence of S1 neuron n1. This shows a 

potential balancing mechanism to prevent the system from being excessively excited via 

positive feedback loops from one area to the other [28], [29].

C. PMv to M1

We now investigate the relationship between PMv and M1 spiking. We considered each of 

the n = 13 channels (≈ 115 trial sessions per channel) recorded at different depths in PMv as 

input units and m = 21 output neurons (≈ 115 trial sessions per neuron) in M1 during four 

different tasks. The neural activity analyzed was in the period from the start of the cue to the 

end of the movement.

1) Individual Input Output Models—We estimated PPMs of the form (15) using 

recordings of the PMv and M1 to obtain a parameter vector associated with each output 

neuron. The models were constructed to capture the effects due to the spiking activity of the 

output neuron’s own history (λO), and the multi-unit spiking activity of the PMv channels 

(λI ). We chose the multiplicative model structure [9], [11], λy = eα · λO · λI , where

(15)

where  corresponds to the output neuron’s own history, and ui, the input, corresponds to 

the multi-unit spiking activity of the neurons at the i-th PMv recording channel.  or 

is the number of spikes fired by the j-th M1 neuron or at the i-th PMv channel in [t – rΔr, t – 

(r – 1)Δr) (in ms) respectively (Δr varied from 5 to 100 ms), and 

.

We arrived at the above choice of covariates and the model structure given in (15) through 

an iterative procedure of testing and refining GLM models until the models’ cross-validated 

KS plots displayed a high goodness-of-fit for each model [25]. In this analysis, the m = 21 

neurons include only those with cross-validated KS statistic < 0.2.

2) Clustering—We then clustered the PPM parameter vectors for each M1 neuron using 

K-means clustering, as described in section II-C. The average silhouette values were 

computed for K = 2, … , 20. We chose K = 4 (average silhouette value 0.65) for this analysis 

by analyzing the KS plots of the resulting clustered models and choosing those with the 

highest goodness-of-fit. The resulting clusters defined a simple set of physiological 
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connections between the PMv and M1 neurons. The first cluster contained the input-output 

model parameters of M1 neurons n1, … , n12, the second cluster contained those of M1 

neuron n13, the third cluster contained those of M1 neurons n14, n15, whereas the fourth 

cluster contained those of M1 neurons n16, … , n21. In this study, there was a reduction of 

the number of input-output models from 21 to 4, i.e., ρ = 5.25

3) Aggregate Input Output Models—Once the clusters were determined, we estimated 

new aggregate point process models for each PMv-M1 cluster by taking as inputs and 

outputs several trials from the PMv and M1, respectively. PPMs of the form (6) and (7) were 

constructed (Fig. 7). The aggregate IO models were then used for statistical inferences 

regarding the impact of PMv over the activity in M1, and the differences in the activity of 

the clusters during the four different tasks were examined [11].

Figs. 8A, …, D show the average firing rate of the PMv neurons which are seen to have a 

significant effect (with a confidence of < 95%) on the respective clusters of M1 neurons k = 

1, … , 4, during the four different tasks. They also show λk k = 1, … , 4 as estimated on all 

the trials performed during each task. Interestingly, these show the task specificity of the 

neurons in the resulting clusters, even though the models did not specifically contain task 

information.

The M1 neurons in cluster 1 show steady firing throughout the trial during all tasks, from 

300ms before the onset of movement to 300ms after. There seems to be no task specificity in 

these neurons. In Fig. 7A, the average firing rate is seen to be around 20 spikes/s. We also 

see that only 4 of the PMv channels have a significant impact on the M1 neurons in this 

cluster, and that this effect is limited to a very slight inhibition or excitation.

The M1 neuron in cluster 2 modulates its activity specific to the task. During the tasks 

involving the pushbutton and the sphere, the neuron increases spiking prior to movement 

onset, and again around 200ms after movement onset. However, during the task involving 

the cylinder as well as the mallet, the spiking of the neuron is seen to decrease around 

movement onset, and increase after 200ms after onset. This task specificity might arise due 

to the direction of reach of the primate during tasks involving the pushbutton and sphere 

(right) as opposed to those involving the cylinder and the mallet (left). This specificity might 

also be due to the nature of the task itself, ie. the cylinder and mallet tasks both comprise of 

pulling a certain object towards the primate. In Fig. 7B, we see that 10 of the PMv channels 

have a significant impact on the M1 neurons in this cluster, of both an excitatory and 

inhibitory nature. Note that this effect is more significant than seen in the M1 neurons in 

cluster 1.

The M1 neurons in cluster 3 also show task specificity. During the pushbutton and the 

sphere trials, the neurons increase their spiking right after movement onset. During the task 

involving the cylinder, the neurons increase their spiking after 200ms after onset of 

movement, whereas during the task involving the mallet, they increase their spiking before 

movement onset. This difference in activity during tasks might be due to the different 

directions of reach. We again see significant excitatory and inhibitory effects from 10 PMv 

channels towards the M1 neurons in this cluster, in fig. 7C.
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The M1 neurons in cluster 4 show no task specificity, and display a steady firing throughout 

the trial during all tasks, of around 30 spikes/s. This is slightly larger than the firing rate of 

the M1 neurons in cluster 1. In fig. 7D, we see that only 4 of the PMv channels have a 

significant effect on the activity of neurons in this cluster.

PMv neurons are hypothesized to affect movement during the observation as well as 

grasping of the target. Here, we capture the effect of the PMv neurons during the 

observation of the target, as well as during direction-related movements. PMv neurons are 

known to provide direct connections to the M1 pyramidal neurons, as well as to the 

interneurons which themselves inhibit the M1 pyramidal neurons. A combination of 

inhibitory and excitatory effects have been seen on M1 neurons when the PMv neurons were 

stimulated using transcranial magnetic stimulation [30]–[33]. An inhibition at similar time 

scales as seen in this study has been specifically noted in the study by Tokuno and Nambu 

[30]. The net inhibitory effect from several neurons in the PMv to the M1 may be due to the 

indirect connection to the M1 pyramidal neurons via the M1 interneurons.

In this study, the neurons in PMv channels are seen to have a combination of significant 

inhibitory as well excitatory effects on the M1 neurons in each cluster, but a higher number 

of PMv neurons are seen to have a significant effect on the task-specific M1 clusters 

(clusters 2 and 3). This suggests that the PMv spiking plays an integral part in the planning 

of directed movements. Moreover, we successfully captured the nature of this non-trivial 

relationship using aggregate PPMs.

V. DISCUSSION

We propose a method to construct reduced order data-driven predictive models that 

characterize the effect of spiking activity of neurons in one region of the brain to neurons in 

another region. The systems identification technique detailed above can be used for any 

number of neuronal recordings obtained from several regions of the brain, in order to 

understand the IO dynamics of the structures in question. We applied this method to 

simulated data as well as primate data from M1, S1 and PMv during different parts of a 

behavioral task. Both the S1 and the PMv neurons have a combination of inhibitory and 

excitatory effects on the M1 neurons, and a successful input-output mapping of the relevant 

structures during specific periods of the behavioral task was built using the aggregate PPMs.

One of the limitations of this method is the need for a substantial amount of data to build 

aggregate IO models that pass the goodness of fit criteria, especially with an increase in the 

number of inputs. We also need simultaneously recorded spike trains to be able to build 

these predictive IO models. However, many of the electrophysiological studies performed 

satisfy these criteria, i.e. recording a large amount of data and simultaneously from several 

regions.

In this study, we concentrated on characterizing the relationship between activity in one 

input region to one output region. However, this method could easily be extended to include 

several input regions, for example, M1 simultaneously receiving inputs from the PMv, S1 

and PMd.
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The method detailed in this paper can be used to construct data driven models that provide 

us with explicit and interpretable information on the spiking activity of groups of output 

neurons dependent on input neurons. We also gain an insight into the physiological 

connections between neurons in the input and output regions, without making any 

assumptions on the underlying structure of these models, apart from the specification of 

input and output regions. Moreover, the aggregate input-output models are tractable and 

easy to analyze since they are reduced order models and represent the activity of clusters of 

neurons. Using these aggregate IO models, we can portray relationships between regions of 

the brain which are not physically connected, thus summarizing the effect from input 

neurons connected to the output region even via several synapses and regions. The method is 

seen to be effective in model reduction, obtaining aggregate models, and quantifying the 

effects of groups of input neurons on groups of output neurons; and is a key step towards 

building a computational IO system model of neurons in interconnected brain nuclei.
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Fig. 1. 
A) Original system of inputs ui and outputs yj , i ∈ 1, … , n, j ∈ 1, … , m. B) Reduced 

system of inputs ui and outputs yk , i ∈ 1, … , n, k ∈ 1, … , K, K ≤ m. C) and D) show a 

transfer matrix representation of these IO systems, with n = 3, m = 5, K = 2.
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Fig. 2. 
A) A schematic of the functions with which input neurons have an effect on output neurons. 

Note that y1, … ,y30 are simultaneously affected by u1 and u2, whereas y31, … ,y45 are 

only affected by u3. B) The four functions denoting the propensity with which the output 

neuron spikes at time t given that input neuron spiked t – l ms ago.|

Saxena et al. Page 17

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2014 November 13.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 3. 
Clustering Analysis. A) Schematic of individual IO model parameters. B) 1st and 2nd 

principal components of the parameter vectors estimated. Note that the principal 

components visually separate out Θ1, … , Θ15, … , Θ16, … , Θ30, and Θ31, … Θ45. C) 

Schematic of aggregate IO models after model reduction via K-means clustering.
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Fig. 4. 

Aggregate IO Model Parameters. A) exp ( ), representing a model of the output neurons 

y1, …, y15. B) exp ( ), representing a model of the output neurons y16, …, y30. C) exp 

( ), representing a model of the output neurons y31, …, y45. The 95% confidence bounds 

for the model parameters are depicted in grey around the parameters. The relevant exp ( ) 

are shown in dashed lines.
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Fig. 5. 
Simultaneous neural activity was recorded from a non-human primate as it reached towards 

and manipulated four different objects in space.
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Fig. 6. 

Aggregate IO Model Parameters. A) exp ( ), representing a model of the output neurons 

n1, … , n12. B) exp ( ), representing a model of the output neuron n13. The 95% 

confidence bounds for the model parameters are depicted in grey around the parameters. The 

crosses refer to those parameters which are significantly different from 1.

Saxena et al. Page 21

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2014 November 13.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 7. 

Aggregate IO Model Parameters. A) exp ( ), representing a model of the output neurons 

n1, … , n12. B) exp ( ), representing a model of the output neuron n13. C) exp ( ), 

representing a model of the output neurons n14, n15. D) exp ( ), representing a model of 

the output neurons n16, … , n21. The 95% confidence bounds for the model parameters are 

depicted in grey around the parameters. The parameters that are significantly above or below 

0 are depicted by crosses. Only the inputs with at least one significant parameter are shown.
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Fig. 8. 
A) , B) , C) , D) The average firing rate at the PMv channels which are shown to have a 

significant effect (with a confidence of < 95%) on the respective clusters of M1 neurons k = 

1, … , 4, during the four different tasks, on the left (color version available online). λk k = 1, 

… , 4 as estimated on all the trials performed during each task, ± one standard deviation in 

dashed lines, on the right.
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